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In this paper we consider the problem of novelty detection, pre
senting an algorithm that aims to find a minimal region in input 
space containing a fraction 0: of the probability mass underlying 
a data set. This algorithm- the "single-class minimax probabil
ity machine (MPM)" - is built on a distribution-free methodology 
that minimizes the worst-case probability of a data point falling 
outside of a convex set , given only the mean and covariance matrix 
of the distribution and making no further distributional assump
tions. We present a robust approach to estimating the mean and 
covariance matrix within the general two-class MPM setting, and 
show how this approach specializes to the single-class problem. We 
provide empirical results comparing the single-class MPM to the 
single-class SVM and a two-class SVM method. 

1 Introduction 

Novelty detection is an important unsupervised learning problem in which test data 
are to be judged as having been generated from the same or a different process as 
that which generated the training data. In essence, we wish to estimate a quantile 
of the distribution underlying the training data: for a fixed constant 0: E (0,1], 
we attempt to find a (small) set Q such that Pr{y E Q} = 0:, where, for novelty 
detection, 0: is typically chosen near one (Scholkopf and Smola, 2001 , Ben-David 
and Lindenbaum, 1997) . This formulation of novelty detection in terms of quantile 
estimation is to be compared to the (costly) approach of estimating a density based 
on the training data and thresholding the estimated density. 

Although of reduced complexity when compared to density estimation, multivariate 
quantile estimation is still a challenging problem, necessitating computationally 
efficient methods for representing and manipulating sets in high dimensions. A 

significant step forward in this regard was provided by Scholkopf and Smola (2001), 
who treated novelty detection as a "single-class" classification problem in which 
data are separated from the origin in feature space. This allowed them to invoke 
the computationally-efficient technology of support vector machines. 

In the current paper we adopt the "single-class" perspective of Scholkopf and Smola 
(2001), but make use of a different kernel-based technique for finding discriminant 



boundaries- the minimax probability machine (MPM) of Lanckriet et al. (2002). 
To see why the MPM should be particularly appropriate for quantile estimation, 
consider the following theorem, which lies at the core of the MPM. Given a random 
vector y with mean y and covariance matrix ~y , and given arbitrary constants 

a¥- 0, b such that aTy :S b, we have (for a proof, see Lanckriet et al., 2002): 

inf Pr{aTy:Sb}2::a {:} b-aTY2::,,;(a) /aT"5:,ya, (1) 
y~(y,:Ey) V 

where ,,;(a) = Ja/1 - a, and a E [0, 1). Note that this is a "distribution-free" 
result- the infimum is taken over all distributions for y having mean y and covari
ance matrix "5:,y (assumed to be positive definite for simplicity). While Lanckriet 
et al. (2002) were able to exploit this theorem to design a binary classification al
gorithm, it is clear that the theorem provides even more direct leverage on the 
"single-class" problem- it directly bounds the probability of an observation falling 
outside of a given set. 

There is one important aspect of the MPM formulation that needs further consider
ation, however, if we wish to apply the approach to the novelty detection problem. 
In particular, y and ~y are usually unknown in practice and must be estimated 
from data. In the classification setting, Lanckriet et al. (2002) successfully made 
use of plug-in estimates of these quantities- in some sense the bias incurred by the 
use of plug-in estimates in the two classes appears to "cancel" and have diminished 
overall impact on the discriminant boundary. In the one-class setting, however, the 
uncertainty due to estimation of y and ~y translates directly into movement of the 
discriminant boundary and cannot be neglected. 

We begin in Section 2 by revisiting the MPM and showing how to account for 
uncertainty in the means and covariance matrices within the framework of robust 
estimation. Section 3 then applies this robust estimation approach to the single
class MPM problem. We present empirical results in Section 4 and present our 
conclusions in Section 5. 

2 Robust Minimax Probability Machine (R-MPM) 

Let x, y E jRn denote random vectors in a binary classification problem, modelling 
data from each of two classes, with means and covariance matrices given by X, Y E 

jRn, and "5:, x , "5:,y E jRnxn (both symmetric and positive semidefinite), respectively. 

We wish to determine a hyperplane H(a , b) = {z I aTz = b}, where a E jRn\{o} 
and b E jR, that maximizes the worst-case probability a that future data points 
are classified correctly with respect to all distributions having these means and 
covariance matrices: 

max a S.t. inf Pr{ aT x 2:: b} 2:: a 
a,a,cO,b x~(x,:Ex) 

(2) 

inf Pr{aTy:Sb} 2:: a, 
y~(y , :Ey) 

where x '" (x, "5:,x) refers to the class of distributions that have mean x and covari

ance "5:,x, but are otherwise arbitrary; likewise for y. The worst-case probability of 
misclassification is explicitly obtained and given by 1 - a. 

Solving this optimization problem involves converting the probabilistic constraints 
in Eq. (2) into deterministic constraints, a step which is achieved via the theorem 
referred to earlier in Eq. (1). This eventually leads to the following convex optimiza
tion problem, whose solution determines an optimal hyperplane H(a, b) (Lanckriet 



et al., 2002): 

(3) 

where b is set to the value b* = arx - x:*Jar~xa*, with a* an optimal solution 
of Eq. (3). The optimal worst-case misclassification probability is obtained via 

1 - a* = 1/(1 + x:;). Once an optimal hyperplane is found, classification of a new 
data point Znew is done by evaluating sign( ar Znew - b*): if this is + 1, Znew is 
classified as belonging to class x, otherwise Znew is classified as belonging to class 
y. 

While in our earlier work, we simply computed sample-based estimates of means 
and covariance matrices and plugged them into the MPM optimization problem in 
Eq. (3), we now show how to treat this estimation problem within the framework 
of robust optimization. Assume the mean and covariance matrix of each class are 
unknown but lie within specified convex sets: (x, ~x) E X, with X C jRn X {M E 

jRnxnlM = MT,M ~ O}, and (y,~y) E y, with Y c jRn X {M E jRnxnlM = 

M T , M ~ O}. We now want the probabilistic guarantees in Eq. (2) to be robust 
against variations of the mean and covariance matrix within these sets: 

max a S.t. inf Pr{aTx2b}2aV(x,~x)EX, (4) 
a,a#O,b x~(x,Ex) 

inf Pr{aTy::; b} 2 a V(y,~y) E y. 
x~(y , Ey) 

In other words, we would like to guarantee a worst-case misclassification proba
bility for all distributions which have unknown-but-bounded mean and covariance 
matrix, but which are otherwise arbitrary. The complexity of this problem depends 
obviously on the structure of the uncertainty sets X, y. We now consider a specific 
choice for X and y, motivated both statistically and numerically: 

X {(x,~x): (x-xO)T~x-1(X_XO)::;v2, II~x-~xoIIF::;p}, 

Y {(y,~y): (y_yO)T~y-1(y_yO)::;v2, II~Y-~/IIF::;p}, 
(5) 

with xO, ~x 0 the "nominal" mean and covariance estimates and with v, p 2 0 fixed 
and, for simplicity, assumed equal for X and y. Section 4 discusses how their values 
can be determined. The matrix norm is the Frobenius norm: IIAIIj" = Tr(AT A). 

Our model for the uncertainty in the mean assumes the mean of class y belongs to 
an ellipsoid - a convex set - centered around yO, with shape determined by the 
(unknown) ~Y' This is motivated by the standard statistical approach to estimating 
a region of confidence based on Laplace approximations to a likelihood function. The 
covariance matrix belongs to a matrix norm ball - a convex set - centered around 
~Y o. This uncertainty model is perhaps less classical from a statistical viewpoint, 
but it will lead to a regularization term of a classical form. 

In order to solve Eq. (4), we apply Eq. (1) and notice that 

b-aTy 2 x:(ah/aT~ya, V(y, ~y) E Y {:} b- max aTy 2 x:(a) max aT~ya, 
(y,Ey)EY (y ,Ey)EY 

where the right-hand side guarantees the constraint for the worst-case estimate of 
the mean and covariance matrix within the bounded set y. For given a and yO: 

(6) 

Indeed, the Lagrangian is £(y, >.) = _aTy + >.((y - yO)T~y -l(y - yO) - v2) and 

is to be maximized with respect to >. 2 0 and minimized with respect to y. At the 



optimum, we have /y £(y, A) = 0 and t>.. £(y, A) = 0, leading to y = yO + A ~ya 
and A = JaT~ya/4v which eventually leads to Eq. (6). For given a and ~/: 

(7) 

where In is the n x n identity matrix. Indeed, without loss of generality, we can let 
~ be of the form ~ = ~o + p~~. We then obtain 

max aT~ a - aT~ °a+p max aT ~~ a - aT~ °a+paT a 
Ey : I I Ey-EyOIlF~P y - y .6.Ey : II.6.EYI IF~ l y - Y , 

(8) 
using the Cauchy-Schwarz inequality and compatibility of the Frobenius matrix 
norm and the Euclidean vector norm: 

aT ~~a::::: IlaI1211~~aI12 ::::: IlaI1211~~IIFllaI12 ::::: lIall~, 

because II~~IIF ::::: 1. For ~~ = In , this upper bound is attained and we get 
Eq. (7). Combining this with Eq. (6) leads to the robust version of Eq. (1): 

inf Pr{aTy ::::: b} :2: a, \fey, ~y) E Y ¢} b_aTyO :2: (",(a)+v)JaT(~/ + pln)a. 
y~(y , Ey) 

(9) 
Applying this result to Eq. (4) thus shows that the optimal robust minimax proba
bility classifier for X, Y given by Eq. (5) can be obtained by solving problem Eq. (3), 

with ~x = ~x 0 + pIn' ~y = ~y 0 + pIn. If ",:;-1 is the optimal value of that problem, 
the corresponding worst-case misclassification probability is 

1 
1 - a* = . 

1 + max(O, ("'* - V))2 

With only uncertainty in the mean (p = 0), the robust hyperplane is the same as the 
non-robust one; the only change is in the increase in the worst-case misclassification 
probability. Uncertainty in the covariance matrix adds a term pIn to the covariance 
matrices, which can be interpreted as regularization term. This affects the hyper
plane and increases the worst-case misclassification probability as well. If there is 

too much uncertainty in the mean (i.e., "'* < v) , the robust version is not feasible: 
no hyperplane can be found that separates the two classes in the robust minimax 
probabilistic sense and the worst-case misclassification probability is 1 - a* = 1. 

This robust approach can be readily generalized to allow nonlinear decision bound

aries via the use of Mercer kernels (Lanckriet et al., 2002). 

3 Single-class MPM for robust novelty detection 

We now turn to the quantile estimation problem. Recall that for a E (0,1], we 
wish to find a small region Q such that Pr{ x E Q} = a. Let us consider data 
x ,..., (x, ~x) and let us focus (for now) on the linear case where Q is a half-space 
not containing the origin. 

We seek a half-space Q(a,b) = {z I aTz :2: b}, with a E JRn\{o} and b E JR, and 
not containing 0, such that with probability at least a, the data lies in Q, for every 
distribution having mean x and covariance matrix ~x. We assume again that the 
real x, ~x are unknown but bounded in a set X as specified in Eq. (5): 

inf Pr{aTx:2:b}:2:a \f(x,~x)EX. 
x~(x , Ex) 



We want the region Q to be tight, so we maximize its Mahalanobis distance (with 
respect to ~x) to the origin in a robust way, i.e., for the worst-case estimate of 
~x - the matrix that gives us the smallest Mahalanobis distance: 

s.t. inf Pr{ aT x 2:: b} 2:: a \I(x, ~x) EX. (10) 
x~(x , Ex) 

Note that Q(a, b) does not contain 0 if and only if b > o. Also, the optimization 
problem in Eq. (10) is positively homogeneous in (a, b). Thus, without loss of 
generality, we can set b = 1 in problem Eq. (10). Furthermore, we can use Eq. (7) 
and Eq. (9) and get (where superscript 0 for the estimates has been omitted): 

mln JaT(~x + pIn)a s.t. aTx -12:: (,..(a) + v)JaT(~x + pIn)a , (11) 

where a-::/:-O can be omitted since the constraint never holds in this case. Again, 
we obtain a (convex) second order cone programming problem. The worst-case 
probability of occurrence outside region Q is given by 1 - a. Notice that the 
particular choice of a E (0,1] must be feasible , i.e. , 

:3 a : aTx -12:: (,..(a) + v)JaT(~x + pIn)a. 

For p -::/:- 0, ~x + pIn is certainly positive definite and the halfspace is unique. 
Furthermore, it can be determined explicitly. To see this, we write Eq. (11) as: 

min 11(~x + pIn? /2 aI12 s.t. aTx 2:: 1 + (,..(a) + v) 11(~x + pIn)1/2a I12 (12) 
a 

Decomposing a as A(~x + pIn)-lx + z, where the variable z satisfies zT X = 0, 
we easily obtain that at the optimum, z = O. In other words, the optimal a is 
parallel to x, in the form a = A(~x + pIn) - lx, and the problem reduces to the 
one-dimensional problem: 

mIn IAIII(~x+pIn) -1/2 xI12 : AxT (~x+pIn)-lx 2:: l+(,..(a)+v) 11(~x+pIn)-1/2xIl2IAI· 

The constraint implies that A 2:: 0, hence the problem reduces to 

min A : A ((2 - (,..(a) + v)() 2:: l. 
>.::::0 

(13) 

with (2 = xT(~x + pIn) - lx > 0 (because Eq. (12) implies x -::/:- 0). Because A 2:: 0, 
this can only be satisfied if (2 - (,..(a) + v)( 2:: 0, which is nothing other than the 
feasibility condition for a: 

If this is fulfilled, the optimization in Eq. (13) is feasible and boils down to: 

. 1 
mm A s.t. A 2:: (2 (() )( 
>.::::0 - ,.. a + v 

It's easy to see that the optimal A is given by A* = 1/((2 - (,..(a) + v)(), yielding: 

a* = (~x + pIn)-lX, b* = 1, with (= /xT(~x + pIn) -lX. (14) 
(2 _ (,..(a) + v)( V 

Notice that the uncertainty in the covariance matrix ~x leads to the typical, well
known regularization for inverting this matrix. If the choice of a is not feasible or 
if x = 0 (in this case, no a E (0,1] will be feasible), Eq. (10) has no solution. 



Future points z for which a; z :::; b* can then be considered as outliers with respect 
to the region Q, with worst-case probability of occurrence outside Q given by 1- 0:. 

One can obtain a nonlinear region Q in ]Rn for the single-class case, by mapping 

the data into a feature space ]Rf: x f-t <p(x) ~ (<p(X) , ~ 'P( x)), and expressing and 

solving Eq. (10) in the feature space, using <p(x), <p(x) and ~ 'P(x). This is achieved 

using a kernel function K(Zl' Z2) = <p(zt)T <p(Z2) satisfying Mercer's condition as in 
the classification setting. Notice that maximizing the Mahanalobis distance of Q 
to the origin in ]Rf makes sense for novelty detection. For example, if we consider 

a Gaussian kernel K(x,y) = e-lIx-YI12/0", all mapped data points have unit length 

and positive dot products, so they all lie in the same orthant, on the unit ball, and 
are linearly separable from the origin. 

Our final result is thus the following: If the choice of 0: is feasible, i.e., 

3, : ,Tk - 12: ("(0:) + IIh/,T(LTL + pK)r, 

then an optimal region Q(r, b) can be determined by solving the (convex) second 
order cone programming problem: 

m~n V ,T(LTL + pK)r s.t. ,Tk - 1 2: ("(0:) + II)V,T(LTL + pK)r, (15) 

where "(0:) = .}0:/1- 0: and b = 1, with " k E ]RN, [kli = iJ 2::;:1 K(Xj,Xi) and 

{Xd~l the N given data points. L is defined as L = (K -lNkT)/~, where 1m 
is a column vector with ones of dimension m. K is the Gram matrix and defined 
as Kij = <p(zdT<p(zj) = K(Zi,Zj). 

The worst-case probability of a point lying outside the region Q is given by 1 - 0:. 
If LTL + pK is positive definite, the optimal half-space is unique and determined 
by: 

(LTL + pK) - lk . / 
'* = (2 _ ("(0:) + 11)( with (= V kT(LTL + pK) -lk, (16) 

ifthe choice of 0: is such that "(0:) :::; ( - II or 0: :::; 1~(((~~)2. If the choice of 0: is not 

feasible or if k = 0 (in this case, no 0: E (O,ll will be feasible) , the problem does 
not have a solution. 

To solve the single-class problem, we can solve the second-order cone progam 
Eq. (15) or directly use result Eq. (16): when numerically regularizing LTL + pK 
with an extra term ElN , this unique solution can always be determined. Instead 
of explicitly inverting the matrix, we can solve a system iteratively. All of these 
approaches have a worst-case complexity of O(N3), comparable to the quadratic 
program for single-class SVM (Sch6lkopf and Smola, 2001). 

Once an optimal decision region is found , future points Z for which a; <p(z) = 

2:: ~ 1 b*liK(Xi, z) :::; b* (notice that this can be evaluated only in terms of the 
kernel function) , can then be considered as outliers with respect to the region Q, 

with the worst-case probability of occurrence outside Q given by 1 - 0:. 

4 Experiments 

In this section we report the results of experiments comparing the robust single
class MPM to the single-class SVM of Sch6lkopf and Smola (2001) and to a two
class SVM approach where an artificial "negative class" is obtained by generat

ing data points uniformly in T = {z E ]Rnlmin{[xdi,[x2li, ... ,[xNld :::; [Zli :::; 

max{[x1l i' [x2l i, ... , [xNl i }}. 



For the benchmark binary classification data sets we studied, we converted the data 
sets into two single-class problems by treating each class in a separate experiment. 
We chose 80% of the data points as training and the remaining 20% of the data 
points as test, lumping the latter with the data points ofthe negative class (the class 
of the binary classification data, not used for training). We report false positive and 
false negative rates averaged over 30 random partitions in Table 1.1 

We used a Gaussian kernel , K(x,y) = e- llx-yI12/0", of width (J. The kernel pa

rameter (J was tuned using cross-validation over 20 random partitions, as was the 
hyperparameter p. For simplicity, we set the hyperparameter v = 0 for the ro
bust single-class MPM. Note that this choice has no impact on the MPM solution; 
according to Eq. (16) its only effect is to alter the estimated false-negative rate. 

The parameter a was varied throughout a range of values so as to explore the 
tradeoff between the false positive (FP) rate and the false negative (FN) rate. A 
small value a yields a good FP but poor FN, and large a yields good FN but 
poor FP. For the single-class SVM and the two-class SVM, we varied the analogous 
parameters- v (the fraction of support vectors and outliers) and C (the soft margin 
weight parameter)-to cover a similar range of the FP /FN tradeoff. We envision 
the end user deciding where he or she wishes to operate along the FP /FN tradeoff, 
and tuning a, v or C accordingly. Thus we compare the different algorithms by 
presenting in Table 1 an overview of the full tradeoff curves (essentially the ROC 
curves). The specific values of a, v and C are chosen in each row so as to roughly 
match corresponding points on the ROC curves. We use italic font to indicate the 
best performing algorithm on a given row, choosing the algorithm with the best FP 
rate if FN rates are similar and with the best FN rate if FP rates are similar. 

The performance of the single-class MPM is clearly competitive with that of the 
other algorithms, providing joint FP /FN values that equal or improve upon the 
other algorithms in many cases, and spanning a broad range of FP /FN tradeoff. 
Note that the two-class SVM can perform well if low FP rate is desired and high 
FN rate is tolerated. However, the two-class SVM sometimes fails to provide an 
extensive range of FP /FN tradeoff; in particular, with the twonorm dataset, the 
algorithm is unable to provide solutions with small FN rate and large FP rate. 

Note that the value I-a (the worst-case probability offalse negatives for the robust 
single-class MPM) is indeed an upper bound for the average FN rate in all cases 
except for the sonar dataset. Thus the simplifying assumption v = 0 appears to be 
reasonable in all cases except the sonar case. 

Finally, it is also worth noting that while the MPM algorithm is insensitive to the 
choice of v, it is sensitive to the choice of p. When we fixed p = 0 (allowing no 
uncertainty in the covariance estimate) we obtained poor performance, in particular 
obtaining a small FP rate but a very poor FN rate. 

5 Conclusions 

We have presented a new algorithm for novelty detection, an important machine 
learning problem with numerous real-world applications. Our "single-class MPM" 
joins the "single-class SVM" of Scholkopf and Smola (2001) as a computationally
efficient, kernel-based method for solving this problem and the more general quantile 
estimation problem. We view the single-class MPM as particularly appropriate for 
these problems, given its formulation directly in terms of a worst-case probability 

lThe Wisconsin breast cancer dataset contained 16 missing examples which were not 
used. Data for the twonorm problem were generated as specified by Breiman (1997). 



Table 1: Performance for single-class problems; the best performance in each row is 
indicated in italic; FP = false positives (out-of-class data detected as in-class-data); 
FN = false negatives (in-class-data detected as out-of-class-data) . 

Dataset Sin9le Class MPM Sin9le Class SVM Two-Class SVM approach 

a FP FN v FP FN V FP FN 
Sonar 0.2 24·7 % 64·0 % 0.6 26.9 % 65.4 % 0.1 23.8 % 68.6 % 
class +1 0.8 44-6 % 39.6 % 0.2 47 .3 % 42.1 % 0.2 48.3 % 42 .3 % 

0.95 69.3 % 17.3 % 0.0005 75.4 % 16.2 % 75.2 % 16.0 % 
Sonar 0.6 5·4 % 51.7 % 0.4 8.5 % 53.7 % 0.1 9.7 % 70.0 % 
class - 1 0.9 10.0 % 37·4 % 0.001 15.7 % 41.3 % 0.2 34. 6 % 40.6 % 

0.95 19.1 % 29.7% 0.0006 36.1 % 28.4 % 0.35 47.7 % 26.0 % 

0.99 56.1 % 5.7% 0.0003 82.6 % 6.3 % 1 67.9 % 6.1 % 

Breast 0.6 0.0 % 8.8 % 0.14 0.0 % 14.6 % 0.005 0.4 % 8.0 % 

Cancer 0.8 1.8 % 5 .9 % 0.001 2 .4 % 6.1 % 0 .1 0.9 % 4 ·3 % 
class +1 0.2 10.5 % 2.7% 0.0003 11.5 % 3.1 % 10 12.3 % 3.1 % 

Breast 0.01 2.4 % 26.5 % 0.4 2 .5 % 41.4 % 0.8 0.9 % 47.9 % 
Cancer 0.03 2.9 % 13.5 % 0.2 2.8 % 25.0 % 1 11.0 % 45 % 
class -1 0.05 3 .0 % 8.3 % 0.1 3 .1 % 11.3 % 2 89.2 % 38 .2 % 

0.14 5 .9 % 1.9 % 0.0005 9 .2 % 3.4 % 100 98.0 % 23 .5 % 

Twonorm 0.01 6.3 % 43.2 % 0.4 6 .2 % 42.8 % 0.13 6.8 % 37.3 % 

class +1 0.2 13.9 % 22.5 % 0.2 12. 7 % 22.8 % 0.17 12.0 % 24.2 % 

0.4 22.5 % 11.9 % 0.0008 23.3 % 9.6 % 5 25.9 % 10.5 % 

0.6 36 .9 % 4 .5 % 0.0003 33·4 % 4·5 % 
Twonorm 0.1 5.6 % 43.7 % 0.4 6.0 % 44.1 % 0.35 6.1 % 49.8 % 
class -1 0.4 11.3 % 23.1 % 0.15 11.8 % 24.6 % 0.5 24.5 % 23.7 % 

0.6 16.9 % 12.1 % 0.0005 35 .9 % 12.0 % 10 30.1 % 10.0 % 

0.8 30.1 % 6.9 % 0.0003 39 .3 % 6.9 % 

Heart 0.46 13.4 % 46.2 % 0.4 13.5 % 47.8 % 0.05 11.9 % 46·4 % 
class + 1 0.52 24.0 % 30.9 % 0.05 24.8 % 36.7 % 0.07 22. 1 % 30. 3 % 

0.54 33.5 % 22.6 % 0.0008 38.8 % 27.0 % 0.1 35.8 % 22 .9 % 

Heart 0.0001 15.9 % 41.3 % 0.4 20 .8 % 50.7 % 0.08 13.9 % 43.8 % 
class -1 0.0006 21.2 % 37.2 % 0.002 26 .3 % 43.8 % 0.09 21 .0 % 37.5 % 

0.003 36.3 % 27.2 % 0.0007 43 .7 % 29.2 % 0.11 39.2 % 31.8 % 
0.01 56.9 % 15.9 % 0.0005 58.4 % 18.09 % 0.2 68.6 % 16.7 % 

of falling outside of a given convex set in feature space. 

While our simulation experiments illustrate the application of generic classification 
techniques to the novelty detection problem- via the generation of data from an 
artificial "negative class" enclosing the data- we view the single-class methods as 
t he more viable general technology. In particular, in high-dimensional problems it 
is difficult to specify a "negative class" in a way that yields comparable size training 
sets while still yielding a good characterization of a discriminant boundary. 
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