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An implicit method is developed for the numerical solution of option pricing models where it is
assumed that the underlying process is a jump diffusion. This method can be applied to a variety
of contingent claim valuations, including American options, various kinds of exotic options, and
models with uncertain volatility or transaction costs. Proofs of timestepping stability and
convergence of a fixed point iteration scheme are presented. For typical model parameters, it
is shown that the fixed point iteration reduces the error by two orders of magnitude at each
iteration. The correlation integral is computed using a fast Fourier transform (FFT) method.
Techniques are developed for avoiding wrap-around effects. Numerical tests of convergence for
a variety of options are presented.

Keywords: Jump diffusion, implicit discretization, iterative solution

Acknowledgment: This work was supported by the Natural Sciences and Engineering Re-
search Council of Canada, the Social Sciences and Humanities Research Council of Canada,
RBC Financial Group, and a subcontract with Cornell University, Theory & Simulation Science
& Engineering Center, under contract 39221 from TG Information Network Co. Ltd.

1 Introduction

It is well known that the constant volatility Black-Scholes model cannot account for the “volatility
smile” which is observed in market prices for contingent claims. One widely used method to account
for the smile effect is to assume that the volatility is deterministic, but a function of asset price
and time. This local volatility function is then determined by calibration to market prices (Dupire,
1994; Coleman et al., 1999; Andersen and Brotherton-Ratcliffe, 1998). This approach has been
criticized because of overfitting and non-stationarity of parameters.
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There is increasing empirical evidence that the usual assumption of geometric Brownian motion
should be augmented by discontinous jump processes (see Eraker et al., 2003, for a review). Such
models were originally introduced in the option valuation context by Merton (1976). It is also
possible to develop more complex valuation models which include stochastic volatility as well as
jumps (Bates, 1996; Scott, 1997; Bakshi et al., 1997).

Andersen and Andreasen (2000) have recently staked out a middle ground by combining the
deterministic volatility approach with lognormally distributed Poisson jumps with constant param-
eters. They argue that this alleviates many of the concerns, noting that “by letting the jump-part
of the process dynamics explain a significant part of the volatility smile/skew, we generally obtain
a ‘reasonable’, stable [deterministic volatility] function, without the extreme short-term variation
typical of the pure diffusion approach” (Andersen and Andreasen, 2000, p. 233).

However, most of the existing methods for pricing options under jump processes are confined
to vanilla European options. There has been very little work on numerical methods for pricing
exotic or path-dependent options of practical significance (e.g. discretely observed barrier, lookback,
and Asian options). Numerical techniques are also required when jumps are combined with non-
constant local volatilities to calibrate models to observed prices of European options, as in the
model of Andersen and Andreasen (2000).

In general, the valuation of a contingent claim under a jump diffusion process requires solving
a partial integro-differential equation (PIDE). The method suggested by Amin (1993) is an explicit
type approach based on multinomial trees. As is well-known, such methods have timestep lim-
itations due to stability considerations, and are generally only first order correct. Zhang (1997)
develops a method which treats the jump integral term in explicit fashion, and the remaining terms
in the PIDE implicitly. Unfortunately, rather restrictive stability conditions are required. Meyer
(1998) uses the method of lines to value American options where the underlying asset can jump to
a finite number of states. More recently, a method based on use of a wavelet transform has been
suggested by Matache et al. (2002). The basic idea is to use a wavelet transform to approximate the
dense matrix discrete integral operator by dropping small terms. Andersen and Andreasen (2000)
use an operator splitting type of approach combined with a fast Fourier transform (FFT) evalua-
tion of a convolution integral to price European options with jump diffusion, where the diffusion
terms involve non-constant local volatilities. However, an operator splitting approach cannot easily
handle American options or nonlinear option valuation models (e.g. transaction costs or uncertain
parameters, as discussed in Wilmott (1998) and references provided there).

The objective of this paper is to develop robust numerical methods for solving the option pricing
PIDE which results from a jump diffusion model. Our technique is similar in some respects to Zhang
(1997), though less constrained in terms of stability restrictions. Our method also offers a higher
rate of convergence than Zhang’s. Similar comments apply if we compare our approach to that
of Andersen and Andreasen (2000). For some simple cases, their approach might be slightly more
efficient than ours, but we offer a more general purpose method which is capable of handling a
much wider array of contracts. We confine our attention to the relatively simple case of compound
Poisson jump diffusion processes for a single underlying stochastic variable, deferring the treatment
of the more complicated cases of general Lévy processes and multiple state variables to future work.
As in Andersen and Andreasen (2000), we do not assume constant coefficients for the diffusion part
of the process. Note that we have recently become aware of a paper (Vazquez and Oosterlee,
2003) which is similar in spirit to the methods suggested in this work, although the details of the
implementation differ.

The main results of this paper are as follows.

• We prove that the jump diffusion term can be discretized explicitly, and, when coupled with
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a fully implicit treatment of the usual PDE, the resulting timestepping method is uncondi-
tionally stable.

• We prove that a simple fixed point iteration scheme can be used to solve the discretized
algebraic equations, and that this iteration is globally convergent. In fact, for typical values
of the timestep size and Poisson arrival intensity, the l∞ error is reduced by two orders of
magnitude at each iteration.

• We also develop a method for efficiently computing the jump integral term. We make no
assumptions about the probability density for the jump term. This general approach requires
the evaluation of correlation type integrals, as in Zhang (1997). We also show how to eliminate
the wrap-around effects which often plague FFT methods. The correlation integral term can
be rapidly computed using FFT methods.

• In contrast with previous work, we do not assume that the grid is equally spaced in either the
underlying asset price or its logarithm. This is a major advantage for the pricing of contracts
with barrier provisions, which typically require a fine grid spacing near barriers in order to
achieve sufficient accuracy.

A major advantage of the method developed here is that it is straightforward to add a jump
process to existing option pricing software. In particular, existing software that uses an implicit
approach for valuing American options can be simply modified to price American options with jump
diffusion. A variety of exotic and path-dependent contracts can be handled in a straightforward
way, and nonlinear models such as transaction costs or uncertain parameters (Pooley et al., 2003)
can also be easily extended to the jump diffusion case. In this paper, we include numerical examples
for pricing European, American and Parisian options.

2 The Basic Model

This section presents the model for the evolution of the price of the underlying asset and the general
form of the PIDE to be solved for option valuation. Let S represent the underlying stock price.
Movements in this variable over time are assumed to be described by a jump diffusion process of
the form

dS

S
= νdt+ σdz + (η − 1)dq, (2.1)

where ν is the drift rate, σ is the volatility associated with the continuous (Brownian) component of
the process, dz is the increment of a Gauss-Wiener process, dq is a Poisson process which is assumed
to be independent of the Brownian part (note that dq = 0 with probability 1 − λdt and dq = 1
with probability λdt, where λ is the Poisson arrival intensity), and η − 1 is an impulse function
producing a jump from S to Sη. We denote the expected relative jump size by κ = E(η − 1).

Under equation (2.1), the stock price S has two sources of uncertainty. The term σdz corre-
sponds to normal levels of uncertainty while the term dq describes exceptional events. If the Poisson
event does not occur (dq = 0), then equation (2.1) is equivalent to the usual stochastic process of
geometric Brownian motion assumed in the Black-Scholes model (with the additional assumption
that σ is constant). If, on the other hand, the Poisson event occurs, then equation (2.1) can be
written as

dS

S
' (η − 1), (2.2)
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where η − 1 is an impulse function producing a jump from S to Sη. Consequently, the resulting
sample path for the stock S will be continuous most of the time with finite negative or positive
jumps with various amplitudes occurring at discrete points in time.

Let V (S, t) be the value of a contingent claim that depends on the underlying stock price S and
time t. As is well-known, the following backward PIDE may be solved to determine V :

Vτ =
1
2
σ2S2VSS + (r − λκ)SVS − rV +

(
λ

∫ ∞
0

V (Sη)g(η)dη − λV
)
, (2.3)

where τ = T − t is the time until expiry at date T , r is the continuously compounded risk free
interest rate, and g(η) is the probability density function of the jump amplitude η with the obvious
properties that ∀η, g(η) ≥ 0 and

∫∞
0 g(η)dη = 1. An important special case is where σ is constant

and the jump size distribution is lognormal, this being the well-known model of Merton (1976).
For brevity, the details of the derivation of equation (2.3) have been omitted (for further details,
see Merton, 1976; Wilmott, 1998; Andersen and Andreasen, 2000, among others). For future
convenience, note that equation (2.3) can be rewritten in slightly different form as

Vτ =
1
2
σ2S2VSS + (r − λκ)SVS − (r + λ)V + λ

∫ ∞
0

V (Sη)g(η)dη. (2.4)

Remark 2.1 (Viscosity solution). In what follows it will be understood that we are seeking
weak viscosity solutions (Crandall et al., 1992) to equation (2.4). More details concerning the
existence and uniqueness of solutions to (2.4) are discussed in Pham (1998), Briani et al. (2003),
and Amadori (2000). A proof of the convergence of an explicit method to the viscosity solution is
given in Briani et al. (2003).

2.1 Boundary Conditions

As S → 0, equation (2.3) reduces to

Vτ = −rV . (2.5)

As S →∞, we make the common assumption that

VSS ' 0 ; S →∞ (2.6)

which means that

V ' A(τ)S +B(τ) ; S →∞. (2.7)

Assuming equation (2.7) holds, then equation (2.3) reduces to

Vτ =
1
2
σ2S2VSS + rSVS − rV ; S →∞. (2.8)

Consequently, at both S = 0, S → ∞, the PIDE (2.4) reduces to the Black-Scholes PDE, and
the usual boundary conditions can be imposed. For example, if a finite computational domain
[0, Smax] is used, then Dirichlet conditions can be imposed at S = Smax. The Dirichlet condition is
determined by substituting equation (2.7) into equation (2.8), giving ordinary differential equations
for A(τ), B(τ). The initial conditions for A(τ), B(τ) are given from the option payoffs.
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3 Implicit Discretization Methods

This section explores discretization methods for the PIDE, where the terms not involving the
jump integral are handled implicitly. A straightforward approach to the numerical solution of
equation (2.4) would be to use standard numerical discretization methods for the non-integral
terms (as described, for example in Tavella and Randall, 2000), in combination with numerical
integration methods such as Simpson’s rule or Gaussian quadrature. However, such an approach is
computationally expensive, as noted by Tavella and Randall. It is more efficient to transform the
integral in equation (2.4) into a correlation integral. This allows efficient FFT methods to be used
to evaluate the integral for all values of S.

Let
I(S) =

∫ ∞
0

V (Sη)g(η)dη. (3.1)

Setting x = log(S) and using the change of variable y = log(η) gives

I =
∫ ∞
−∞

V (x+ y)f(y)dy. (3.2)

where f(y) = g(ey)ey and V (y) = V (ey). Note that f(y) is the probability density of a jump of
size y = log(η). Equation (3.2) corresponds to the correlation product ⊗ of V (y) and f(y), so we
can write (3.2) more succinctly as

I = V ⊗ f. (3.3)

We can write the correlation integral (3.2) in discrete form as

Ii =
j=N/2∑

j=−N/2+1

V i+jf j∆y +O
(
(∆y)2

)
, (3.4)

where Ii = I(i∆x), V j = V (j∆x),

f j =
1

∆x

∫ xj+∆x/2

xj−∆x/2
f(x)dx, (3.5)

and xj = j∆x. Note that we have assumed that ∆y = ∆x, and that in (3.4) N is selected
sufficiently large so that the solution in areas of interest is unaffected by the application of an
asymptotic boundary condition for large values of S. In particular, we assume that V N/2+j , j > 0
can be approximated by an asymptotic boundary condition. In practice, since f j decays rapidly
for |j| > 0, this should not cause any difficulty. Also note that V −N/2+j , j < 0, can be interpolated
from known values Vk since these points represent values near S = 0. An important property to
note is that

f j ≥ 0 , ∀j
j=N/2∑

j=−N/2+1

f j∆y ≤ 1. (3.6)

This follows because f(y) is a probability density function and f j is defined by equation (3.5).
The discrete form of the correlation integral (3.4) uses an equally spaced grid in logS coordi-

nates. While this is convenient for a FFT evaluation of the correlation integral, it is not particularly
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suitable for discretizing the PDE. We will use an unequally spaced grid in S coordinates for the
PDE discretization [S0, . . . , Sp]. Let

V n
i = V (Si, τn). (3.7)

Now, V j will not necessarily coincide with any of the discrete values Vk in equation (3.7). Con-
sequently, we will linearly interpolate (using Lagrange basis functions defined on the S grid) to
determine the appropriate values, i.e. if

SΥ(j) ≤ ej∆x ≤ SΥ(j)+1, (3.8)

then
V j = ψΥ(j)VΥ(j) +

(
1− ψΥ(j)

)
VΥ(j)+1 +O

(
(∆SΥ(j)+1/2)2

)
, (3.9)

where ψΥ(j) is an interpolation weight, and ∆Si+1/2 = Si+1 − Si. We are now faced with the
problem that the integral Ii is evaluated at a point S = exi which does not coincide with a grid
point Sk. We simply linearly interpolate the Ii to get the desired value. If exΠ(k) ≤ Sk ≤ exΠ(k)+1 ,
then

I(Sk) = φΠ(k)IΠ(k) + (1− φΠ(k))IΠ(k)+1 +O
(
(exΠ(k) − exΠ(k)+1)2

)
, (3.10)

where φΠ(k) is an interpolation weight. Note that

0 ≤ φi ≤ 1
0 ≤ ψi ≤ 1. (3.11)

Combining equations (3.4), (3.9), and (3.10) gives

I(Sk) =
j=N/2∑

j=−N/2+1

χ(V, k, j)f j∆y, (3.12)

where V = [V0, V1, . . . , Vp]′ and

χ(V, k, j) = φΠ(k)

[
ψΥ(Π(k)+j)VΥ(Π(k)+j) + (1− ψΥ(Π(k)+j))VΥ(Π(k)+j)+1

]
+ (1− φΠ(k))

[
ψΥ(Π(k)+1+j)VΥ(Π(k)+1+j) + (1− ψΥ(Π(k)+1+j))VΥ(Π(k)+1+j)+1

]
. (3.13)

For future reference, note that χ(V, k, j) is linear in V , and that if ι = [1, 1, . . . , 1]′, then it follows
from properties (3.11) that

χ(ι, k, j) = 1 ∀k, j. (3.14)

We can now consider the complete discretization of equation (2.4). The integral term is approx-
imated using equation (3.12). We use a fully implicit method for the usual PDE, and then use a
weighted timestepping method for the jump integral term. Letting V n

i denote the solution at node
i and time level n, the discrete equations can be written as

V n+1
i [1 + (αi + βi + r + λ)∆τ ]−∆τβiV n+1

i+1 −∆ταiV n+1
i−1

= V n
i + (1− θJ)∆τλ

j=N/2∑
j=−N/2+1

χ(V n+1, i, j)f j∆y + θJ∆τλ
j=N/2∑

j=−N/2+1

χ(V n, i, j)f j∆y. (3.15)

Note that θJ = 0 corresponds to an implicit handling of the jump integral, whereas θJ = 1 indicates
an explicit treatment of this term.
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Discretizing the first derivative term of equation (2.4) with central differences leads to

αi,central =
σ2
i S

2
i

(Si − Si−1)(Si+1 − Si−1)
− (r − λκ)Si
Si+1 − Si−1

βi,central =
σ2
i S

2
i

(Si+1 − Si)(Si+1 − Si−1)
+

(r − λκ)Si
Si+1 − Si−1

. (3.16)

If αi,central or βi,central is negative, oscillations may appear in the numerical solution. These
can be avoided by using forward or backward differences at the problem nodes, leading to (forward
difference)

αi,forward =
σ2
i S

2
i

(Si − Si−1)(Si+1 − Si−1)

βi,forward =
σ2
i S

2
i

(Si+1 − Si)(Si+1 − Si−1)
+

(r − λκ)Si
Si+1 − Si

, (3.17)

or (backward difference)

αi,backward =
σ2
i S

2
i

(Si − Si−1)(Si+1 − Si−1)
− (r − λκ)Si

Si+1 − Si

βi,backward =
σ2
i S

2
i

(Si+1 − Si)(Si+1 − Si−1)
. (3.18)

Algorithmically, we decide between a central or forward discretization at each node for equation
(3.15) as follows:

If [αi,central ≥ 0 and βi,central ≥ 0] then
αi = αi,central

βi = βi,central

ElseIf [βi,forward ≥ 0] then
αi = αi,forward

βi = βi,forward

Else
αi = αi,backward

βi = βi,backward

EndIf

(3.19)

Note that the test condition (3.19) guarantees that αi and βi are non-negative. For typical param-
eter values and grid spacing, forward or backward differencing is rarely required for single factor
options. In practice, since this occurs at only a small number of nodes remote from the region of
interest, the limited use of a low order scheme does not result in poor convergence as the mesh is
refined. As we shall see, requiring that all αi and βi are non-negative has important theoretical
ramifications.

As S → 0, equation (2.3) reduces to Vτ = −rV , which is simply incorporated into the discrete
equations (3.15) by setting αi = βi = λ = 0 at Si = 0. In practice we truncate the S grid
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at some large value Sp = Smax, where we impose Dirichlet conditions. This is done by replacing
equation (3.15) at S = Smax = Sp with the specification that V n+1

p is equal to the relevant Dirichlet
condition.

We now proceed to consider the stability of the discretization (3.15). In particular, we have the
following result:

Theorem 3.1 (Stability of scheme (3.15)). The discretization method (3.15) is unconditionally
stable for any choice of θJ , 0 ≤ θJ ≤ 1, provided that

• αi, βi ≥ 0;

• the discrete probability density f j has the properties (3.6);

• the interpolation weights satisfy (3.11);

• r, λ ≥ 0.

Proof. Let V n = [V n
0 , V

n
1 , . . . , V

n
p ]′ be the discrete solution vector to equation (3.15). Suppose the

initial solution vector is perturbed, i.e.

V̂ 0 = V 0 + E0, (3.20)

where En = [En0 , . . . , E
n
p ]′ is the perturbation vector. Note that Enp = 0 since Dirichlet boundary

conditions are imposed at this node. Then we obtain the following equation for the propagation of
the perturbation (noting that χ is a linear operator)

En+1
i [1 + (αi + βi + r + λ)∆τ ]−∆τβiEn+1

i+1 −∆ταiEn+1
i−1

= Eni + (1− θJ)∆τλ
j=N/2∑

j=−N/2+1

χ(En+1, i, j)f j∆y + θJ∆τλ
j=N/2∑

j=−N/2+1

χ(En, i, j)f j∆y. (3.21)

Defining
‖E‖n = max

i
|Ei|n, (3.22)

it follows from properties (3.6), (3.11), and (3.14) and αi, βi ≥ 0 that

|En+1
i | [1 + (αi + βi + r + λ)∆τ ] ≤ ‖E‖n + (1− θJ)∆τλ‖E‖n+1 + θJ∆τλ‖E‖n

+ ∆τβi|En+1
i+1 |+ ∆ταi|En+1

i−1 |. (3.23)

This implies

|En+1
i | [1 + (αi + βi + r + λ)∆τ ] ≤ (∆τβi + ∆ταi)‖E‖n+1 (3.24)

+ ‖E‖n + (1− θJ)∆τλ‖E‖n+1 + θJ∆τλ‖E‖n. (3.25)

Now, equation (3.25) is valid for all i < p. In particular, it is true for node i∗, where

max
i
|En+1

i | = |En+1
i∗ |. (3.26)

Writing equation (3.25) for i = i∗ gives

‖E‖n+1 [1 + (r + θJλ)∆τ ] = ‖E‖n(1 + θJ∆τλ), (3.27)
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and thus

‖E‖n+1 ≤ ‖E‖n (1 + θJ∆τλ)
(1 + (r + θJλ)∆τ)

≤ 1. (3.28)

Remark 3.1 (Unconditional stability with explicit evaluation of the integral). This result
is somewhat surprising, since we can discretize the correlation integral term explicitly (θJ = 1), yet
scheme (3.15) remains unconditionally stable. Note that Zhang (1997) derived a conditionally stable
method. The conditional stability was a result of a slightly different timestepping approach compared
to that in equation (3.15).

Remark 3.2 (Convergence to the viscosity solution). Following along the lines of Briani
et al. (2003), it is straightforward to show that the discretization (3.15) is monotone and consistent.
Since it is also unconditionally stable, the results of Barles (1997) then imply that our discretized
solution converges to the viscosity solution.

Remark 3.3 (Extension to uncertain volatility/transaction costs). It is simple to extend
scheme (3.15) to the case of a nonlinear model with uncertain volatility or transaction costs. Based
on Remark 3.2 and the results in Pooley et al. (2003), it is then straightforward to show convergence
to the viscosity solution.

4 Crank-Nicolson Discretization

The discretization method used in the previous section is only first order correct in the time
direction. In order to improve the timestepping error, we can use a Crank-Nicolson method. Such
an approach results in the following set of discrete equations

V n+1
i

[
1 + (αi + βi + r + λ)

∆τ
2

]
− ∆τ

2
βiV

n+1
i+1 −

∆τ
2
αiV

n+1
i−1

= V n
i

[
1− (αi + βi + r + λ)

∆τ
2

]
+

∆τ
2
αiV

n
i−1 +

∆τ
2
βiV

n
i+1

+ (1− θJ)λ∆τ
j=N/2∑

j=−N/2+1

χ(V n+1, i, j)f j∆y + θJλ∆τ
j=N/2∑

j=−N/2+1

χ(V n, i, j)f j∆y. (4.1)

A full Crank-Nicolson method is obtained by setting θJ = 1/2 in equation (4.1). If we define the
matrix M such that

−[MV n]i = V n
i (αi+βi+r+λ)

∆τ
2
−∆τ

2
βiV

n
i+1−

∆τ
2
αiV

n
i−1−

∆τ
2
λ

j=N/2∑
j=−N/2+1

χ(V n, i, j)f j∆y, (4.2)

then we can write equation (4.1) as

[I −M ]V n+1 = [I +M ]V n. (4.3)

Alternatively, we can define B = [I −M ]−1 [I +M ], so that equation (4.3) can be written as

V n = BnV 0. (4.4)
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Consequently, an initial perturbation vector E0 will generate a perturbation at the nth step, En,
given by En = BnE0.

The stability of the operator B is defined in terms of the power boundedness of B. If n is the
number of timesteps and p is the number of grid nodes, then given some matrix norm ‖ · ‖, we say
that B is strictly stable if

‖Bn‖ ≤ 1 ∀n, p. (4.5)

Following Giles (1997), strong stability is defined as

‖Bn‖ ≤ C ∀n, p, (4.6)

and algebraic stability is defined as

‖Bn‖ ≤ Cnspq ∀n,m. (4.7)

where C, s, q ≥ 0 are constants independent of n and p.
Algebraic stability is obviously a weaker condition than either strict or strong stability. Note

that the Lax Equivalence Theorem states that strong stability is a necessary and sufficient condition
for convergence for all initial data. Weaker algebraic stability yields convergence only for certain
initial data. For a more detailed discussion of this, see Giles (1997).

If µi are the eigenvalues of B, then a necessary condition for strong stability is that |µi| ≤ 1,
and that any |µi| = 1 has multiplicity one. From equation (4.2) and properties (3.6), we have that

• The off-diagonals of M are all non-negative.

• The diagonals of M (excluding the last row) are strictly negative.

• Assuming that r > 0,
∑j=p

j=0Mij < 0 for i = 0, . . . , p− 1.

• The last row of M is identically zero due to the Dirichlet boundary condition.

It then follows that all the Gerschgorin disks of M are strictly contained in the left half of the
complex plane, with one eigenvalue identically zero. Hence all the eigenvalues of B are strictly
less than one in magnitude, with one eigenvalue having modulus one. As a result, B satisfies the
necessary conditions for strict stability.

However, since B is non-symmetric, this is not sufficient for power boundedness of B (see
Borovykh and Spijker, 2000, for a counterexample). As discussed in Kraaijevanger et al. (1987)
and Lenferink and Spijker (1991), we can guarantee algebraic stability by examining the γ numerical
range of the matrix M . In the case γ = 1, the numerical range of M coincides with the convex hull
of the Gerschgorin disks of M when the maximum norm is used in equation (4.7). These results
can be summarized in the following theorem:

Theorem 4.1 (Algebraic Stability of Crank-Nicolson Timestepping). The Crank-Nicolson
discretization (4.1) is algebraically stable in the sense that

‖Bn‖∞ ≤ Cn1/2 ∀n, p,

where C is independent of n, p.

Proof. Since all the Gerschgorin disks of M are in the left half of the complex plane, this follows
from the results in Lenferink and Spijker (1991).
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In fact, we believe that the algebraic stability estimate is overly pessimistic. For the case of
constant coefficients with a log-spaced grid, in Appendix A we show using Von Neumann analysis
that Crank-Nicolson timestepping with the correlation product is unconditionally strictly stable.
However, it is interesting to note that if we use Crank-Nicolson weighting for the PDE terms and
an explicit method for the jump diffusion term (θJ = 1 in equation (4.1)), then a Von Neumann
analysis shows that this method is only conditionally stable (λ∆τ must be sufficiently small).

5 Fixed Point Iteration Method

When using an implicit discretization, it is computationally inefficient to solve the full linear system
because the correlation product term makes the system dense. Consequently, in this section we will
explore the use of a fixed point iteration to solve the linear system which results from an implicit
discretization of the correlation product term. This idea was suggested in Tavella and Randall
(2000), but no convergence analysis was given.

Define the matrix M̂ such that

−[M̂V n]i = V n
i (αi + βi + r + λ)∆τ −∆τβiV n

i+1 −∆ταiV n
i−1, (5.1)

and the vector Ω(V n) such that

[Ω(V n)]i =
j=N/2∑

j=−N/2+1

χ(V n, i, j)f j∆y. (5.2)

Note that Ω(V n) is a linear function of V n. Thus we can write a fully implicit (θ = 0) or Crank
Nicolson (θ = 1/2) discretization as

[I − (1− θ)M̂ ]V n+1 = [I + θM̂ ]V n + (1− θ)λ∆τΩ(V n+1) + θλ∆τΩ(V n). (5.3)

We can then derive the fixed point iteration method as follows.

Fixed Point Iteration

Let (V n+1)0 = V n

Let V̂ k = (V n+1)k

For k = 0, 1, 2, . . . until convergence
Solve[
I − (1− θ)M̂

]
V̂ k+1

=
[
I + θM̂

]
V n

+ (1− θ)λ∆τΩ(V̂ k) + θλ∆τΩ(V n)

If max
i

|V̂ k+1
i − V̂ k

i |
max(1, |V̂ k+1

i |)
< tolerance then quit

EndFor

(5.4)

Letting ek = V n+1 − V̂ k, the convergence of the fixed point scheme can be summarized in the
following theorem:
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Theorem 5.1 (Convergence of the fixed point iteration). Provided that

• αi, βi ≥ 0 (see Section 3);

• the discrete probability density f j has the properties (3.6);

• the interpolation weights satisfy (3.11);

• r > 0, λ ≥ 0;

then the fixed point iteration (5.4) is globally convergent, and the maximum error at each iteration
satisfies

‖ek+1‖∞ ≤ ‖ek‖∞
(1− θ)λ∆τ

1 + (1− θ)(r + λ)∆τ
.

Proof. It is easily seen from iteration (5.4) that ek satisfies[
I − (1− θ)M̂

]
ek+1 = (1− θ)λ∆τΩ(ek). (5.5)

Following the same steps used to prove Theorem 3.1, we therefore obtain

‖ek+1‖∞ ≤ ‖ek‖∞
(1− θ)λ∆τ

1 + (1− θ)(r + λ)∆τ
< 1. (5.6)

Note that typically λ∆τ � 1, so that

‖ek+1‖∞ ' ‖ek‖∞(1− θ)λ∆τ, (5.7)

which will result in rapid convergence. It is also interesting to observe that the number of iterations
required for convergence is independent of the number of nodes in the S grid.

6 Details Regarding Evaluation of the Correlation Integral

To complete the discussion of our numerical algorithm, we need to consider issues such as evaluating
the jump integral term, interpolation, and wrap-around effects. Note that each iteration of the
scheme (5.4) requires evaluation of a correlation integral for all points on the PDE grid.

Fast evaluation of this integral using FFT methods necessitates transformation to an equally
spaced grid in x = log(S) coordinates. If the original PDE grid is equally spaced in log(S), then
there is clearly no difficulty. However, this type of grid spacing is highly inefficient for cases involving
discontinuous payoffs or barriers. We therefore prefer not to restrict the type of grid used for the
original PDE. Recall that the correlation integral is

I(x) =
∫ ∞
−∞

V (x+ y)f(y)dy,

or, in discrete form

Ii =
j=N/2∑

j=−N/2+1

V i+jf j∆y +O
(
(∆y)2

)
,
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where Ii = I(i∆x), V j = V (j∆x), f j = f(j∆y). We have also assumed that ∆y = ∆x, and that
V (logS) = V (S).

Now, V j will not necessarily coincide with any of the discrete values Vk in equation (3.15).
Consequently, we will linearly interpolate to determine the appropriate values, as in equation (3.9).
Since equation (3.4) has the form of a discrete correlation, FFT methods are an obvious choice to
compute this efficiently. Assuming that f is real, then

FFT(I)k = (FFT(V ))k(FFT(f))∗k, (6.1)

where (·)∗ denotes the complex conjugate. Since f(z) is the probability density of z = log η, which
is a specified function, we can simply precompute FFT(f) on the required equally spaced grid in z
coordinates. We can then carry out an inverse FFT to obtain the values of the correlation integral
on the equally spaced x = logS grid. A further interpolation step is required to obtain the value
of the correlation integral on the original S grid (equation (3.10)).

We can summarize the steps needed to generate the required values I(Sk), k = 0, . . . , p as
follows.

• Interpolate the discrete values of V onto an equally spaced log(S) grid.
This generates the required values of V j .

• Carry out the FFT on this data.

• Compute the correlation in the frequency domain (with
precomputed FFT

(
f
)
), using equation (6.1).

• Invert the FFT of the correlation.

• Interpolate the discrete values of I(xi) onto the original S grid.

(6.2)

Note that as long as linear or higher order interpolation is used, this procedure is second order
correct, which is consistent with the discretization error in the PDE and the midpoint rule used to
evaluate the integral (3.4).

In principle, we can avoid the interpolation steps in the above procedure if we use special tech-
niques for computing the FFT for unequally spaced data. There are several methods for computing
the inverse FFT problem (i.e. given unequally spaced data, determine the Fourier coefficients), as
well as the forward FFT problem (given the Fourier coefficients, determine the inverse transform
values on an unequally spaced grid) (see, for example Ware, 1998; Duijndam and Schonewille, 1999;
Potts et al., 2001). However, it should be noted that we are not particularly interested in obtaining
highly accurate estimates of the discrete Fourier coefficients, as we simply need to evaluate the
correlation integral correct to second order. Consequently, for our purposes there is no particular
benefit in terms of accuracy in using these methods. We will use the interpolation method (6.2)
followed by the standard FFT to calculate our illustrative results below in Section 8.

An alternative approach for evaluation of the correlation integral could involve a fast Gauss
transform (FGT) (see Greengard and Strain, 1991). This method has complexity of O(N). The use
of this method has been explored in the general option pricing context by Broadie and Yamamoto
(2002). In the particular case of jump diffusions, this approach would work for the case where the
jump size is lognormally distributed. It is not clear if it could be applied for other jump distributions.
We have carried out some numerical experiments using public domain FGT software, and it appears
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that the FFT approach used in here is superior to use of an FGT, at least for grid sizes of practical
interest. Note that all of the theoretical results in terms of convergence rates given previously
would be unchanged if the FGT were used instead of the FFT.

Another issue requiring attention is that the FFT algorithm effectively assumes that the input
functions are periodic. This may cause wrap-around pollution unless special care is taken when
implementing the algorithm. The integral (3.2) is approximated on the finite domain

I(x) =
∫ ymax

ymin

V (x+ y)f(y)dy. (6.3)

The PDE part of the PIDE (2.4) is computed using the finite computational domain [0, Smax], using
the discrete grid S0, S1, . . . , Sp. Initially, we chose

ymax = log(Smax)
ymin = log(S1), (6.4)

assuming S1 > 0. Note that ymin = log(S1) since normally S0 = 0, so that log(S0) = −∞.
Generally, f(y) (which represents the probability density of a jump of S → Sη (where y = log η))

is rapidly decaying for |y| � 0. However, V (y) does not decay to zero near y = ymin, ymax. Typically,
V (S) ≤ Const. S as S →∞, and V (S) ' Const. as S → 0, or in y = logS coordinates,

V (y) ≤ Const. ey, y →∞ (6.5)
' Const., y → −∞. (6.6)

This will cause undesirable wrap-around effects if we use an FFT approach to evaluate the integral
(6.3), since the discrete Fourier transform (DFT) is effectively applied to the periodic extension of
the input functions. To avoid these problems, we extend the domain of the integral to the left and
right by a size which reflects the width of the probability density. In other words, we use the values
V (y), y ∈ [ymin −∆y−, ymax + ∆y+] as input to the correlation evaluation (6.1).

In order to determine values in the extended region, we solve the following PDE-PIDE in the
region [0, Smaxe∆y+

].

Vτ = −rV
S = 0

Vτ =
1
2
σ2S2VSS + (r − λκ)SVS − (r + λ)V + λ

∫ ∞
0

V (Sη)g(η)dη

0 < S < Smax

Vτ =
1
2
σ2S2VSS + rSVS − rV

Smax ≤ S ≤ Smaxe∆y+
. (6.7)

The extended region [Smax, Smaxe∆y+
] can be regarded as a buffer zone which reduces the effect of

FFT wrap-around. Note that we have assumed that Smax is sufficently large so that it is valid to
assume that approximation (2.8) holds.

The values of V (u) for u ∈ [ymax, ymax + ∆y+] are estimated using simple linear interplolation.
The values in the left extension can be determined from interpolation on the original S grid.

This extended domain is then used as input to the forward DFT, the correlation computation
(in the spectral domain), and the inverse DFT. The values in the domain extensions are affected
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by wrap-around and are discarded, since they are not needed. (Recall from equation (6.7) that we
solve the PDE at S = 0, and in the right domain extension [Smax, Smaxe∆y+

], so that the values of
the correlation integrals are not needed in these regions). In Appendix B, we show how to estimate
∆y+,∆y− so that the errors due to wrap-around are within a user specified tolerance.

7 American Options

Next, we briefly describe how to extend the ideas presented thus far to the case of American
options. Suppose that we have to value an American style option where the holder of the contract
can exercise at any time and receive a payoff of V ∗(S, τ). This pricing problem can be written as
the differential linear complementarity problem

Vτ −
(

1
2
σ2S2VSS + (r − λκ)SVS − (r + λ)V + λ

∫ ∞
0

V (Sη)g(η)dη
)
≥ 0 (7.1)

V − V ∗ ≥ 0, (7.2)

where at least one of equations (7.1) and (7.2) must hold with equality. As mentioned in the
introduction, we are seeking viscosity solutions to equations (7.1)-eq7.2. This is formulated more
precisely in Pham (1998). We can easily combine the fixed point iteration with the penalty method
described in Forsyth and Vetzal (2002) to solve this complementarity problem. For a detailed
analysis of the convergence of iteration for the discretized algebraic equations, see d’Halluin et al.
(2003).

8 Results

This section presents numerical results for various options, including vanilla European and Ameri-
can options, digital options, and options with barrier features. Unless stated otherwise, we use the
Crank-Nicolson discretization scheme (4.1). The discrete system of equations is solved using the
fixed point iteration method (5.4) with a convergence tolerance of 10−6.

We begin by considering European options under the assumptions that the continuous part of
the underlying stock price process follows geometric Brownian motion and that the proportional
jump size is lognormally distributed, where the jump size distribution g(η) is given by

g(η) =
e

(
− (log(η)−µ)2

2γ2

)
√

2πγη
. (8.1)

This allows us to check the accuracy of our algorithm against the analytic solution of Merton
(1976). Table 1 contains the input parameters. These are roughly the same as those estimated by
Andersen and Andreasen (2000) using European call options on the S&P 500 stock index in April
of 1999.

We are particularly interested in the convergence properties of the algorithm as the grid is
refined. For each test, as we double the number of grid points we cut the timestep size (∆τ = .01
on the coarsest grid) in half. The convergence ratio presented in the tables below is defined in the
following way. Let

∆τ = max
n

(τn+1 − τn),

∆S = max
i

(Si+1 − Si).

15



Parameter Values
σ 0.15
r 0.05
γ 0.45
µ -0.90
λ 0.10
T 0.25
K 100.00

Table 1: Input data used to value European options under the lognormal jump diffusion process.
These parameters are approximately the same as those reported in Andersen and Andreasen (2000)
using European call options on the S&P 500 stock index in April of 1999.

Interpolation Scheme
Size of No. of Linear Quadratic Cubic
S grid Timesteps Value R Value R Value R

128 25 3.146361 n.a. 3.145896 n.a. 3.146361 n.a.
255 50 3.148354 n.a. 3.148249 n.a. 3.148354 n.a.
509 100 3.148856 3.973 3.148831 4.039 3.148832 4.175
1017 200 3.148983 3.949 3.148977 3.990 3.148977 3.287
2033 400 3.149015 4.001 3.149014 4.007 3.149014 3.997
4065 800 3.149023 3.997 3.149023 4.002 3.149023 3.997

Table 2: Value of a European put option at S = 100 using Crank-Nicolson timestepping for linear,
quadratic and cubic interpolation. The interpolation schemes are used to transfer data between the
non-uniform S grid and the uniform log-spaced FFT grid. The input parameters are provided in
Table 1. The convergence ratio R is defined in equation (8.2). The exact solution is 3.149026. The
number of points used for the FFT grid is 2α, where α is the smallest integer such that the number
of nodes in the non-uniform S grid p ≤ 2α.

Note that we are allowing here for the possibility of using variable timestep sizes (to be explained
below), although most of our tests will simply use a constant timestep size. If we then carry out a
convergence study letting h → 0 where ∆S = Const. h, ∆τ = Const. h, then we can assume that
the error in the solution (at a given node) is Vapprox(h) = Vexact + Const. hξ, and the convergence
ratio is defined as

R =
Vapprox(h/2)− Vapprox(h)
Vapprox(h/4)− Vapprox(h/2)

. (8.2)

In the case of quadratic convergence (ξ = 2), then R = 4, while for linear convergence (ξ = 1),
R = 2.

Recall that interpolation is required to transform data from the clustered PDE grid to the
equally spaced logS grid, and vice versa. In Table 2, we compare linear interpolation (see equations
(3.9)-(3.10)) with quadratic and cubic Lagrange interpolation for a vanilla European put option
with different numbers of points on the FFT grid.

In Table 2 we observe quadratic convergence to the exact solution for all three interpolation
schemes. Note that our earlier theoretical analysis for stability and convergence of the fixed point
iteration was based on linear interpolation. This was required because linear interpolation is the
only Lagrange interpolation method which has non-negative weights. Although it is not the case for
these particular parameter values, our numerical experiments indicate that quadratic interpolation
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Size of No. of S = 90 S = 100 S = 110
S grid Timesteps Value R Value R Value R

128 25 0.526562 n.a. 4.388091 n.a. 12.641501 n.a.
255 50 0.527379 n.a. 4.390462 n.a. 12.642942 n.a.
509 100 0.527574 4.186 4.391050 4.039 12.643290 4.125
1017 200 0.527622 4.042 4.391197 3.991 12.643377 4.008
2033 400 0.527634 4.046 4.391233 4.005 12.643399 4.059
4065 800 0.527637 4.023 4.391243 4.002 12.643404 4.049

Table 3: Value of a European call option using Crank-Nicolson timestepping. The input parameters
are provided in Table 1. The convergence ratio R is defined in equation (8.2). The exact solution
is 0.527638 at S = 90, 4.391246 at S = 100, and 12.643406 at S = 110. The number of points
used for the FFT grid is 2α, where α is the smallest integer such that the number of nodes in the
non-uniform S grid p ≤ 2α. Quadratic interpolation is used.

is often more efficient than linear interpolation (although the rate of convergence rate is theoretically
the same for both methods). Consequently, in all subsequent examples we will use quadratic
interpolation. In Table 3 we show the convergence rate for a call option using the data in Table 1.
For each value of S in the table, we observe quite smooth second order convergence.

We now consider the issues raised by the presence of a discontinuity in the payoff. Oscillations
are more likely to be a problem in this context if we use Crank-Nicolson timestepping, and, unless
care is taken, rates of convergence can be reduced. A detailed discussion of this can be found
in Pooley et al. (2003) for the case without jumps. Following Rannacher (1984), it is possible to
restore quadratic convergence if any discontinuities in the payoff (arising either due to the payoff
function itself in the case of a digital option, or from the application of a discretely observed barrier)
are l2 projected onto the space of linear Lagrange basis functions, and a fully implicit method is
used for a small number of timesteps after any discontinuities arise. We will refer to this technique
as Rannacher timestepping. While this method does ensure quadratic convergence, it does not
guarantee the absence of oscillations. Typically, however, the use of the fully implicit timesteps
smooths out the function enough that oscillations are not a problem.

We will investigate the application of Rannacher timestepping in the jump diffusion context
for a digital put option which pays $1 at maturity if the underlying stock price is below the strike
price, and zero otherwise. Table 4 gives a convergence study for the digital put with jumps, using
Rannacher timestepping (with two fully implicit steps) and l2 projection. As shown in this table,
quadratic convergence is generally achieved, though perhaps a bit more erratically than for the
vanilla payoff as shown in Table 3. Figure 1 provides plots of the solution value for a digital put
along with the hedging parameters delta (VS) and gamma (VSS).

Our next two numerical tests incorporate the use of an automatic timestep size selector as
described in Johnson (1987). It is not generally possible to achieve second order convergence for
American options using constant timesteps (Forsyth and Vetzal, 2002). An initial timestep is given
and the next timestep is computed according to

τn+2 − τn+1

τn+1 − τn
=

d

maxi
|V n+1
i −V ni |

max(1,|V ni |)

, (8.3)

where d specifies the maximum relative change allowed. Initially we set d = .1, and we divide this
value by two at each grid refinement. An initial timestep of .01 on the coarsest grid is used, and
this initial timestep is reduced by a factor of four at each refinement.
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Size of No. of S = 90 S = 100 S = 110
S grid Timesteps Value R Value R Value R

128 25 0.855482 n.a. 0.387139 n.a. 0.077539 n.a.
255 50 0.855034 n.a. 0.387151 n.a. 0.077830 n.a.
509 100 0.854935 4.577 0.387152 7.157 0.077899 4.160
1017 200 0.854910 3.924 0.387153 2.219 0.077917 3.896
2033 400 0.854902 2.824 0.387153 3.590 0.077922 3.970
4065 800 0.854899 3.327 0.387153 4.124 0.077923 4.005

Table 4: Value of a European digital put option using Rannacher timestepping and l2 projection.
The input parameters are provided in Table 1. The convergence ratio R is defined in equation (8.2).
The exact solution is 0.854898 at S = 90, 0.387153 at S = 100, and 0.077923 at S = 110. The
number of points used for the FFT grid is 2α, where α is the smallest integer such that the number
of nodes in the non-uniform S grid p ≤ 2α. Quadratic interpolation is used.
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Figure 1: Digital put option value, delta and gamma for Rannacher timestepping. The input
parameters are provided in Table 1.
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Figure 2: Overall comparison of the normal (µ = −.10, γ = .45) and double exponential probability
density functions (p = 0.3445, η1 = 3.0465, η2 = 3.0775).

The first test to incorporate variable timesteps involves an alternative distribution for the jump
size. Kou (2002) suggests the double exponential distribution for the log jump size, observing that
it has desirable analytical properties. In the model of Kou (2002),

f(x) = pη1 exp(−η1x)H(x) + qη2 exp(η2x)H(−x), (8.4)

where η1 > 1, η2 > 0, p > 0, q = 1 − p > 0, and H(·) is the Heaviside function. As noted by
Kou, the condition η1 > 1 is used to ensure that the proportional jump and stock price have finite
expectation. In this model, κ = E[J − 1] = pη1

η1−1 + qη2

η2+1 − 1.
To provide a basis for comparison with the lognormal distribution, we attempted to find pa-

rameters for the double exponential distribution which match those used for the lognormal given
in Table 1. This did not work well for those parameters, as the mean is too far below zero, re-
sulting in only the left tail of the double exponential being used. To remedy this, we shifted the
lognormal mean from its value of -.90 in Table 1 to -.10. We then performed a numerical search
to find parameters to match the first three central moments of the two distributions as closely as
possible. We obtained values of p = 0.3445, η1 = 3.0465, and η2 = 3.0775. Figure 2 shows the
double exponential probability density function and the normal probability density function for our
parameter values. Note that the double exponential distribution has a discontinuity at zero. This
can be expected to cause some problems for our numerical integration using an FFT method.

Table 5 presents numerical convergence tests for pricing a European call option. In an attempt
to deal with the discontinuity at zero, the number of points used on the uniform-spaced x grid
has been oversampled to a greater extent than in the lognormal case. In particular, the number
of points on the FFT grid is 8 × 2α, where α is the smallest integer such that 2α is at least equal
to the number of nodes in the S grid. Rannacher timestepping is used. In contrast to our earlier
examples, we do not obtain second order convergence here. Instead the results indicate convergence
at a linear (or perhaps slightly higher) rate to the exact solution. Despite the discontinuity, we
observe smooth solution plots for the solution value, delta, and gamma in Figure 3.

Note that other numerical experiments indicate that we can achieve quadratic convergence in
the double exponential case if we restrict the parameters so that the distribution is continuous at
zero (i.e. set p = 0.50, η1 = η2). This still requires a heavily oversampled FFT grid relative to the
lognormal case in order to adequately capture the sharp peak of the distribution.
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Size of No. of S = 90 S = 100 S = 110
S grid Timesteps Value R Value R Value R

128 34 0.671314 n.a. 3.969969 n.a. 11.78927 n.a.
255 65 0.672213 n.a. 3.972476 n.a 11.79248 n.a.
509 132 0.672535 2.791 3.973107 3.972 11.79367 2.688
1017 266 0.672630 3.358 3.973322 2.936 11.79416 2.431
2033 533 0.672660 3.225 3.973407 2.511 11.79438 2.244
4065 1067 0.672670 2.917 3.973445 2.281 11.79448 2.130

Table 5: Value of a European vanilla call option using Rannacher timestepping with variable
timestep sizes for the double exponential probability density function (8.4). The timesteps are se-
lected using equation (8.3), with d = 0.1 on the coarsest grid, and divided by two for each grid re-
finement. The input parameters are σ = 0.15, r = 0.05, λ = 0.1, T = 0.25, K = 100, η1 = 3.0465,
η2 = 3.0775, and p = .3445. The convergence ratio R is defined in equation (8.2). The exact
solution is 0.672677 at S = 90, 3.973479 at S = 100, and 11.794583 at S = 110. The number of
points used for the FFT grid is 8 × 2α, where α is the smallest integer such that the number of
nodes in the non-uniform S grid p ≤ 2α. Quadratic interpolation is used.

Size of No. of S = 90 S = 100 S = 110
S grid Timesteps Value R Value R Value R

128 32 10.000000 n.a. 3.236354 n.a. 1.417613 n.a.
255 58 10.002938 n.a. 3.240286 n.a 1.419269 n.a.
509 117 10.003519 5.058 3.241045 5.182 1.419676 4.077
1017 235 10.003791 2.137 3.241207 4.699 1.419774 4.139
2033 470 10.003815 11.653 3.241243 4.463 1.419798 4.143
4065 940 10.003822 3.213 3.241251 4.331 1.419803 4.127

Table 6: Value of an American put option using Rannacher timestepping with variable timestep
sizes. The timesteps are selected using equation (8.3), with d = 0.1 on the coarsest grid, and divided
by two for each grid refinement. The input parameters are provided in Table 1. The convergence
ratio R is defined in equation (8.2). The approximate analytic values from Bates (1991) are 9.304946
at S = 90, 3.163112 at S = 100, and 1.411669 at S = 110. The number of points used for the FFT
grid is 2α, where α is the smallest integer such that the number of nodes in the non-uniform S grid
p ≤ 2α. Quadratic interpolation is used.

Our second test involving variable timesteps is the valuation of an American put option. As
mentioned in Section 6, this is easily handled in our framework by combining the fixed point iter-
ation with the penalty method described in Forsyth and Vetzal (2002) and d’Halluin et al. (2003).
As noted above, in this context it is also generally necessary to use variable timestepping to achieve
faster than linear convergence. Table 6 presents the results for the case of lognormally distributed
jumps. Once again, we generally observe second order convergence, although convergence is some-
what erratic near the exercise boundary. There is no evidence of oscillations in either the solution
or its first two derivatives with respect to the underlying stock price (see Figure 4). Also note that
in this case the analytic approximation of Bates (1991) is quite accurate for the out of the money
case where S = 110, about eight cents too low when S = 100, and around 70 cents too low for
the in the money case with S = 90. This suggests that (at least for our parameter values), Bates’s
approximation is not very accurate (in terms of absolute pricing error), unless the option is deep
out of the money.

The last set of results to be presented are for the case of a European call option with a Parisian
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(a) Call option value.
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(b) Call option delta.
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(c) Call option gamma.

Figure 3: Call option value, delta and gamma for Rannacher timestepping using the double ex-
ponential probability density function (8.4). The input parameters are provided in the caption to
Table 5.

knock-out feature. The particular case we consider here is an up-and-out call with daily discrete
observation dates. This contract ceases to have value if S is above a specified barrier level for
a specified number of consecutive monitoring dates. This can be valued by solving a set of one-
dimensional problems which exchange information at monitoring dates (Vetzal and Forsyth, 1999).
It is easy to incorporate jumps by simply adding a jump integral term to each of the one-dimensional
problems. Other path-dependent contracts such as Asian options can also be handled using this
approach of solving a set of one-dimensional problems (Zvan et al., 1999).

For our test, the barrier is set at S = 120 and the required number of consecutive daily obser-
vations for knock-out is 10. We consider the lognormal jump distribution case with the same input
parameters as in Table 1. Note that we specify the barrier observation interval as 1/250, based
on 250 trading days per year. In Table 7, we present our convergence results. We use constant
timestepping (∆τ = .002 on the coarse grid) and the solution is l2 projected after each barrier
observation date. Rannacher timestepping is used after each observation. As expected, quadratic
convergence is obtained.

In Figure 5, we compare the solutions of a Parisian call knock-out option with discrete daily
observation dates with and without jumps. To ensure a consistent basis for comparison, we use the
following procedure:
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(a) American put option value.
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(b) American put option delta.

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Stock Price

O
pt

io
n 

G
am

m
a

(c) American put option gamma.

Figure 4: American put option value, delta and gamma for Rannacher timestepping with 128
points on the non-uniform S grid and an initial timestep of 0.01.

1. Given some parameters (in this example we use the values provided in Table 1), compute the
analytical solution Vjump at the strike K = 100 of a vanilla European call option.

2. Use a constant volatility Black-Scholes model with no jumps to determine the implied volatil-
ity σimplied which matches the option price to the jump diffusion value Vjump at the strike
K.

3. Value the Parisian knock-out call option with discrete daily observation dates with jumps
using the same parameters as in Step 1.

4. Value the Parisian knock-out call option with discrete daily observation dates using a constant
volatility model (no jumps) but with the implied volatility σimplied estimated in Step 2.

We observe in Figure 5 that the difference in pricing can be significant for these parameter
values, depending on the underlying asset price. The largest differences are near S = 110, where
the model with jumps produces values of about 8.78 (as shown in Table 7), but the values for the
no-jump model are around 7.25. For S ranging between about 98 and around 119, the jump model
produces higher option values, but outside this range (in either direction) the model without jumps
produces higher values.
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Size of No. of S = 90 S = 100 S = 110
S grid Timesteps Value R Value R Value R

101 125 0.524766 n.a. 4.193418 n.a 8.762555 n.a.
201 250 0.523168 n.a 4.212131 n.a 8.779253 n.a.
401 500 0.522761 3.930 4.216747 4.053 8.782267 5.540
801 1000 0.522660 4.002 4.217902 3.997 8.783008 4.068
1601 2000 0.522634 4.015 4.218192 3.990 8.783199 3.875

Table 7: Value of an up-and-out Parisian call option using Rannacher timestepping with constant
timesteps (∆τ = .002 on the coarsest grid) and l2 projection. The input parameters are given in
Table 1. The barrier is set at S = 120 and 10 consecutive daily observations are required to knock-
out. The convergence ratio R is defined in equation (8.2). The number of points used for the FFT
grid is 2α, where α is the smallest integer such that the number of nodes in the non-uniform S grid
p ≤ 2α. Quadratic interpolation is used.
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Figure 5: Parisian knock-out call option with discrete daily observation dates with and without
jumps. The barrier is set at S = 120 and the number of consecutive daily observations to knock-out
is 10.

It is worth concluding this section by making some comparisons with other methods which
have been proposed in the literature. When pricing options under the jump diffusion process, the
main computational cost is the evaluation of the integral term of (2.4). The approach presented
in Andersen and Andreasen (2000) is based on a FFT-ADI finite difference method. This method
evaluates the convolution integral twice at each timestep, thus requiring a total of four FFT com-
putations (two forward FFTs, and two reverse FFTs). Note that the method in Andersen and
Andreasen (2000) is second order accurate. If N is the number of timesteps, and p the number of
nodes in the S grid, then both Andersen and Andreasen’s method and the method in this work
have complexity O(Np log p).

In Table 8, we see that the number of iterations required for convergence (at each timestep)
depends on the convergence tolerance. For a typical convergence tolerance of 10−6, at most three
iterations per step are required (on average). In this case, about six FFT computations are required
per timestep. Consequently, for vanilla European options (with jumps), the method of Andersen
and Andreasen (2000) may be more efficient than the pure Crank-Nicolson timestepping method
developed here.
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Number of points N Timesteps Iterations (tol = 10−6) Iterations (tol = 10−8)
128 25 77 100
255 50 150 200
509 100 300 390
1017 200 600 600
2033 400 1091 1200
4065 800 1600 2400

Table 8: Number of iterations for a European call option under jump diffusion using Crank-
Nicolson timestepping. The input parameters are provided in Table 1. The convergence tolerance
tol is defined in equation (5.4).

However, in the case of American options, it is not clear how the approach in Andersen and
Andreasen (2000) could be modified to handle the early exercise constraint implicitly, unless some
form of iteration is used. In contrast, our technique can handle implicit treatment of the American
constraint in a straightforward fashion.

The technique developed in Matache et al. (2002) uses a wavelet method for the evaluation
of the jump integral term. This has complexity O(Np (log p)2), in contrast to a complexity of
O(Np log p) (for one dimensional problems) for the method developed here. In addition, it is
not obvious how to generalize the technique in Matache et al. (2002) to nonlinear cases such as
uncertain volatility or transaction costs models, which can easily be handled using our method
Pooley et al. (2003).

Finally, we note that the method in Zhang (1997) uses an explicit evaluation of the correlation
integral term, and hence is only first order accurate. The approach of Meyer (1998) is restricted to
cases where the underlying asset can only jump to a (small) finite number of states.

9 Conclusion

In this paper, we have shown that an explicit evaluation of the correlation integral in the jump
diffusion PIDE, coupled with an implicit discretization of the usual PDE terms, is unconditionally
stable. However, since this method is only first order correct, an implicit method is preferred. We
show that Crank-Nicolson timestepping is algebraically stable, and in the special case of an equally
spaced logS grid with constant parameters, we can prove that Crank-Nicolson timestepping is
strictly stable.

If implicit timestepping is used, then the direct evaluation of the correlation integral appearing in
the PIDE would require a dense matrix solve. To avoid this computational complexity, a fixed point
iteration method is developed. For typical parameter values, this fixed point iteration converges
very quickly (the error is reduced by two orders of magnitude at each iteration).

Each fixed point iteration requires evaluation of the correlation integral. We use Lagrange
interpolation to transfer the data on the clustered PDE grid to an equally spaced logS grid. An
FFT method is then used to evaluate the correlation integral, and Lagrange interpolation is used
to transfer data back to the PDE grid. We demonstrate how to extend the logS grid to avoid FFT
wrap-around effects. This is done by taking into account the properties of the jump size probability
density.

The methods developed in this paper can be applied to arbitrary jump size probability densities.
Furthermore, we have demonstrated that this method can be used to obtain implicit solutions to
American options with jump diffusion. Since the method used to handle the jump diffusion term
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implicitly is a simple fixed point iteration, then it is a very simple matter to modify an existing
exotic option pricing library to handle the jump diffusion case. All that is required is that a function
be added to the library which, given the current vector of discrete option prices, returns the vector
value of the correlation integral. This vector is then added to the right hand side of the fixed point
iteration.

There are several obvious avenues for future research. One would be a detailed analysis of
pricing and hedging various types of exotic options under a jump diffusion process. Similarly, it
would be interesting to explore the effects of uncertain parameters or transactions costs, as described
in Wilmott (1998) for the diffusion case. Another possibility would be to extend the analysis to
more complex models for the evolution of the underlying state variable. Among the candidates here
are more general Lévy processes than the jump diffusion case, or multifactor models such as those
recently explored by Eraker et al. (2003), which feature stochastic volatility with Poisson jumps in
both the state variable itself and its volatility.

Appendices

A Von Neumann Stability Analysis

In this Appendix, we will carry out a Von Neumann stability analysis for Crank-Nicolson timestep-
ping in the special case of constant parameters and an equally spaced grid in logS coordinates.

From equations (2.4) and (3.2),

Vτ =
1
2
σ2S2VSS + (r − λκ)SVS − (r + λ)V + λ

∫ ∞
−∞

V (y)f (y − logS) dy. (A.1)

where V (x, τ) = V (exp(x), τ) and f(y) = f(exp(y)). Using the change of variable x = log(S) and
substituting into (A.1), we obtain

V τ =
1
2
σ2V xx + (r − λκ− 1

2
σ2)V x − (r + λ)V + λ

∫ ∞
−∞

V (y)f(y − x)dy. (A.2)

From equation (A.2), it can be observed that the integral part of the PIDE is simply a correlation
product. Using the correlation operator ⊗ from equation (3.3), equation (A.2) can be written as

V τ =
1
2
σ2V xx + (r − λκ− 1

2
σ2)V x − (r + λ)V + λV ⊗ f. (A.3)

A Crank-Nicolson discretization of equation (A.3) is

V
n+1
i − V n

i

∆τ
=
λ

2
[
(V ⊗ f)ni + (V ⊗ f)n+1

i

]
+

1
2

[
1
2
σ2

(
V
n+1
i+1 − 2V n+1

i + V
n+1
i−1

∆x2

)
+
(
r − λκ− 1

2
σ2

)(
V
n+1
i+1 − V

n+1
i−1

2∆x

)
− (r + λ)V n+1

i

]
+

1
2

[
1
2
σ2

(
V
n
i+1 − 2V n

i + V
n
i−1

∆x2

)
+
(
r − λκ− 1

2
σ2

)(
V
n
i+1 − V

n
i−1

2∆x

)
− (r + λ)V n

i

]
. (A.4)
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Equation (A.4) can be written as

V
n+1
i

[
1 + (α+ β + r + λ)

∆τ
2

]
− ∆τ

2
βV

n+1
i+1 −

∆τ
2
αV

n+1
i−1

= V
n
i

[
1− (α+ β + r + λ)

∆τ
2

]
+

∆τ
2
βV

n
i+1 +

∆τ
2
αV

n
i−1 +

∆τ
2
λ
[
(V ⊗ f)ni + (V ⊗ f)n+1

i

]
,

(A.5)

where

α =
σ2

2∆x2
−
r − λκ− σ2

2

2∆x
(A.6)

β =
σ2

2∆x2
+
r − λκ− σ2

2

2∆x
. (A.7)

Let V̂ n = [V n
0 , V

n
1 , . . . , V

n
p ]′ be the discrete solution vector to equation (A.3). Suppose the

initial solution vector is perturbed, i.e. V̂ 0 = V
0 +E0, where En = [En0 , . . . , E

n
p ]′ is the perturbation

vector. Note that Enp = 0 since Dirichlet boundary conditions are imposed at this node. Then,
from equation (A.5), we we obtain the following equation for the propagation of the perturbation

En+1
i

[
1 + (α+ β + r + λ)

∆τ
2

]
− ∆τ

2
βEn+1

i+1 −
∆τ
2
αEn+1
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= Eni
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2
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2
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2
αEn

i−1 +
∆τ
2
λ
[
(E ⊗ f)ni + (E ⊗ f)n+1

i

]
.

(A.8)

In the following we determine the stability of our discretization scheme using the von Neumann
approach (Richtmyer and Morton, 1967). In order to apply the Fourier transform method, we
assume that the boundary conditions can be replaced by periodicity conditions. We define the
inverse discrete Fourier transform (DFT) as follows (note that we have selected a particular scaling
factor)

Eni =
1
XN

N
2∑

k=−N
2

+1

Cnk exp
(√
−1

2π
N
ik

)
(A.9)

fi =
1
XN

N
2∑

l=−N
2

+1

Fl exp
(√
−1

2π
N
il

)
, (A.10)

where Ck and Fl correspond respectively to the discrete Fourier coefficients of E and f , and XN =
xN/2 − x−N/2+1 is the width of the domain along the x-axis. Note that the notation Cnk should be
interpreted as (Ck)n, i.e. in this case n is a power, not a superscript.

The forward transforms are

Cnk =
XN

N

N
2∑

i=−N
2

+1
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N
ik

)
(A.11)
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i=−N
2

+1
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−
√
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2π
N
il

)
. (A.12)
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The discrete correlation is given by

(E ⊗ f)ni =
XN

N

N
2∑

j=−N
2

+1

Enj fj−i, (A.13)

which is second order accurate. Substituting (A.9) and (A.10) into (A.13), we obtain

(E ⊗ f)ni =
XN

N

N
2∑

j=−N
2

+1

1
XN

N
2∑

k=−N
2

+1

Cnk exp
(√
−1

2π
N
jk

)
1
XN

N
2∑

l=−N
2

+1

Fl exp
(√
−1

2π
N

(j − i)l
)

=
1
XN

1
N

N
2∑

k=−N
2

+1

N
2∑

l=−N
2

+1

CnkFl exp
(
−
√
−1

2π
N
il

)

×

N
2∑

j=−N
2

+1

exp
(√
−1

2π
N
jk

)
exp

(√
−1

2π
N
jl

)
.

Using the orthogonality condition
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we find that

(E ⊗ f)ni =
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Substituting (A.9) and (A.15) into (A.8) gives
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Because of linearity, each Fourier component can be treated separately. Equation (A.16) becomes
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Dividing equation (A.17) by Cnk exp
(√
−1 2π

N ik
)
, we obtain
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Factoring the Ck term, equation A.18 becomes
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Recalling (A.7), it follows that
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Using the above results in (A.19), we find
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Letting

FR−k = Re(F−k)

F I−k = Im(F−k),

equation (A.20) gives
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Note that
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Then, from (3.6), we have
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so that
|F−k| ≤ 1, (A.25)

and hence
−1 ≤ FR−k ≤ +1. (A.26)

It then follows that (∀k ∈ −N/2 + 1, . . . ,+N/2)∣∣∣∣1 +
r∆τ

2
+
σ2∆τ
2∆x2

(
1− cos

(
2π
N
k

))
+

∆τλ
2
(
1− FR−k

)∣∣∣∣ ≥∣∣∣∣1− r∆τ
2
− σ2∆τ

2∆x2

(
1− cos

(
2π
N
k

))
− ∆τλ

2
(
1− FR−k

)∣∣∣∣ ,
(A.27)

and consequently |Ck| < 1,∀k, so the scheme is unconditionally strictly stable.
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B Error Estimates for Correlation Integral

In this Appendix, we show how to extend the domain of integration of the integral (6.3) such that
FFT wrap-around effects are less than a user specified tolerance. To avoid algebraic complication,
we derive the results in an informal way. We focus on the error due to the FFT wrap-around. We
assume that any other errors (interpolation, discretization of the integral, etc.) are second order in
the asset grid spacing, and we ignore such errors in the following.

We make the assumptions

ymin < 0
ymax > 0

V (y) ≥ 0

V (y) ≤ max(A2, A1e
y)

f(y) ≤ A3e
−γ|y|, ∀y, γ > 2

maxV (y) ≤ A4 ; y ∈ [ymin, ymax] (B.1)

where A1, A2, A3, A4 are constants independent of y. We assume that V (y) is only given at discrete
points on the interval y ∈ [ymin, ymax].

Recall that we wish to compute an approximation to

I(x) =
∫ ymax

ymin

V (x+ y)f(y)dy. (B.2)

Considering the case where x = ymax, equation (B.2) becomes

I(ymax) =
∫ ymax

ymin

V (ymax + y)f(y) dy

=
∫ 0

ymin

V (ymax + y)f(y) dy +
∫ ymax

0
V (ymax + y)f(y) dy. (B.3)

When using an FFT to evaluate the correlation integral, the term∫ ymax

0
V (ymax + y)f(y) dy

is actually evaluated using ∫ ymax

0
V (ymin + y)f(y) dy (B.4)

due to the wrap-around effect of the discrete FFT. The idea here is to extend the definition of
V to the interval y ∈ [ymin − ∆y−, ymax + ∆y+]. We make the assumption that the values of V
can be obtained in the extended regions correct to second order, and we ignore these errors in the
following. Setting ∆y− = 0 for the time being, equation (B.3) becomes

I(ymax) =
∫ ∆y+

ymin

V (ymax + y)f(y) dy +
∫ ymax

∆y+

V (ymax + y)f(y) dy. (B.5)
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Now, the wrap-around error E(ymax) which will occur using an FFT will be

E(ymax) '
∫ ymax

∆y+

|V (ymax + y)− V (ymin + {y −∆y+})|f(y) dy

≤ max
[∫ ymax

∆y+

A1e
(ymax+y)f(y) dy , A2

∫ ymax

∆y+

f(y) dy
]

≤ max
[
A1e

ymax

∫ ymax

∆y+

eyA3e
−γy dy , A2

∫ ymax

∆y+

A3e
−γy dy

]
≤ max

[
A1e

ymax
e∆y+

A3e
−γ∆y+

γ − 1
, A2A3

e−γ∆y+

γ

]
≤ A3e

∆y+
e−γ∆y+

max [A1e
ymax , A2]

≤ A3e
−γ∆y+

e∆y+
A4 (B.6)

So, if we require that the relative error at x = ymax be less than a given tolerance, then we select
∆y+ such that

E(ymax)
A4

≤ A3e
−γ∆y+

e∆y+
< tolR. (B.7)

For practical purposes, we assume that f(∆y+) ' A3e
−γ∆y+

, so that we can approximate equation
(B.7) by

E(ymax)
A4

' f(∆y+)e∆y+
< tolR. (B.8)

Note that a relative error criteria is a reasonable choice at x = ymax since V (ymax) may be O(eymax).
Following the same reasoning at x = ymin, assuming that ∆y+ = 0 for simplicity, we now extend

the domain of V to the left by ∆y−, and we assume that we can determine V in [ymin−∆y−, ymin]
correct to second order. The error in I(ymin) due to wrap-around is given by

E(ymin) '
∫ −∆y−

ymin

|V (ymin + y)− V (ymax + y + ∆y−)|f(y) dy

≤ max

[∫ −∆y−

ymin

A1e
(ymax+y+∆y−)f(y) dy , A2

∫ −∆y−

ymin

f(y) dy

]

≤ max

[
A1e

(ymax+∆y−)

∫ −∆y−

ymin

eyA3e
γy dy , A2A3

e−γ∆y−

γ

]

≤ max

[
A1e

(ymax+∆y−)A3e
−γ∆y−

(
e−∆y−

1 + γ

)
, A2A3

e−γ∆y−

γ

]
≤ A3e

−γ∆y− max [A2, A1e
ymax ]

≤ A3e
−γ∆y−A4 (B.9)

Therefore we can require that the absolute error at x = ymin be less than a specified tolerance if
we select ∆y− such that

E(ymin) ≤ A4A3e
−γ∆y− < tolL. (B.10)
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Again, for practical purposes we assume that f(−∆y−) ' A3e
−γ∆y− and so we approximate equa-

tion (B.7) to obtain
E(ymin) ≤ A4f(−∆y−) < tolL. (B.11)

An estimate of A4 can be obtained from

A4 ' max
0≤S≤Smax

V (S, τ = 0). (B.12)

Note that an absolute error criteria is appropriate near x = ymin since V is bounded at y = ymin.
Typically, we chose tolL = tolR = 10−6. Since the wrap-around errors are largest at x =

ymin, x = ymax, selecting the domain extensions which satisfy equations (B.7) and (B.10) will
bound these errors at all other points. The domain extensions are illustrated in Figures 6-7.

log(Smax)

Domain
is expanded

Log stock price

Option Value on the log grid

0

Option Value

Stock price

Strike

Payoff

Smax

Figure 6: The value of the option is interpolated onto the log-spaced grid. The right hand side
boundary of the log-spaced grid ymax = log(Smax) is expanded by ∆y+, where ∆y+ is given by
equation (B.7).
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