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0. Abstract

This paper provides a robust statistical approach to nonstationary time series regression and
inference. Fully modified extensions of traditional robust statistical procedures are developed
which allow for endogeneities in the nonstationary regressors and serial dependence in the
shocks that drive the regressors and the errors that appear in the equation being estimated. The
suggested estimators involve semiparametric corrections to accommodate these possibilities and
they belong to the same family as the fully modified least squares (FM-OLS) estimator of
Phillips and Hansen (1990). Specific attention is given to fully modified least absolute deviation
(FM-LAD) estimation and fully modified M (FM-M)-estimation. The criterion function for
LAD and some M-estimators is not always smooth and the paper develops generalized function
methods to cope with this difficulty in the asymptotics. The results given here include a strong
law of large numbers and some weak convergence theory for partial sums of generalized func-
tions of random variables. The limit distribution theory for FM-LAD and FM-M estimators that
is developed includes the case of finite variance errors and the case of heavy-tailed (infinite

variance) errors. Some simulations and a brief empirical illustration are reported.
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1. Introduction

Many recent empirical applications of nonstationary regression methods have involved
financial data sets. Examples include econometric tests of the purchasing power parity theory
(Johansen and Juselius, 1993), which use exchange rate data, tests of forward exchange market
unbiasedness (Corbae, Lim and Ouliaris, 1993), which use spot and forward exchange rates, and
tests of uncovered interest rate parity (Hunter, 1993), which use interest rate and exchange rate
data. A well documented characteristic of such financial data is their non Gaussianity. The
leptokurtosis and heavy tailed features of exchange rate returns are especially notable, and these
features are usually accentuated when the data are sampled more frequently.

For illustration, Figure 1(i) shows daily data for returns (i.e. differences in logarithms) of the
Australian dollar spot exchange rate measured against the US dollar over the period January
1984-April 1991. Outlier activity is a fairly prominent characteristic of this data set. Figure 1(ii)
graphs a nonparametric estimate of the density of this data against that of a normal distribution
whose mean and variance are fitted to those of the data. The leptokurtosis and heavy tails of

the nonparametric density are evident in comparison with the fitted normal

Two commonly used regression methods for analyzing such data in levels or log levels form
are reduced rank regression (RRR) (Johansen, 1988; Ahn and Reinsel, 1990) and fully modified
least squares (FM-OLS) (Phillips and Hansen, 1990). Both these procedures are Gaussian in the
sense that they can be deduced as maximum likelihood estimators under certain conditions when
the data are Gaussian; and in this event they also deliver optimal estimates in nonstationary
cointegrating regression (Phillips, 1991a). These techniques were designed to deal with nonsta-
tionarity in the data but, like other least squares and Gaussian methods, they were not designed
to deal specifically with data where there is prominent outlier activity. In such cases there would
seem to be a need for estimators which are more resistant to the presence of outliers than
Gaussian estimators while at the same time being able to cope with data nonstationarity and
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This need is addressed in the present paper. We develop extensions of robust regression
procedures which allow for data nonstationarity and endogeneities in the regressors, and serial
dependence in the shocks that drive the regressors and in the errors that appear in the regression
equation. Our suggested estimators involve semiparametric corrections to accommodate these
possibilities and they belong to the same family as the fully modified least ‘squares (FM-OLS)
estimator of Phillips and Hansen (1990). Specifically, we develop a fully modified least absolute
deviation (FM-LAD) estimator and a fully modified M (FM-M) estimator from the correspond-
ing LAD- and M-estimators of ordinary regression. These estimators are designed to combine
the features of nonstationary regression estimators like FM-OLS with the outlier resistant
features of the common robust estimators,

Since the criterion function for the LAD estimator and for some common M-estimators is
not smooth, we cannot rely on usual Taylor expansion methods to do the asymptotics. Recently,
convex function approximations and stochastic equicontinuity arguments have been used to deal
with this type of difficulty -- see Pollard (1990, 1991) for some discussion and illustration of these
methods. The approach used here is rather different, although it does retain a convexity argu-
ment like that of Knight (1989) to assist in establishing the weak convergence of extremum
estimators. Our approach is to treat the objective function in an extremum estimation problem
as a generalized function and use generalized Taylor series expansions to extract the asymptotics.
To facilitate this process, we introduce the concept of a generalized function of a random var-
iable and give a strong law of large numbers and some weak convergence theory for partial sums
of generalized functions of random variables.

The paper is organized as follows. Section 2 gives the model, our main assumptions and the
preliminary limit theory. Section 3 introduces the idea of a generalized function of a random
variable by means of a class of suitable approximating sequences of ordinary functions of random
variables. Some limit theory for generalized functions that is used later in the paper is given in
this section. The FM-LAD estimator is constructed and its asymptotic theory is derived in
Section 4. Section 5 deals with the FM-M estimator and its asymptotics. Extensions of the

asymptotic theory to cover the case of heavy-tailed (infinite variance) errors are given in Section



6. Some simulation results and a brief empirical illustration are reported in Section 7. The
paper concludes in Section 8 by mentioning some further extensions of robust nonstationary

regression. Proofs are given in Section 9.

2. The Model, Assumptions and Preliminary Limit Theory

We will work with the model

(1a) Y =xB +ug,

(1b) bx, = uy

where x, is a k-vector of full rank (iLe. not cointegrated) integrated regressors. The error vector
u, = (ug, “Q)I in (1) is possibly temporally dependent and is required to satisfy Assumption EC
below. This assumption is convenient for our purposes here but could be replaced by a variety
of similar conditions without materially affecting our subsequent results provided the finite
second moment requirement is retained. If that condition is relaxed then the limit theory, and
indeed, some rates of convergence, will change. We will discuss this possibility later in the paper.
The model (1) can also be extended by the inclusion of deterministic trends and this extension
affects our results in the usual way (see Park and Phillips, 1988) provided the finite error vari-

ance condition holds.

ASSUMPTION EC (Error Condition)

(@) u, is a strictly stationary and strong mixing sequence with mixing numbers «,, that satisfy

© (p-B))
@ =l L.
for somep > B > 2;
(b) Eutﬂp < °°;
(c) The probability density h(*) of uy, is symmetric, and is positive and continuous in a neighborhood

(-b, b) of the origin for some b > 0.



The mixing condition (2) and moment condition (b) in EC are sufficient to ensure the func-
tional weak convergence of partial sum processes of u,, 4, and bounded functions of u,, as will
be needed later. These conditions will also validate the weak convergence to stochastic integrals
of sample covariances between the regressors x, and the errors u(, and bounded functions of u,.
A requirement like (c) is conventional in the development of an asymptotic theory for the LAD
estimator, whose limit theory depends on the value of h(-) at the origin, #(0). However, the
symmetry condition on A(-) is stronger than usual and could be relaxed, but it will be convenient
in our generalized function proofs.

Under Assumption EC the long-run covariance matrix of u, exists and we partition this

matrix conformably with u, as

Q. =B Eugd) Qoo Qu
= u = .

uu k--uc Ouk on Qxx

We also use the transformed error process v, = sgn(ug) = 1, -1 forug, 2 0, uy, < 0 respectively,

and define w, = (v,, u;t)l. Since v, is a bounded function of u, the long-run covariance matrix

of w, also exists under EC and we partition this matrix conformably with w, as follows

Q,, = Zr._ Ewgwi) B Do
= WaWw = .

ww k=—o 0"k va Qxx

In a similar way we define and partition the one-sided long-run covariance matrices of u, and w,

respectively as

A, = B oE(ugd) Bgo Ao
uu = Hp=pC\Uolk) = ’
Ax() Axx
and
By = Sp ) = |
ww = Hp0CWoWk) =
Axv Axx

Under Assumption EC a multivariate invariance principle for w, holds, viz.



3 1M B0 -BME®,,), 0<r=<1
as shown in Phillips and Durlauf (1986). We partition the limit Brownian motion B in (3)
conformably with w, and Q using the notation B, (r)’ = (B,(r), B,(r)’). A similar invariance

principle holds for partial sums of u,, viz.

() T1el"h B0 = BM(Q,), 0<r<1
where the limit process is partitioned as B,(r)' = (By(r), B,(r)') conformably with u} = (ug,
uy). In addition, EC ensures that sample covariances between the regressors x, and the error

vectors have limits that can be expressed as stochastic integrals with drift. In particular,

(5) T'lzllmx,v, —y I:)Bdev +rd,,, 0<rsl1
and

©  TE"xu —y [(BdB, 1A, , 0<rs1

where A, = [A, A_] -- see Phillips (1988) and Hansen (1992).

3. Generalized Functions of Random Variables
and Generalized Limit Theory

Our approach is to treat nonsmooth objective criteria like those that appear in LAD esti-
mation as generalized functions and use generalized Taylor series expansions to represent their
local behavior. The basic ideas behind this approach and an application to LAD estimation in
a stationary regression were laid out by the author in (1991). We will follow those ideas here
and develop some additional concepts to make the approach rigorous.

Our main concerns will involve generalized functions of random variables and stochastic limit
operations with partial sums of these generalized functions of random variables. The concept of
a generalized function of a random variable is different from the idea of a generalized random
process, as it appears in the existing literature on generalized functions [see, for instance,
Gel'fand and Vilenkin (1964), Ch. III], wherein such a process is defined as a mapping from a

given space of test functions into a random variable. An example of the latter is the continuous
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linear functional B(y) = I é(p(t)dW(t) , which is here expressed as a stochastic integral of the
Wiener process W(t) on CI[0, 1].

Instead, our need is to give a meaning to objects such as &(u;), where u, is a real valued
random variable (indexed by discrete time ¢) and 3(+) is the Dirac delta generalized function,
which has the property that I :6 (x)F(x)dx = F(0) for any continuous function F(x). There are,
in fact, several ways in which this can be done. In defining generalized functions like §(), i.e.,
before we deal with such "functions" of random variables -- we will use the "regular sequence"
approach given in Lighthill (1958). Associated with (and, in fact, defining) any generalized func-
tion f(x) is a sequence f,,(x) of good functions (i.e., functions that are continnously differentiable
any number of times with derivatives of O(|x|™N) as |x| = « for any N; hereafter, simply GF)
with the property that
) lm [T fe)Fdx

m-w

exists for any F € GF. The integral of f(x) is then defined by the equation

J7 foF@dx = lim (" £, ()F ) .

=

A sequence such as f,,(x) with this property is called a regular sequence for f(x).

Since the sequence f,, () is measurable, f, (4,) has a meaning as an ordinary random vari-
able on the probability space where u, is itself defined. The generalized function f(u,) of the
random variable u, is then defined by the associated regular sequence f,, (u,), or more precisely
the class of all regular sequences that are equivalent to f,,(*) in the sense that (7) is the same
for each sequence. It follows that if pdf(u) € GF is the density of u, then we can define the
expectation of the generalized function f( ) of u, by

8)  E((®)) := lim Ef,,(4) = lim [~ £, @)pdf(u)du .

m-o m-ow

Provided the limit on the right side of (8) exists, we can relax the requirement that pdf(u) € GF.
Now suppose we wish to establish a weak law of large numbers (WLLN) or strong law of

large numbers (SLLN) for partial sums of the generalized function of random variables f(u,).



Since f(*) is defined in terms of the regular sequence f,,(-) we can define a WLLN and SLLN
for f(u,), ie.

-1wT,
9) 7'z J@) —pas. E{f(w)} ,
by the corresponding weak and strong laws for partial sums of the regular sequence f,,(u,) of

ordinary random variables, i.e. by

-1T,
(10) T lzzfm(“x) —pas. Elm@)}, Ym
and the limit that appears on the right side of (10) is given by (8). This definition is, in fact,
compatible with that of a WLLN or SLLN for ordinary functions of u,.

3.1. LEMMA (SLLN for ordinary random variables as generalized functions of random variables)
Suppose u, is strictly stationary and ergodic and f(u,) is an ordinary (measurable) function of u,.
Then (9) holds in the sense of ordinary random sequences iff it holds in the sense of generalized func-

tions of random sequences, i.e. iff (10) holds.

PROOF. To prove necessity, suppose f(u,) is an ordinary function of u, satisfying (9) and E(f(u,))
is finite. We need to demonstrate (10). We construct the following regular sequence of good

functions to approximate f(*) [cf. Lighthill (1958), p. 22]
1) fu) = [T f@)SIm-u)tme™ " dy .

In (11) the function S() is a "smudge function" whose role in f,, () is to smudge out f(v) when

v is outside the interval (u - m™L, u + m™1). $(-) is defined as

(1) S6) = o)/ s6)dy ,

where

e VAY) ) < 1

0 ] 21

50) =

and



2 W21 2
ffls(y)dy - 2f(1)e'1/(1 Py = (2%e) | (l)e 1Y) g,
= (I/e)f;e'zz'm(lu)'?’/zdz , with z = y%/(1-y?)

= (x%e)¥ (12, 0; 1) ,
where ¥ is the confluent hypergeometric function of the second kind (Erdelyi, 1953, p. 255).
Note that S(y) and all of its derivatives are zero aty = #1,
Now S{m(v - u,)} is a measurable and integrable function of u, and therefore constitutes an

ergodic sequence, so that

TIB[Sim@ -u)} —, E[S{im -u)}] = [ S{m(v-u)}pdf@)du .

Hence,
T8 ) = [T T E[SIm(s - u)bme™ "y
_’a.s.J:f(V)E[S{m(v - ur)}]me-vz/mzdv

= E{f,,(u)} , vm

giving (10) as a necessary condition for (9) in the case of ordinary functions f(u,) of the random
sequence u,.

To show sufficiency of (10) in this case (i.e. when f(u,) is an ordinary function of u,) note
first that since f,(*) is a regular sequence for f(-), E{f(u,)} is finite and is given by the limit
shown in (8). (9) then follows directly by the ergodic theorem since f(u,) is an ordinary function,

is measurable (as the limit of a sequence of ordinary measurable functions) and E{f(,)} exists.(]

3.2. EXAMPLE. Let 3(u,) be the Dirac delta generalized function of the strictly stationary and
ergodic time series u, with continuous marginal density pdf(u). A corresponding regular

sequence for &(u,) is

(13) 8,,(1,) = (m/n)lfze."”""2 .

We have from (9)



(14) TIET8(u) —pas E{8()} = [ 8@u)pdf(u)du = paf(0) .

The corresponding result for the sequence 3,,(u,) is
w 2 -
T218,) —pas, EX8,@)} = (m/m)?[” e paf(w)du = pdf(0){1+0(m™)} ,

where the last equality follows by virtue of the Laplace approximation.

3.3. EXAMPLE. Let x, be the integrated process given in (1b) and suppose u,, satisfies

Assumption EC. We wish to show that

(1) T22{8(ug)ex’ —y PALO)[ B.B; .

Note that by changing the probability space this can be written as an almost sure convergence
result, in which case we can invoke the earlier definition of a.s. convergence of generalized func-
tions of random variables in terms of regular sequences. The corresponding condition in the

original probability space is then

2wl ' 1 '
(16)  T72218,,(uq)ex, —y E{8,,(ug)}[ BBy , Vim
where §,,() is the regular sequence for the delta function given in (13).

To establish (16) we will show that

2T '
(17) T722[8,,(ug) - E{8,,(up)}Y I, —, O .
First, in view of (3) we have T"V%; — B(). Next, since up, is strong mixing, z,,

= §,,(uq,) - E{3,,(ug,)} is also (with the same mixing nmbers) and

(.l.)m = lrvar(zm[) = Ej.-wE(Zmlzmt+j) ’

which is finite for all m. Note, however, that w,, = O(m 1’2) as m - =, as is apparent from the

fact that
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var{s, (u)} = E{6,,(u)?} - E{5,,(u,)}*
= (m/n)wae'Z””Zpdf(u)du - {(m/'t:)VZJ."_:De'""‘zpdf(u)du}2
(18) = (m/m)pdi(0){1 +O(m™)} - pdf(0)*{1 +0(m ™)}
= 0(m'?) .
(Note that higher order covariances, i.e. E{5,,(1,),,(1,,;)} forj 2 1, are of O(1) as m ~ =.)
Thus, w,, is unbounded asm ~ . But for all finite m, ,, exists and we have the functional law
a9) 12" B, () = BM(s,,) .

To prove (17) we simply note that

2T v 12T e - 12, .
T221[6,,(ug) - EL8,, (o), = T2 (T2, )TV ) (T ) = 0,(T7), wm .
In fact, it is not difficult to establish the explicit limit

-3 T ’ 1 ’ 1 ' 1 ’
(20)  TPEiz.xx’ —y [(dB, BB + A, [ B + [(BA,, m

where A, = E;OE (zmj%0) » Which is a limit result that is related to one given in Hansen (1992,

Theorem 4.2). Thus, (17) holds and this gives (16) and thereby the required Limit (15).

3.4. EXAMPLE. Under Assumption EC we have the functional CLT

- T
1) T8 M sen(ug) —y B,(r) = BM(2,)

(see (3) above) with

(22) Q,, = lvar(sgn(uy,) = Z7_E{sgn(up)sgn(ug.)} -

If we treat the ordinary function sgn(u,,) of u;, as a generalized function of u,, result (21) can
be viewed as a functional law for partial sums of generalized functions of random variables. The
limit process B, (r) can then be interpreted as a generalized process although of course it also has
meaning as an ordinary random process, viz. a Brownian motion with variance Q.

A regular sequence for sgn(u,) can be constructed as in (11). We get
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(23) sgnm(uot) = J‘:‘sgn(‘,)s(m(v_u))me_vz/m2dv .

Note that with this construction we have

- 2
sgn,,, (-ug,) J‘_wsgn(v)S(m(v + ug,))me m dy

_I'wsgn(—w)S(m(um - w))me'wz/”’zdw

~[* sgn(w)S(m(ug, - w))me* ™ dw = -sgn,,(uq) ,
so that sgn, () is an odd function of u, just like sgn(u). In consequence,

E{sgn,(ue)} = 0,

since the density of ug, is symmetric.
Being a regular sequence, sgn, (x) tends to zero faster than any negative power of |u] as
|u| - = (see Lighthill, 1958, p. 22). Indeed, recognizing that for large m the dominant part of

the integral (23) comes from integrating in the neighborhood of v = u, we have from the

Laplace approximation

1 ~(ugysylm)¥m? ~uggm? 1
(24)  sen,(ug) = [ senug +yim)e SH)y = sgn(ugle ™ {1+0(m™)} .

In view of this behavior for large |uy,|, all moments of sgn, (uy,) exist. Also sgn, (ug,) is a
measurable function of u(, and is therefore mixing (with the same mixing numbers as ug,). It

follows that

Q,, = lrvar{sgn, (uy)} = E;i_mE{sgnm(uo,)sgnm(uon)} <

and we have the functional law

@5y T2Msen (o) —y B,(r) = BM(Q,)), Ym .

Moreover, in view of (24) E{sgn,, (ug,)sgn,, (¢, +j)} -~ E{sgn(ug,)sgn(uq,, )} and Q,, - Q,  asm

- o, so that
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(26) lim B, (r) = BM(Q,,) .

me-c
Thus, (25) describes a regular sequence of functional laws whose limit (26) is equivalent to the
limit of (21). In this sense, (25) & (26) give an alternative representation of the functional law
(21), with the difference that the ordinary random variable sgn(u,) is treated as a generalized
function of u, (by virtue of the regular sequence sgn,,(u,,)). Since sgn(ug,) is an ordinary
random variable and the limit process in (26) is an ordinary random process the weak converg-

ence results are equivalent.

3.5. EXAMPLE. Assumption EC also validates weak convergence to stochastic integrals, as in
(5) and (6) above. Repeating (5) for r = 1 we have

“1wT 1
@) TEpx, sgn(uy) —y [ (BB, + A, .
As in the last example, we can again treat sgn(u,) as a generalized function of ug, using the
regular sequence sgn,, (4q,) given in (23). In the same way as we derived the functional law (25)

for sgn,, (ug,), we obtain

@8)  T'zlx, sgn, (ug) —y [(BéB,, + 8, , ¥m
where B, = BM(Q,,) and A, = B (E{u,, sgn,,(ug,,)} . Now A, = A, = T oE {uy sgnug,,)}
as m - « and thus in view of (26) we have

(29) hm(j 'BAB,, + Am) = [iBAB, + 4, .

n-—o

It follows that (28) describes a regular sequence of weak convergence results whose limit, from
(29), 1s distributionally equivalent to the limit of (27). Thus, (28) and (29) give a generalized

function characterization of the limit law (27).
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4. LAD AND FM-LAD ESTIMATION

The LAD estimator of p in model (1) is defined as the solution of the extremum problem

(30)  Brap = argmin[Z]ly, - x/B]] .

We examine the asymptotic behavior of the estimator ; o and use this theory to suggest suit-
able modifications to the estimator that lead to improved asymptotic performance in nonstation-
ary regression situations. Our approach to the development of the asymptotic theory uses
generalized functions of random variables and the limit theory for such functions developed in
Section 3 to deal with the fact that the objective criterion in (30) is not differentiable as an
ordinary function of f.

We start with p; ,p and give its asymptotic distribution in the following result.

4.1. THEOREM. Under Assumption EC

(B1)  T(Bap-B) —q [2:(O)[ BB [ BAB, + 8] .

4.2, REMARKS

(i) Theorem 4.1 shows that B, , is consistent at the usual O(T) rate for a nonstationary
regression estimator. But like OLS, B , py suffers from second order asymptotic bias arising from
the presence of A in the second factor of (31) and the fact that the limit Brownian motions B,
and B, are in general correlated (i.e. Q,, # 0in Q). In fact, formula (31) is very similar to the

limit result for the OLS estimator f, viz.
5 1n pi\-1,r1
T(B-B) — ([iB:B:) ([ BBy + 8,0

(from Phillips and Durlauf, 1986).
(ii) The limit distribution (31) depends on the value at the origin of the probability density
of uy, i.e. h(0). In this respect (31) is similar to the usual limit theory for the LAD estimator
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that applies in the stationary or linear regression case. However, since (31) is not mixed normal
in general the scale effects of h(0) affect more than just the dispersion of the estimator.
(iil) When v, = sgn(u,) is a martingale difference sequence with respect to 7,_; = o(v,_y,

Ug, s =t t-1, .;p = .. t+1,¢,¢-1, .), then A, = 0, Q = 0 and (31) specializes to

(2)  T(Bap- ) —q [PhO[BE][BAB) = MN0, (12h(0))([{B.B)7)

(since B, and B, are independent), which is a mixed normal limit that is comparable in form to
the normal limit theory for LAD in stationary models. In this special case x, is exogenous and

the system has no feedback between v, and u,,.

4.3. THE FM-LAD Estimator

Our purpose is to modify the LAD estimator so that we obtain a mixed normal limit theory
like (32) even when x, is not exogenous. To do so we need to adjust for serial dependence to
eliminate the one-sided long-run covariance A, and adjust for the endogeneity of x, that is
manifested in the long-run covariance Q,,. Our construction is based on the idea of the fully
modified OLS estimator developed by Phillips and Hansen (1990). However, in the present case
we need to take into account: (i) the extremum estimator properties of LAD (i.e. unlike OLS,
there is no explicit formula for LAD); and (ii) the fact that the limit theory for LAD, as given
in Theorem 4.1, relies on the robust functionv, = sgn(u,) of the equation errors rather than the
errors themselves.

We define the fully modified least absolute deviation (FM-LAD) estimator of B in (1) as the

following corrected version of B o

(33)  Biap = Prap - [2AOX'X] X AXQ10 « TAY] .

In(33) X'X = Elrx,x,’, X'AX = ElTx,Ax,’, h(0) is a (nonparametric) consistent estimator of h(0),
the probability density of u, at the origin, Qxx and flxv are comnsistent estimates of the long-run
variance submatrices Q,, and Q,,, and Z\;v is a consistent estimate of the one-sided long-run

covariance matrix
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+ oo + -1
(34) A = I E(ugv) = Ay - 4,00,

where

v+=v,—Q ol

t vx®xx Axl *
In order to estimate A’ we need first to estimate errorv}, which in turn involves the estimation
‘of v,. This is achieved by a first stage LAD regression which produces the error estimate

g, =¥, - BLap*, and consequently ¥, = sgn(d,,). We then construct

35) ‘7: =% - ﬁox f):Ax' ’

using conventional kernel estimates of the long-run covariance matrices Q, and Q_, whereupon
we can estimate A ;v as given by (34) directly by using a kernel estimate of the one-sided long-
run covariance of u,, and O: [see Park and Phillips (1989), Andrews (1991) and Phillips (1993)
for more details on kernel estimation of long-run covariance matrices]. Note from (34) that the
estimation of A ;v effectively involves the estimation of the four submatrices A, , A ., Q and Q .
We use the notation Q, in (35) to make it clear that our estimate of Q _ (and A, for that

matter) relies on ¥, rather than v,, which is unobserved.

We can also write (33) in the form

ﬁ]tAD = ﬁLAD - [2E(O)X’X]—1TZ\;; )

where

Ar = (Txax - A0 l0, A, .
In this formula for A ;; the first expression on the right side is an endogeneity correction. This
term adjusts the regression estimate for potential endogeneity in the regressor x, In LAD
estimation what is important is the correlation between Ax, (the shocks in x,) and the signed
equation error function v, = sgn(u,). Since there is persistence in the shocks to x, we measure
this correlation by means of Q,,. The variable Ax,’Q;lexv then adjusts the regression coefficient
for the conditional mean of the signed error v, given Ax,. The term involving A, adjusts for the

effects of serial dependence in Ax, on the covariance T~ 1¥'AX in the limit. Finally, the second
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termin A ;; above is A, and this adjusts for serial covariance between the past history of shocks
Ax, and the signed errorv,. In all these cases we make the corrections by nonparametric (kernel)
density estimation. Thus, f I+.AD is a semiparametric LAD estimator with nonparametric
corrections for endogeneity in the regressor x, and serial dependence in the equation errors and

shocks to x,.

4.4 THEOREM. Under Assumption EC

GO T(hiap- ) —a [PHOfBB] 1B, = Mo, (2020, ['B.B] )

where B, = B, - Q,Q°'B, = BM(w,,,) and o, = Q,, - 0,070, = lvar(y)) .
4.5. REMARKS

(i) The Limit theory of FM-LAD is similar to that of the FM-OLS estimator p*
= X'X) lxy*t - T&;O) where y* =y - AX’ QX;IQXO. This is given by

O T -0) — (BB ([ BB0.) = MN[0, wuo.f1BB])

where By, = By - Qq,Q Bx = BM(wgg.,) and wgg., = Qpy - Q. Q. Qx() The relative
asymptotic efficiency of the two estimators depends on the ratio ww_x/(Zh(O)) Wgg 4 » SO that

FM-LAD is more efficient than FM-OLS when

(38) h(o)z > (“)vv-x/4(“)00'x :

In the case where x, is exogenous and u, is 1id(0, ogo), we have 0, = 0, =1, 0y, = AN

= ogo and (38) reduces to

h(0)? > 140z, ,
which corresponds to the criterion for the asymptotic superiority of LAD over OLS in linear
regression.
(ii) Wald statistics for testing restrictions on B can be constructed in the usual way from the

limit theory in Theorem 4.4. For instance, consider the restrictions
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Hy: ¢(B)=0,
where ¢ is a g x 1 vector function with ®(p) = d¢/0p’ of full row rank q. The Wald statistic

for testing Hj based on FM-LAD is

-1 -1
G W = oo A 0 (B agVun

- A A Al
where &, = Q - Q, Q

xS ), is a consistent estimate of the conditional long-run variance

®,yp A(0) is a (nonparametric) consistent estimate of h(0) and ®* = @( B;_AD ). Inview of (36)
we have the limit W+ - xg under H; by a simple deduction. Thus the statistic W* can be used
for testing H in the usual way.

(iii) Fully modified standard errors for the BItAD estimator can be constructed from (the

square roots of)

2 X i 1 - .
(40) s = (O SAONIXX) M, (=1, . k)
where &, = Q;; - Qovﬁx;lﬁxo' The variance estimate (40) is based directly on the (condi-

tional) asymptotic variance matrix that appears in (36). Correspondingly, we have the fully

modified LAD t-ratios ¢; = (B;LAD - B;)/s;, which are asymptotically N(0, 1). These statistics
simplify the statistical reporting of FM-LAD regressions -- in effect we report the estimated
coefficients, standard errors and ¢-ratios in the usual way. The modifications that are built into

these statistics mean that they can be interpreted as in conventional stationary linear regression.

5. FM-M ESTIMATION

A more general class of robust procedures is that of M-estimators. In the present case, these

estimators can be defined by the extremum problem

. ,
(41) Bps = argmin[Z;p(y, - x,'B)] ,
for some function p. When p(u) = |u| this includes the LAD estimator. Other common
choices are p(u) = |u|® for & € [1, 2], thereby including OLS when & = 2, and the Huber

(1964) loss function
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(1/2)u? for |u| sc
(42) pc() =
clu| - (12)c? for |u| > ¢,
which combines the OLS criterion for deviations bounded by the parameter ¢ with the LAD

criterion for bigger deviations.

The estimator P, can also be defined as a solution to the equation

43) B0, - x'By) = 0,

and when p is differentiable and ¢ = p* (43) are the first order conditions. The definitions (41)
and (43) are equivalent when p is convex and differentiable because in that case there is only
one solution to (43). A scale estimate can also be employed in the criteria (41) and (43) and this
can be obtained using the residuals of a preliminary consisent regression (possibly by OLS), as
discussed by Huber (1981).

Like the LAD and OLS estimators, B,, needs some modification before it has good asymp-
totic properties in nonstationary regressions. We will construct a fully modified M-estimator B
to improve the asymptotic behavior of B,, and the construction is similar to that of BZ.AD' As
in the LAD case, we first need the limit theory for the unmodified estimator B,,. This calls for
some additional conditions that relate to the properties of the functions that appear in (41) and

(43).

ASSUMPTION ML (M -estimator loss function conditions)
(@) ¥(u,) has mean zero and ¢ (u,) I < =,

b) ¢’ is Lipschitz continuous and {§'(u,)}, < =, forsomep > B > 2, as in (2) above.
tip

Conditions of this type are fairly standard in the development of M-estimator asymptotics. The
p’th moment conditions (which relate to the strong mixing condition (2) in EC) on ¢ and ¢’ in
(a) and (b) are helpful because of the allowance for serial dependence in u, (cf. Knight, 1991)
and because of the need to establish results on weak convergence for sample covariances such as

T'llextw(u,) to stochastic integrals with drift. However, for many ¢ functions these conditions
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will be implied by the corresponding conditions on ,, and often ¢ and ¢’ are bounded, in which
case they hold automatically. The centering condition E{y(u,)} = 0 in ML(a) is the analogue
for M-estimation of the zero mean and zero median conditions for OLS and LAD estimation.

Some M-estimators are excluded by the differentiability condition ML(b). When ¢’ fails to
exist at a finite number of points, we can proceed by treating ¢ and §’ as generalized functions.
The asymptotic results given below will then continue to hold under some additional conditions

on the probability density h(u) of u,, so that for instance we could write

E{4'@)} = [~ ¥'@h@)du = -[~ bk’ (u)du
i.e. this linear functional of the generalized function ¢'(u,) of the random variable v, is equiva-
lent to —flw(u)h’(u)du , which exists as an ordinary function. In the Addendum to the proof
of Theorem 5.1 below (see Section 8.5) we will outline how this particular extension of the
theory proceeds. The development follows our analysis of LAD asymptotics using generalized
functions of random variables and generalized Taylor series.
Here we will focus attention on the nonstationary regression M-estimator asymptotics and

the construction of the FM-M estimator

5.1. THEOREM. Let Assumptions EC and ML hold. Suppose also that either of the following two
conditions apply:

(a) p is convex, ¢ = p' and B, satisfies (41);

(b) Byy is a solution of (43) and T2(By, - B) = o0, (1). Then

(4) TRy - B) —og [ECW o)) [iBB] (BB, + 8]

where

B, = BM(Qy,) , Quy = ;0 E{W(ug)¥(ug,,)}

and

By = E;OE{ux,lll(uo“j)} .
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5.2. FM-M ESTIMATION

As with the construction of the FM-LAD estimator, our purpose is to modify the
M-estimator B, so that the second order bias effects in the limit theory (44) are removed and
the limit distribution is mixed normal. The required corrections are similar to those used in the
LAD case and we define the FM-M estimator as

-1 1. -
(45) By = By - {T"z{w'(ao,)}X'X] X ax0; 0, + TAL],

xx “xy

where wa is a consistent estimator of

Qg = z;_mE{uxﬂl'("(mj)}
and A:w is a consistent estimator of

-a0l0

+ .
x T Mxy

A)‘,‘p =4

Again, all of these component matrices can be estimated using kernel techniques. But we do
need a preliminary consistent estimate of B, say B, to construct the residuals i1, from which we

can form the function (i1;,), which is required for the estimation of Q. and A,

5.3. THEOREM. Under the conditions of Theorem 5.1

TRy - ) —y [EAV o)} (BB, [ BBy )
(46)
= MN{O, ww,x[E{w'(uo,)}]'ZU B ,;]'1]

where

-1
By = BM(0yy.) s 04y = Quy - 0,000

yx*xx *xy ¢

5.4. REMARKS
(i) In the case where x, is exogenous and uy, is iid(0, ogo) the limit theory given in (46)

reduces to
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@T)  T(B}, - B) —y var(W(ug)) AE{w (o)} [*B,B.| ' [[*BaW]
0 0

where W is standard Brownian motion independent of B,. Observe that the limit (47) depends

on § only through the factor

(48)  var(y(ug) E(W (u)) -

Consequently the efficiency of the estimator B, depends on this factor also, just as it does in the
case of linear regression -- see, for example, Huber (1981, p. 173). If the density h(u) of u, is
continuously differentiable then the M estimators f 4, B, will be asymptotically efficient in this
case (note that these two estimators are asymptotically equivalent under the conditions of this

remark) if ¢ (*) is chosen to satisfy
(49) Yu) = -ch’w)h(@), for ¢ #0

(cf. Huber, 1981, pp. 70, 176). When the density h(") is unknown, there is the possibility of
adaptive estimation as recently discussed by Jeganathan (1988).

(ii) In the general case we can write the limit (46) as

12

(V]
50 TS, - B) —y — 2= (1B B\ ([*BaW)
(50)  T(By-B) d[E{w,(uOt)}](jo B ([Baw)

where W = BM(1) is independent of B,. So the limit distribution of the class of all FM-M esti-

mators depends on the y(-) function only through the factor

Oy JEXW (ug)} = Ivar{(ug,) lu Y EY (g)} -
It will be interesting to consider the issue of an optimal estimator in this class. Note that FM-M
estimation is semiparametric and ¥ (*) depends on the equation error u,. Maximum likelihood
estimation on the other hand involves the complete specification of the system including the
transient dynamics of the vector error process u, = (4, u,)’ . If the latter is parametric, like the
linear process u, = C(L; O)¢, = Eng(O)e,_j with Z‘gijle < o, then the likelihood can be

constructed using a form of innovations algorithm (as when i, is ARMA). For the Gaussian case
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the results in Phillips (1991, Theorem 1') confirm that the limit distribution of the maximum
likelihood estimator (MLE) of B is of the form given in (50). Indeed, FM-M estimation is
optimal with § (u) = u in this case, i.e. the optimal FM-M estimator is just FM-OLS. It will be
interesting to try to extend this theory to the non-Gaussian case and to develop a theory of
optimal semiparametric M-estimation. This task will be left for later work.

(iii) Theorem 5.3 can be used as a basis for inference using the FM-M estimator B,, in the
same way as FM-LAD (refer to Remark 4.5(ii) & (ii1)). Thus, to test H; as in 4.5(ii) we can use

the Wald statistic

Wy, = q,(;3;,)'{cb;,[T'lz:lTw'(ao,)]'z(X'X)*@;,'} lro(ﬁ;,)/&w -
where <I>;! = <I>(B;l), Byyx = f)w - f)wf):f)w is an estimate of the conditional long-run
variance of ¥ (u,,) given Ax, and 4, =y, - B;,’xt is the residual from the FM-M regression.
- The latter quantity is used in the sample estimate T'IETw'(ﬁO,) of E{y’(ug,)} and in the con-
struction of the &, which relies on the sample values §, = (). In the light of Theorem
5.3, we have W;, - xé under the null Hy. FM-M coefficient standard errors and f-ratios are

constructed in the same way as in Remark 4.5(iii) for FM-LAD estimation.

6. Extensions to Models with Infinite Variance Errors

This section outlines some extensions of the theory to the case where the errors in model (1)
have infinite variance. Our purpose is to sketch the development and indicate some interesting
points of departure from the earlier theory.

It is simplest to suppose that the tail behavior of the errors in (1a) and (1b) is of the same
form. It is especially helpful to require that the components of u,, have distributions with the
same tail shape, for then the normalizing constant in central limit theory for partial sums of u,,
is a scalar. The general case of an operator stable law when the components of u, have different
tail shapes (e.g. follow asymptotic Pareto laws with different slope coefficients) does not, to the
author’s knowledge anyway, seem to have been worked out. However, since one of the main

applications of a regression theory in the infinite variance case is to series like spot and forward
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exchange rates the restriction of comparable tail behavior does not seem to be too limiting. At
each point in time, spot and forward rates reflect the same information set and economic funda-
mentals. As a consequence, it seems reasonable to model such series with distributions that have
related tail shape.

Accordingly we will confine our attention to limit laws that are of the symmetric «-stable
(SaS) form. Thus, a k-vector £ has an SaS distribution in R if its characteristic function is of

the form
() E@EP) = expl-[ h{*T(@h)}

where §;, = {h € RX : h'h = 1} is the unit sphere in RF and T'(") is a probability measure
(possibly discrete) on S;,. Paulauskas (1976) provides a discussion of multivariate stable distri-
butions in this class. The most common examples (arising from discrete measures on ;) are
exponentials of powers of quadratic forms such as exp{-(p'Zp)*"}, which include the multi-
variate normal when a = 2.

We will assume the following condition applies to u, = (ug, uy)’ in place of Assumption

EC.

ASSUMPTION EC? (Error Condition 2)

(a) u, is generated by the linear process

(52) u, = D(L)e, = }3].=0Dje‘_j , Dg=1, |D(1)| #0,
where ¢, is an iid sequence of random vectors whose components have infinite variance and are each
in the domain of normal attraction of a stable law of order o. € (0, 2). The coefficient matrices in

(52) satisfy the summability condition
(53)  ZgilDI® < », with 0 <8 <aAl.

(b) Partial sums of the ¢, in (52) satisfy the following functional limit law in the product space

D[0, l]k+1 of k+1 copies of D[0, 1] with the product Skorohod topology:

-1 T
so  aizle, U0 .
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The limit process U (r) in (54) is an a-stable process in D[0, l]k *1 ywhose increments are SaS, ie.

have a characteristic function of the form (51), and ar = TV is @ normalizing constant.

(¢) The sequence u, is strong mixing with mixing numbers a,, that satisfy the summability condition
2@

Oam<°°.

(d) Condition EC(c) holds.

Condition EC?(b) is a "high level" condition. Since each of the components of ¢, is in the
domain of normal attraction of a stable law with exponent o simple sufficient conditions for a
component-wise version of (54) are available (see, for instance, Resnick, 1986; Chan and Tran,
1989; and Knight, 1991 for earlier applications). Condition (b) requires joint convergence and
specifies the limit process to be in the Sa$ class. Condition (a) specifies that u, has a linear
process form and this facilitates the use of arguments like those in Phillips (1991) and Phillips
and Solo (1992) for obtaining the limit distributions of certain functions of partial sums of u,.
The mixing condition (c) is useful because we need to work with and characterize the
dependence properties of functions of the error process uy,.

Our main result is the following:

6.1. THEOREM. Under Assumption EC%:

(@) the estimators By op and BItAD have the common limit distribution
1 AL (1~
T'(BLap - B T(Blap = B) —u {[jUkelie)” ([ UseB)

1 -1

- MN(O, (1/2h(0))29w( 0U,“!Um) ]
where a = 1/2 + 1/, U, (r) = DU, (r) and Uy ,(r) = U,,(r-) is the left limit of the process U, ,.
Here D, is the second submatrix of D(1)' = [Dy, D,] in a partition of D(1)’ that is conformable with

u, = (ug, uy)'.



25

(b) The estimators By, and B 1\+l have the common limit distribution
1
TI(BM - B)v Ta(ﬁM - B) —d [E{q’ (uOt)}IO xa xa} [JOUxadB

. MN{O, QW(E{q;'(uO,)}jIUmUx;)' }

6.2. REMARKS
(i) Theorem 6.1 shows that the robust estimators B; op and B,, are O(T°) consistent. Since
= 1/2 + 1/a > 1 for a € (0, 2), these estimators converge faster than the OLS and FM-OLS
estimators, whose convergence rate is still O(T) in the infinite variance case. The situation is
analogous to the case of coefficient estimation in an AR(1) with a unit root. In that case Knight
(1989, 1991) showed that LAD and M-estimators of the unit root have a rate of convergence
equal to O(T°%); and Chan and Tran (1989) and Phillips (1991) showed that OLS and semi-
parametrically corrected OLS have convergence rates of O(T). Thus, just as in the unit root
case, the robust estimators B 5 and B, are infinitely more efficient than OLS-based estimation
procedures when there are infinite variance errors.

(i1) Interestingly, B op and B;_AD are asymptotically equivalent in the infinite variance case.
Thus, there is no need to make corrections for endogeneity or serial correlation when the errors
have infinite variance. Intuitively this is because the robust estimators control the effects of
outliers in the errors but retain the additional strength in the signal from x, that arises from the
presence of heavy tailed and persistent shocks. In doing so, these estimators not only achieve a
higher rate of convergence than OLS and FM-OLS but they also remove the endogeneity effects
of the regressors and the effects of dependence between the past history of the shocks that drive
x, and the equation error uj,. In effect, whereas T'zzfunuot = OP(I) (it converges weakly to
the double stochastic integral or quadratic covariation process I 1dUmd Uy, where U,(r)

= (U, (), U, (1)) we have T-YeypT 1Yy S80(ug) = o0 (l) so that the endogeneity and serial
dependence effects wash out in robust estimation with heavy-tailed errors.

(iii) Since no modifications to By o, are required in the infinite variance case, we may as

well use By op rather than B, if it were known that « < 2. On the other hand, if we do use
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ﬁiAD then it follows from the theorem that nothing is lost asymptotically because the mod-
ifications in B;: Ap Wash out in large samples. As we will see, however, in the simulations
reported in the next section there is clear evidence that B; ap does pay a price for the modifi-
cations over B; ,p in terms of additional sampling dispersion.

(iv) The mixed normality of the robust estimators in the limit means that standard errors,

t-ratios and Wald tests can be constructed in the usual way as shown in Sections 4 and 5.

7. Some Simulation Results and an Empirical Illustration

7.1. Simulations
A small simulation study was conducted to study the sampling performance of the new

robust regression estimators. The model we used for data generation was the following:

Ye = Bx +ug, B =1
(3)
¢ = Uy
where
uy, = {1/(1 + cz)m}eh + {c/(1 + 62)1/2}221 ,
(56)

u, =g, ,
and e, and ¢,, are each serially independent, independent of each other and are drawn from the
following four distributions:

D(a) : N(O, 1);

D(b) : ¢ distribution with 4 degrees of freedom (t,);

D(c) : ¢ distribution with 2 degrees of freedom (t,);

D(d) : standard Cauchy.

According to the construction (56), the equation error u, is an orthonormal combination of
the independent shocks (¢, £5,). The parameter ¢ controls the degree of association between
ug, and u,, and therefore measures the amount of dependence in the regressor x, in (55). When
¢ = 0 x is exogenous, when |c| = 1 the squared correlation between u,, and u, is 1/2 and

when ¢ ~ = u,, and uy, become linearly dependent.
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The parameter values chosen for our small simulation study werec = -1,0,1and T = 100.
We computed FM-OLS, FM-LAD, LAD and RRR estimates of the regression coefficient in (55).
From 5,000 replications in each case, kernel density estimates were calculated of the sampling
distributions of these estimates. The results are shown in Figures 2-5, where each figure in this
sequence displays the outcome for an error distribution in the aforementioned groups D(a)-
D(d). The figures show the estimated densities of the LAD, FM-LAD and FM-OLS estimates,
as well as the estimates from a reduced rank regression with two lags in the regression (i.e. one
lagged difference) which is denoted RRR-2 in the figure legends. The estimates are centered on
the true coefficient and are scaled by the sample size, so that the given densities are those of
T(B-PB) for each estimator . In each case we show the results for the association parameter
value ¢ = 1. Very similar results were obtained for ¢ = -1 and ¢ = 0 with the exception that
LAD shows no bias in the latter case, as would be anticipated from the asymptotic theory given
in Theorem 4.1 (noting that A w = 0 and B, and B, are independent when ¢ = 0).

Figure 2 gives the densities for normal errors. LAD is biased (¢ = 1); FM-OLS, FM-LAD
and RRR-2 are all well centered; FM-OLS shows the best concentration and, interestingly,
FM-LAD has better concentration than RRR-2. Thus, although FM-OLS and RRR-2 are
asymptotically optimal in this case, FM-LAD appears to do well and to be superior to RRR-2 in
this finite sample case.

Figure 3 gives the results for the case of t, error distributions. The outcome is very similar
to the case of Gaussian errors. However, FM-LAD is now closer to FM-OLS, although FM-OLS
still dominates. FM-LAD dominates RRR-2 by a wider margin than in the Gaussian error case.
LAD is still biased (again ¢ = 1).

Figure 2 gives the outcome for t,-errors. Under these heavy-tailed error distributions the
rankings have changed. FM-LAD dominates both FM-OLS and RRR-2 in terms of concentra-

tion. FM-OLS continues to outperform RRR-2. LAD is much less biased in this case.
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Figure 5 shows the same densities under Cauchy errors. The results are dramatic. FM-OLS
and RRR-2 are widely dispersed. FM-LAD dominates FM-OLS and RRR-2 by a wide margin;
and LAD is by far the most concentrated. Note that in this case both LAD and FM-LAD have
rates of convergence (here order T>72) that exceed tﬁat of FM-OLS and RRR-2 (here order 7),
so we expect FM-OLS and RRR-2 both to be poor in relation to the robust estimates. Although
FM-LAD and LAD have the same limit distribution in this case (see Theorem 6.1) the sampling
distributions are very different, with the LAD estimator showing much more concentration.
Thus, FM-LAD does pay a price in finite samples for the additional correction terms in this case

of very heavy-tailed errors.

7.2. An Empirical Illustration
The robust and nonrobust regression procedures were used to estimate the foreign exchange

marKket regression equation
(57) Stake = & Bft,k Uy

that relates the natural logarithm of the forward exchange rate for a k-period ahead contract
delivery f, ;. to the logarithm of the future spot rate of the same currency s, ;. Daily exchange
rate data for the Australian dollar over the period January 1984-April 1991 were used and the

forward contract period was 3 months. There were 1830 observations in total.

Figure 6 shows the sample data and the fitted regression lines obtained by FM-LAD,
FM-OLS and RRR-6 (reduced rank regression with six lags).

In spite of the large number of observations there are big differences in the regression coef-
ficients. Both FM-OLS and RRR-6 seem to be substantially affected by outlying observations
(particularly the small spot rate and moderate forward rate pairs). The FM-LAD regression line

seems much less affected by these outliers and seems to follow the general cluster of data more
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closely. The estimated coefficients are given in Table 1 and these show that the numerical differ-
ences between the estimates are indeed substantial. Note that the FM-OLS and RRR-6 esti-
mates of the slope coefficient are both much closer to unity than the FM-LAD estimate. Thus,
inference about the forward rate unbiasedness hypothesis (under which p = 1 in (57)) is affected
by the regression procedure: the nonrobust estimates are biased in favor of this hypothesis, while
the robust estimates do not support it. The reader is referred to the author’s paper (1993) for
a detailed empirical analysis of these data.

Table 1: Estimates of Equation (57)
(standard errors in parentheses)

a p
FM-LAD -0.071 0.700
(0.012) (0.040)
FM-OLS ~0.025 0.883
(0.029) (0.092)
RRR-6 -0.003 0.935

8. Further Useful Extensions

The robust regression methods developed here are designed for use in single equation
nonstationary regression. They can be extended to multivariate regressions or subsystem
cointegrating regression where there is more than one cointegrating relation. There is also the
possibility of adaptive estimation wherein the error distribution is estimated and used in the
estimation of the regression coefficients. Jeganathan (1988) discussed this possibility in the
context of regression models like (1) with serially independent errors and exogenous regressors.
Given the extensive use of vector autoregressive models in empirical econometric research and
the growing use of RRR methods in VAR models it would seem useful to develop adaptive

estimation methods for these models also.
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9. Proofs

9.1. PROOF OF THEOREM 4.1. We start by defining the process

(Pl Zye) = Zi{lug - T'%'8| - lugl} .

The vector ¢ which minimizes Z{(g) is just §r = T(Bpap - B). Since Z{(g) is convex, we can
make use of the approach given by Knight (1989). In particular, by Knight’s Lemma A it follows
that if the finite dimensional distributions of Z{g) converge to those of a process Z(g) and Z(g)
has a unique minimum at § then the convexity of Z, implies that § —; 8. This also means that
BrLap —p B and a separate argument for consistency of B; sp is not required. (Pollard (1991)
used a similar approach to LAD asymptotics but his examples 1 and 2 give normal distribution
limits and do not involve random quadratic elements in the limiting process.)

We will establish convergence of the unidimensional distributions of Z{(g) and then the
higher dimensional distributions converge in a corresponding way by applying the Cramer-Wold
device. Note that the process Z{g) involves the ordinary random functions |u, - T™'x,'g| and
|ug,| and is itself an ordinary random process. But, it can also be treated as a generalized
process (here a stochastic process defined in terms of generalized functions of random variables)
by treating the function f(§,) = || of the random variable £, as a generalized function of the

random variable £, i.e. by using the regular sequence of random variables
® -v¥m?
fnl&) = [T _WIS(m(v-E))me™ ™ dv

to represent f(£,) as in (11). Thus, as a generalized process Z{g) is defined by the following

regular sequence of processes

T -1,
(P2)  Zp, @) = B {fmluy - T7'%/8) - frn(ug)} -
We now proceed to develop a Taylor expansion of Zr, (g) and to characterize its limit

behavior. Expanding Zr,,(g) in a Taylor series about g = 0 we have

P3)  Zp,@ = -T2 s + T 22D wgex s

where f”(ll)(-) and f"(,z)(-) denote the first and second derivatives of f, (*), and “8: lies between
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ug, and uy - T‘lx,’g. Since f(%) has first derivative everywhere except £ = 0 and f'(%)
= sgn(£) exists as an ordinary function, it follows that the regular sequence fn(ll)(-) is a regular
sequence for sgn(-) treated as a generalized function (Lighthill, 1958, Theorem 10, p. 24).
Thus, fn(,l) (") is equivalent to the regular sequence sgn, () given in (23). Similarly, fn(,z)(-) is

a regular sequence for the generalized function
d/dg(sgn(&)) = 25(%) ,

(cf. Lighthill, 1958, p. 23) and is therefore equivalent to the regular sequence 25, () given in

(13).
Next, we consider the limit behavior of the two components of Z, (g) in (P3). First, by

Example 3.5 we have

-1wT ' 1 ' '
(P4) T2 sgn,(ug)x's —y ([ (@ByBy + Ainke

and the limit process as m - = is equivalent to ([ dB,B; + A)g, ie.

(PS)  Lim([(dB,B; + &) = ([(dBB; + ML),

m-o

which is of course an ordinary random variable.
For the second term of (P3), observe that the regular sequence 3, (") is differentiable and

has bounded derivative (with a bound dependent on m) for all m. Thus,

lﬁm(u&) = 8,(up)| < KmlT-lxtlgl , Vm .
and therefore

25T * ‘ '
IT2E {800 = 8p(ug)Ex x|
- T 7 ’ 1
s KT 72 1(48)|@'%%8) —p 0 Vim

uniformly over g in compact sets. Now using Example 3.3 we have

(B6) 2215, (up) %% 8 —g EL8,(u0)}['@B

whose limit as m - « is g’f(l)BxBx’g.
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Combining (P4) and (P6) we deduce that

1 1 1 ’ 1 ’
(P7) ZTm(g) —d '(IOdBme + Axm g + E{am(uOt)}g (IOB x)g = Zm(g) , say, Vm
uniformly over g in compact sets. In view of (PS) and since lim,,__ E{5,,(ug)} = E{8(ugy)}

= pdf(0), the limit process Z,,(g) has the following equivalent representation as m - «

(P8)  Z(@) = -([,dB,B; + A)e + pAf(0)e"([(B,B.)e .
which is an ordinary random variable.

Since Zr,,(8) —4Z,,(8), Vm, and lim,, . Z _(g) = Z(g), we have established the weak con-
vergence of Z{(g) —; Z(g) as generalized processes uniformly over g in compact sets. But both
Z{(g) and Z(g) exist as ordinary random processes so that the weak convergence applies in this
sense also. The argument that we can neglect the region outside a suitable compact set for g

relies on the convexity of Z{(g) and is the same as that given in Knight (1989, p. 277). Finally,
(P9)  # = argmin Z(g) = |2pdf(0)['B.B:|'[[*B4B, + A
g = argmin Z(g) = 2pdf(0)] B,B;| [| BB, + 4,]

and we deduce that g = T(Bp op - B) —4 £ as required.

9.2. PROOF OF THEOREM 4.4, Start by writing the estimation error as
. r2x) (i axo o, + A
T(Biap - B) = T(Bap - B) - (ARAONT2X'X) [TXx'axQ;'Q,, + A7)
Then, using Theorem 4.1 and (6) we obtain
+ 1 J-ter1
T({ap - B) —a [2HO [{B.B:] [;BAB, + 4,)
) (1/2h(0))(j 33};)'1[(f 'BAB, + 80070, + 4]
- [0 [ BB 1 BB, - @,0;}dB,)
- [2v@[BB.] " [1BAB, .

= MN|0, (1/2}1(0))2“’vv-x[,r :)B‘B “I]-l]

as required.
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9.3. PROOF OF THEOREM 5.1. The argument follows the general lines of Knight (1989,

Theorem 2). Take the case (a) of p convex and define

Z1{e) = T{{p(uy, - Tx/8) - plug)} ,
so that if §; minimizes Z;{(g) we have g = T(B,, - B). Then, by virtue of the convexity of
Z{g) we have gr —, g = argmin Z(g) where Z(g) is the weak limit of Z,(g). As in the proof
of Theorem 4.1 above, wé need only establish finite dimensional convergence of Z{(g) to Z(g).

Taylor expansion of Z{g) around g = 0 gives

-1l ' 2wl ir *N [
(P10)  Zp{g) = -T™'E ¥(uglx s + (DT 2Z ¥ (ug )85, 2
where “8: lies between u(, and u, - T'lx,’g. Now |¢'(ug) - W'(“(‘)t)] <K |T'lx,’g( for some
K > 0 and therefore
- T ; 1 * ’ 1 - T, ’ -1_ ’
(P11) T2 |4’ (g - ¥'(ug)le'xx,/'8 < KT V2B (T2 'g) (T g'xx,'8) —, 0,

uniformly over g in compact sets. Next
i, N ' Sy oyt
(P12)  T2Ej[W(ug) - E{w' (up) Y%/

= TV (BT () - EXW (ug) T ) (T, )

0177y,

i

uniformly in g because the expression in large square brackets converges to a stochastic integral

with random drift, just as in (20). Finally,

(P13) TR {E(Y (ug)g'xes —g ELW'(uo)Ye’[(B.Bg

and
- T ] ] 1
(P14) T2 1u(ug)r's —g 8'([ BB, + Ay,
since Y (u,) satisfies the functional law
- T
T22 w(ug) — By, = BM(Q,,) »

and the conditions for the convergence to the stochastic integral with drift in (P12) in view of

Assumption ML. Combining (P13) and (P14) with (P11) and (P12) we obtain the following limit



34

for Z{(g)

Z{g) —q &'( f (1)19,“1113‘p + A,) + (12)E{y'(uy)}e’ f ;BxBx’s =Z(@) .

We deduce that
a ' 1 S-1er1
br —a & = [EW G BB 1[(BABy + 8],

giving the required result.
In case (b) where TVZ(BM - B) = ap(l) and B,, satisfies (41) we expand the first order

conditions, giving

0 = T'2{xwug) - T2210 (ug)epx/ T(Byg - B) + TRy,
where
T'lRT = T"lE{{\IJ'(uO,) - ‘V’(“&)}xtxtl(BM -B),
and “8: lies between u(, and ug, + x,'(B - Byy). Now
ITRy| < KT 2] 1By - B2 = KT 21TV 1P |T(B,, - B || TV2(Bys - B)|
= |T(Bps - B) lop(1) .

Hence

-1
T(Bpr-B) = [T_zzf‘l"(“w)"rxz' * Op(l)] [T 2% (k)

—a [EW G BB (BABy + 2]

just as in the case of convex p.

9.4. ADDENDUM TO THEOREM 5.1: y(-) NON SMOOTH

We will consider here the case where () is differentiable except for a countable number
of points of R. We will retain the other conditions of Assumption ML. The arguments follow
the same general lines as those given in the proof of Theorem 4.1 for the LAD estimator.

Take the case (a) where p is convex. As in the LAD proof we need to show that Z,{(g)
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= 2Tp(uy, - T'lx,’g) - p(ug)} has a suitable quadratic approximation as T - =. Since ()
is not everywhere differentiable we cannot use (P10). Instead, we proceed by treating the
ordinary function p(-) in Z{g) as a generalized function by means of the corresponding regular

sequence p, (-) given by
Pm(u) = j °_° p(v)S(m(v-u))me'v2/m2dv .

(The existence of this integral poses no practical constraints on p(v) which will, for robust esti-
mation purposes, generally be bounded by a function that is at most 0(?) as |v| - =). Then

Z{(g) is defined by the regular sequence of processes

Z1m®) = Z1{Pmlig - T'8) = pplg)} -

Expanding Z, in a Taylor series about g = 0 we have

(P15)  Zp,@) = TE (e 8 + (DT 22Ty, (ug ) %8 »
where y,,(*) = p,(*) is a regular sequence for y(-) = p’(*) and y,,(*) is a regular sequence
for ¢’(+) where both ¢ and ¢’ are treated as generalized functions.

We examine the limit behavior of the two components of Zr, (g) separately. First, as in

Example 3.5, we get

-1wT ’ 1 ’ '

where B, =BM(Q, , ), Q, , = ):;_ EW (o) ¥m(ug,)} and 8, = 2o E (¥ (ug )}
The limit process in (P16) as m - «is

. 1 ' ’ 1 ’ 7
(P17)  lLim(f By Bi + Ay )8 = ( (BB + AL .
m-oo

In the second term of (P15) y,,,(*) is a regular sequence and therefore is differentiable with

bounded derivative for each m. Thus

Iwr’n(u(;t) - ‘prln(uOI)| < KmT‘lxtlg , Wm

for some K,, > 0 and
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. 7 I 1 1 - T
T 25 W), () - Vi(ug)ie'xxg < K, T E{ PP —, 0, vm

uniformly over g in compact sets. Just as in Example 3.3, we now obtain the limit

(P18) T 2E W, (408 '%% 8 —u E{Wp(ug)}[ @B

By definition of the regular sequence ¥ ,,(*) we have the limit
tim [y, (u)h(a)du = [* ' ()hGu)du = [ Y@h'()du ,
m-x

which exist as ordinary Riemann integrals, i.e. we have
(P19) E{\p;n(uo,)} - E{qr’(u)} .

Combining (P16) and (P18) we have

Z1m® —a -([[dBy Bl + Ay Y8 + (V2)E{W,(ug)e [ BB = Z,@) , say

and in view of (P17) and (P19)

lim Z,,() = ~([(dByB; + A + (UDELY (ug)}g'[(BBig = Z() -

m-—

This establishes the weak convergence of Z{g) —; Z(g) as generalized processes uniformly in

g over compact sets. The argument then follows as in the proof of Theorem 4.1 and we get
gr = argmin Z(g) —, £ = argmin Z(g) ,

and thus the conclusion of Theorem 5.1 continues to apply in this case where {( ) is not every-
where differentiable.

An analogous proof for the p not necessarily convex (i.e. case (b) of Theorem 5.1) is con-
structed following the lines of the second part of the proof of Theorem 5.1 and using generalized

functions of random variables in the same way as the earlier part of this Addendur.
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9.5. PROOF OF THEOREM 5.3. The error of estimation 1is

-1 A A 4

T(Bp - B) = T(Bp - B) - {1/T'12:1¢(u0,)}( '2X'X) [TXaXQ 0, + A].

Note that

T2 ] (v @) - ¥'(ug)} s KTIE] I8y - B1 —, O

and

T-lsz,(uOt) —as. E{‘p’(uo,)}
so that

15T, e
T 121111 (@) —, E{y'{ug)} .
In a similar way we can replace ¥ (u;,) by § = (&) in the sample covariances that enter into

the formulae for wa and A xy and retain the consistency of these estimators. Then, using

Theorem 5.1 we get
T(Byy - B) — [ECH a0} (B8] [ 1BAB, + 8.4)
- ECY wo)D{[(BB:) [ BB, + 80050,y + 87,]
- [Etwwan [ U BB, - [(BaBioja,,
- [ECv o [(BB:]1f{BBy
< o, ww.x[E{w'(uo,)}l'z[f;Bﬁ;]'l]

as given in (46).

9.6. PROOF OF THEOREM 6.1. We first consider B; o, and our line of approach is the same

as in the proof of Theorem 4.1. However, instead of (P1) we take

T . .
Z1(g) = Z]{lug - T™x/g| -~ lug |}, and g7 = argmin Z;(g)
witha = 1/2 + 1/c. Asbefore we treat Z,{g) as a generalized process, defined in terms of the

regular sequence
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Zim®) = 1 Uty ~ T%8) - fru(ttg)} »

and use the Taylor expansiom:

T {8 ’ - T.(2 *\ ’
(P20)  Zp,@) = -T2 e e + DT E{f Do) xxs
where ug, lies between ug, and uj, - T™x,'g. Here the sequence f,f,l) (*) is equivalent to sgn,,
() and £2 () to 5,,("), as defamed carlier.

First consider the second #term of (P26). We use the "BN" decomposition
(P21) u, =D(L)e, = D(kpe, + T, - %

see Phillips and Solo, 1992) where %, = D (L), and D (L) = £D;L/ with D; = £°.D, . Now,
p t ¢ 0™j J - STk

in view of (53)

zgaﬁjgb < ZokID ¥ < =,
and thus %, = Ef;ﬁjs,_j conwerges almost surely and %, € 2(¢). Now set P, = Eis]- and

W, = Zju. Wehave W, = D{1)P, + T, - ¥, and then

T%sTww, - DEYT%2IPP,/D(1) + DO)T¥EL]P(z, - ¥,
(P22)
+ T 25T, - 5)P/ DAY + T22(5, - T - E)' -
Note that €, € 2(«/2), so that T'”“Z}T‘E‘E; = Op(l), T'U“E{'é't = 0,(1) and therefore the
final term of (P22) is o,(1). Aso T"'"V*2]P, = 0,(1) and T"#2]P%, = 0,(1) (the latter can
be shown by using a further "BIN" decomposition for €,). Hence, (P22) is dominated by the first
term. However, T'U“P[T,] —+wz U, (r) by (54) and by virtue of the continuous mapping theorem

we obtain

(P23)  TXZ{WW, = DT 2EPP/D(1) + 0,(1) —; DO)([ éUa(r)Ua(r)’dr)D(l)' .

We deduce that

- T _, 1,y '
T231x5% —y [ UpdUpe(r)dr

0 e

where U,,(r) = DU, (r) and D’ = [Dy D,] is partitioned conformably with u, = (ug, u})’.
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In the same way as in the proof of Theorem 4.1 we can now show that

- T ' ’
T 202:1{5m(um) - 5m(u6t)}g xx'8 —, 0

uniformly over g in compact sets, and

- T ’ 1 1 1 2
T8 18 ()8 %% '8 — g EX8,(u0)} [ €'Vso)” -
Next consider the first term of (P20). Noting that f)(ug) = sgn,,(ug), which is (a
sequence of) strictly stationary bounded functions of uy we have the martingale difference

decomposition (see Hall and Heyde, 1980)

(P24) g0, (ug) = Yy + Qpyy - Q-1 » VM

where the Y, , are stationary square integrable ergodic martingale differences (with respect to the
filtration generated by {u; : j < t}) and the Q,,, are square integrable stationary processes Vim.
As in the proof of Lemma 2 of Knight (1991) we can use (P24) and the BN decomposition for

u,, that follows from (P21) to establish the weak convergence

(P25)  TEisgn,(uo)x, = E(T " sgn,(ug))(T™V%%) —y 1B, U,

where U, , signifies the left limit of U, (-). In the limiting stochastic integral (P25) the
Brownian motion B,, = BM(Q,,) is stochastically independent of the stable process U,,. There
is also no drift or bias term in the limit (P25), unlike the finite variance case. The independence
is a consequence of the different rates of convergence to B,, and U, , and follows from a result.
originally shown by Resnick and Greenwood (1979).

Combining these results we obtain

1 - 1 ’
Zm® —a = ([ [ @BnUz ") + E{8,(u)}e ([ (UeuUs)8 = Z,@) » say im
and, as in the proof of Theorem 4.1, the convergence holds uniformly over g in compact sets.
Again, since lim,,_ B, (r) = B, = BM(Q,,) and lim, _ E{5, (up)} = E{5(up)} = pdf(0) we

have
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lim Z,,() = ~([4B,U," )8 + pdf(0)g'([[UseUsk)e = Z(2) , say
m=o

which is an ordinary random variable. The remainder of the argument now follows exactly as in
Theorem 4.1 and the result for T%(By op - B) is established.

Next consider the estimator B]:AD' We have

25T, 2a,0 T A1 27
(P26) T(Bjsp-B) = T*(Brap-B) - [2£(0)T PE | T2 u)0, 0, + TV24]).
We need to show that the second term on the right of (P26) is op(l). Since P 5p is consistent
(from the first part of the proof) and LAD residuals are used in the construction of 4(0) and the
long-run variance matrix estimates that appear in (P26), we may proceed as if these estimates
were constructed using the true errors ug,. Then £(0) —p h(0), and following the same line of
argument as that given in Section 2.3 of Phillips (1991) we find that Tl‘z"kax = 0,(1), Tl'z"ﬁxx
-2a¢ ~2a
= 0,(1), T'"%Q,, = o,(1) and T'"%A,, = 0,(1). Then

T2(2heu)0 10+ 7124

- T ., “2aAa -1 “2a A
- (Tl Zazlx,un)(Tl 20 (11720, )

+ T—2/t!Axv _ (Tl-Zanx)(Tl—Zaéxx)-l(T—Wava)
= (0,())(O0,(1)) o, (1) + 0,(1) - O,(1)(0,(1)) o, (1) = 0,(1) .
We deduce from (P26) that T"(BiAD - B) =T'(Buap - B) + 0,(1) and the stated result
follows.

A similar argument gives the limit distribution of 7°(B,, - B) and shows the asymptotic

equivalence of B,, and B
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Fig 1(i): Australian dollar
spot exchange rate returns
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Fig 1(ii): Density Estimates
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