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Abstract: The latest visionary technologies have made an evident impact on remote sensing scene
classification. Scene classification is one of the most challenging yet important tasks in understanding
high-resolution aerial and remote sensing scenes. In this discipline, deep learning models, particularly
convolutional neural networks (CNNs), have made outstanding accomplishments. Deep feature
extraction from a CNN model is a frequently utilized technique in these approaches. Although CNN-
based techniques have achieved considerable success, there is indeed ample space for improvement
in terms of their classification accuracies. Certainly, fusion with other features has the potential to
extensively improve the performance of distant imaging scene classification. This paper, thus, offers
an effective hybrid model that is based on the concept of feature-level fusion. We use the fuzzy C-
means segmentation technique to appropriately classify various objects in the remote sensing images.
The segmented regions of the image are then labeled using a Markov random field (MRF). After the
segmentation and labeling of the objects, classical and CNN features are extracted and combined to
classify the objects. After categorizing the objects, object-to-object relations are studied. Finally, these
objects are transmitted to a fully convolutional network (FCN) for scene classification along with
their relationship triplets. The experimental evaluation of three publicly available standard datasets
reveals the phenomenal performance of the proposed system.

Keywords: CNN model; FCN; Haralick texture; parallel fusion; remote sensing; spectral-spatial
features

1. Introduction

Recent advances in imaging technology have demonstrated that remote sensing (RS)
imagery now has a higher resolution than reported previously. RS images are currently
being employed in a variety of research disciplines, including object categorization [1],
image reconstruction [2], change detection analysis [3], land-use classification [4], scene
classification [5], and environmental monitoring [6]. Scene classification for RS images is
crucial in practical applications since it aims to assign a scene category to each RS image on
the basis of its semantic information.
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Scene classification for RS images, which attempts to assign a scene category to each
RS image on the basis of its semantic content, is critical in practical applications. Generally,
accurate aerial scene classification requires excellent feature extraction. Apart from classic
methods based on hand-crafted features [7], recent years have seen incredible performances
achieved through deep convolutional neural network (CNN)-based approaches [8]. More-
over, CaffeNet [9], AlexNet [10], VGG Net [11], GoogLeNet [12], and ResNet [13] are all
regularly used CNN models. Thus, CNNs have exhibited an exceptional capacity to extract
discriminative features from aerial scenes. Despite the outstanding results obtained using
CNN-based approaches, the task of extracting useful features from aerial scene imagery
continues to face several difficulties.

To begin, in comparison to natural scenes, aerial scene images exhibit a significant
degree of intraclass diversity. Specifically, items belonging to the same scene type may
appear in a variety of sizes and orientations. Additionally, the appearance of the same
scene may be altered owing to the varied imaging environments, such as the height of
the equipment for image capturing and the solar altitude. Secondly, scene images from
distinct classes may contain identical items and structural differences, resulting in a minor
degree of interclass dissimilarity. In general, a strong depiction of aerial imagery is critical
for gaining a competitive edge in this field. As a result, the features that we employ and
how we apply them are becoming increasingly significant in the domain of aerial scene
classification.

In this paper, we present an efficacious framework to significantly enhance the classi-
fication accuracy for remote sensing imagery. Initially, we incorporate a fuzzy C-means
segmentation to partition the scene into homogeneous regions as segments of different
objects in the scene. After segmentation, a Markov random field (MRF) model is adopted
as a postprocessing and labeling technique. During postprocessing, the segmented re-
gions of the image are more clearly segregated as disconnected parts are converted to
connected components and, finally, unique labels are assigned to segmented objects using
the probabilistic approach. Once the segments have been labeled, they can be used to
extract features using classical and CNN-based methods. As a deep feature extractor, we
deploy a pretrained CNN while super-pixel patterns, spectral-spatial features (SSFs), and
Haralick texture features are extracted as classical features. A parallel feature fusion is
incorporated to fuse all the extracted features. The fused feature set is transmitted to
multiple kernel learning (MKL) for object categorization in the remote sensing imagery.
These categorized objects are then analyzed for the object-to-object relationship (OOR)
present in the scene imagery. Finally, these relationships triplets and categorized objects
are fed to a fully convolutional network (FCN) for scene classification. We evaluated our
system over three publicly available datasets. Moreover, the comparison of our results with
various state-of-the-art (SOTA) methods demonstrates significant improvements over other
SOTA techniques. The key contributions of this research are as follows:

• We employed MRF as a postprocessing and labeling technique after segmentation to
avoid the challenges encountered during segmentation while using other segmentation
techniques, i.e., accurate scene classification.

• CNN and classical features including Haralick features, spectral-spatial features, and
super-pixel patterns are fused to improve the classification accuracy.

• MKL-based categorization significantly enhances the performance of object catego-
rization.

• Probability-based OOR relations are introduced to contextually analyze the relation-
ship between the objects present in the remote sensing scenes.

• After object categorization and OOR exploration, FCN is applied for the remote scene
classification.
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The rest of the paper is organized as follows: Section 2 discusses related works.
Section 3 provides an overview of the proposed method, which includes segmentation,
labeling, feature extraction, and their fusion. Section 4 gives the details of the datasets used,
the experimental design, and the outcomes. Lastly, in Section 5, we provide the conclusions
of this study.

2. Related Work

Exploring the locations among several objects, their calibration and positioning, and
the impact of scenic imagery are complicated issues in the domain of aerial and remote
sensing images. We conducted a literature review across multiple domains, including
object categorization, object segmentation, labeling, and scene classification to develop
appropriate dynamics and metrics for the presented approach.

2.1. Object Categorization

The area of object categorization involves various challenges for researchers, including
locating objects, detecting and analyzing their relationships, finding occluded components,
and separating classes for desirable outcomes. Over the last decade, the bag-of-features
model has undoubtedly been the most popular and effective paradigm for imagery catego-
rization and classification. Numerous intriguing works have focused on the bag-of-features
concept [14]. Martin et al. [15] developed a Bayesian inference model to assess each object’s
previous knowledge to track several objects. It then revised the potential mass function to
allow for more precise object recognition and convergence rate for accurate classification.
In [16], they offered a unique class-specific illustration technique for object categorization.
Initially, they used a Gaussian mixture model (GMM) to describe the features of images
inside that class. Image and GMM models were then compared in terms of their respective
Euclidean distances, which were utilized to represent each image. This was achieved by
concatenating the representations of all the classes. In this method, they could express an
image by combining the class-specific features, as well as the visual components. In [17],
an effective technique was presented to classify the indoor–outdoor scenes by employing
multi-object categorization. They used two different approaches to segment the images,
and then object categorization was performed using multiple kernel learning (MKL) by
considering local descriptors with the combination of signatures of a specific region. After
finding the object relationships, they applied multiclass logistic regression to classify the
scenes.

Wong et al. [18] presented an approach for online object detection and classification
of the image’s object classes. They proposed using kernel learning to rapidly track all
the objects in a scene rather than relying on past knowledge of a single object. The Neo-
vision2 tower benchmark dataset was used to develop a biologically inspired approach
for detecting an object’s contours and motion. Sumbul et al. [19] developed methods that
incorporated the attention of a multisource region network that computed the pre-source
feature illustration and was then distributed across the network’s members on the basis
of their representations of object locations. They employed multispectral approaches to
achieve better accuracy.

2.2. Scene Classification

Previously published research utilized low-level cues to categorize objects and scenes.
These low-level cues include histograms of gradients [20], statistical analysis of structural
information for texture discrimination [21], GIST [22], and scale-invariant feature transform
(SIFT) [23]. However, these solutions depended on technical expertise and expert knowl-
edge to generate feature representations, which have limits when it comes to representing
large amounts of scene data. To overcome the shortcomings of low-level feature-based
classification approaches, several approaches have been devised to improve the efficiency
of scene classification by aggregating the collected local low-level visual cues into a mid-
level scene illustration. One of the most extensively used systems based on mid-level
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visual features is bag of visual words (BoVW) [24]. It constructs a visual dictionary using
k-means clustering, and mid-level visual information is extracted and achieved through
feature encoding. Their model used BoVW and its advanced versions to classify scenes
on numerous occasions. Additionally, some other mid-level features based on traditional
approaches exist, including spatial pyramid matching [25], improved fisher kernel [26],
and vectors of locally aggregated descriptors [27].

However, previously described approaches, which rely on low- and mid-level features
retrieved from RS imagery, are not particularly sophisticated and, hence, cannot adequately
reflect the semantic information contained in images. Recent research has demonstrated
that deep learning approaches, particularly CNN, perform exceptionally well in computer
vision applications due to their great feature extraction capacity. Additionally, RS image
scene classification falls under the category of high-level image processing tasks that are
strongly connected to computer vision. RS images have a poor resolution at an early stage,
and the scenes to be identified are large-area land cover, in contrast to natural images used
in computer vision, which focus on small-scale items. As a result, it has trouble incorporat-
ing deep learning-based algorithms into the categorization of RS image scenes. However,
the RS images now have a high spatial resolution, while the disparity amongst RS and
natural images has also been minimized; hence, the possibility of incorporating different
remote sensing visualization techniques into image processing has increased. Numerous
CNN-based algorithms for scene classification have been introduced recently [28]. Rather
than relying on low- and mid-level cues, CNN-based approaches may extract hierarchical
features from RS images. Additionally, the majority of CNN-based approaches make use
of models that have been pretrained on ImageNet [29], including AlexNet [10], VGG [11],
ResNet [13], and DenseNet [30]. Hu et al. [31] validated the efficiency of CNN models
utilizing convolutional layer features. Li et al. suggested a unique filter bank in [32] for
simultaneously capturing local and global data in order to improve the results of classifi-
cation. They investigated the effect of various training procedures on the categorization
process. Their system includes three different training approaches: feature extraction and
fine-tuning through a pretrained CNN framework, and fully trained networks. The experi-
mental findings revealed that, when compared to the other two procedures, the fine-tuning
strategy achieved a better classification accuracy.

3. Proposed System Methodology

This section demonstrates a novel object categorization and scene classification (OCSC)
model that categorizes the objects present in the remote scene imagery. Moreover, it
classifies the scenes on the basis of these categorized objects. Initially, a remote sensing
image is considered for segmentation by employing fuzzy C-means (FCM) algorithms.
Then, these segmented objects are further processed to improve the segments and labeled
via MRF. The labeled objects are then analyzed for feature extraction by CNN, while classical
features including Haralick features, SSFs, and super-pixel patterns are also extracted. After
the fusion of these extracted features, MKL is applied to categorize the unique objects in
the remote scene images. Once the categories of the objects are separated, the OOR is
computed on the basis of probability triplets. Finally, these OOR probabilities and object
categories are taken as the input of FCN for remote sensing scene classification. Figure 1
illustrates the hierarchal view of our system.
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Figure 1. A schematic view of the proposed model over the AID.

3.1. Preprocessing Stage

Un-sharp masking [33] for image sharpening is performed during preprocessing to
provide an enhanced image with sharp edges. Three parameters are used to produce
un-sharp masking: amount, radius, and threshold. The amount parameter is used to adjust
the contrast between the edges and is typically specified as a percentage. Radius defines
the thickness of the edge and can be increased. A threshold is used to control the image’s
brightness level. We set the radius and amount parameters to 0.75% and 1.25%, respectively,
during our study. The following formula can be used to obtain a sharper image:

Ish = Io + (Io − Ib)× amt, (1)

where Ish represents the sharpened image, Io specifies the original image, a blurred image is
represented by Ib and amt is to describe the amount parameter which denotes the strength
of the sharpening effect.

3.2. Object Segmentation via Fuzzy C-Means

This section describes the fuzzy C-means (FCM) approach [34,35] for segmentation.
Initially, homologous components are spotted on the basis of pixels that are considered data
points, consistent with the method. Rather than being assigned to a single defined cluster,
each pixel demonstrating a fuzzy logic is then considered to be a member of numerous
clusters. By iteratively minimizing the objective function, the FCM fragments the image.
Additionally, these features constrain ideal image clusters by reducing cluster weights
using the squared error objective function AN(P, Q) as follows:

AN(P, Q) = ∑c
i = 1 ∑n

j = 1 pr
ij
∣∣xj − qi

∣∣2, (2)

where n illustrates the number of data points with r real numbers in the i-th cluster, c
denotes the clusters, pr

ij reflects the membership of xj pixels in the i-th cluster, and qi
expresses the centroid of the cluster.

pij =
1

∑c
k = 1

(
|xj−qi|
|xj−qk|2

2
) 1

r−1
, (3)

pij ∈ [0, 1], for i = [1, . . . , c], (4)
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qi =
∑n

j = 1 pr
ijxj

∑n
j = 1 pr

ij
, (5)

where AN(P, Q), the distance between each pixel and the cluster center, may be calculated
using P and Q. When the minimal distance from the pixel to the cluster center is observed,
a high membership value is allocated to the well-suited pixel. Using the typical FCM
approach, a high level of computational complexity is produced because of the analysis of
spatial values at each iteration that is used to quantify the distance from the cluster center
to the relevant pixel in an image. Figure 2 shows the outcomes of segmenting the images
from the UCM dataset.

Figure 2. Fuzzy C-means segmentation over some images from UCM Dataset: (row 1) the original
images; (row 2) the segmented images.

3.3. Labeling via Markov Random Field

A Markov random field (MRF) [36,37] can be described in formal terms by a set of
sites S = {1, . . . , N}. These are N pixel places. A collection of random variables {wn}N

n = 1
and a set of neighbors {Nn}N

n = 1 are connected with each of the N locations. To qualify as
a Markov random field, the model must adhere to the following Markov property:

Pr
(

wn | wS\n
)

= Pr(wn | wNn). (6)

As a result, a Markov random field (MRF) can be considered to be an undirected
model that specifies the conditional probabilities of variables as a product of potential
functions such that

Pr(w) =
1
Z ∏J

j = 1 φj

[
wCj

]
, (7)

where φj [•] is the j-th potential function, which never yields a negative value. This value
is determined by the state of a subset of the variables Cj ⊂ {1, . . . , N}. This subset is
referred to as a clique in this context. The partition function, denoted by Z, is a normalizing
constant that ensures the resulting probability distribution is correct. We used MRF for
postprocessing of segmented regions. The segmented regions having discontinuities are
initially connected by considering the multiple key points on boundaries and connecting
these key points to accurately separate the segmented regions. Then, these regions with a
boundary around the connected regions having pixels with similar features are grouped
together and assigned a unique label. Figure 3 illustrates the results of MRF labeling on
a selection of images from the AID. Figure 3 illustrates the results of MRF labeling on a
selection of images from the AID.
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Figure 3. MRF labeling of segmented images over AID: (a) original image; (b) segmented image;
(c) labeled via MRF.

3.4. Feature Extraction

To categorize the objects in remote sensing imagery, various classical and deep features
are analyzed. Classical features including Haralick texture features, SSFs, and super-pixel
patterns are computed on the basis of statistical techniques while deep learning-based
features are extracted using a pretrained CNN model. This section covers the feature
computation, fusion, and selection processes in detail.

3.4.1. CNN Features

To extract CNN features [38], VGG-16 (a pretrained CNN model) is incorporated.
Deng et al. [39] trained this model on the ImageNet dataset. The model is simple and
comprises an input layer and 13 convolutional layers. The input layer considers the images
with dimensions of 320 × 320 × 3 as input. There are also five pooling layers (max pooling)
following the three fully connected layers. The window size for max-pooling is 2 × 2. The
rectified linear unit (ReLU) is used as an activation function in hidden layers. To extract
effective CNN features, a transfer learning method is applied that exploits the already
learned features to make the model useful as compared to training a new model from
scratch. The general architecture of CNN features extraction is shown in Figure 4.

Figure 4. CNN feature extraction using pretrained CNN.

3.4.2. Haralick Features

Remote sensing images of several objects may appear identical in color but have
distinct texture patterns. This inspired us to integrate texture features that behave as
local descriptors. To obtain texture features, we used a cooccurrence matrix. The four
local features are derived from a matrix of cooccurrences termed Haralick features [40].
Haralick assumed that this matrix contains texture information, and texture features are
subsequently computed from this matrix. The cooccurrence matrix contains 14 factors;
however, only four are commonly used. These four texture features, energy (E), contrast



Remote Sens. 2022, 14, 1550 8 of 26

(C), correlation (Cor), and entropy (H), are computed mathematically by the following
equations:

E = ∑i ∑j (M(i, j))2, (8)

C = ∑m−1
k = 0 k2 ∑|i−j| = k M(i, j), (9)

Cor = ∑i ∑j

(i− µi)
(

j− µj
)

M(i, j)
σiσj

, (10)

H = ∑i ∑j M(i, j) log(M(i, j)). (11)

It was demonstrated that these four parameters were sufficient to produce acceptable
results in a classification test. These four parameters are listed with their values in Table 1.

Table 1. Attribute values of different Haralick features for labeled objects compared with GT with
errors on AID.

Objects Evaluation
Features

Contrast Energy Entropy Correlation

Tennis Court
GT 121,334 0.2151 0.2053 0.8905
SG 130,774 0.2108 0.2175 0.8917
ER ±9440 ±0.0043 ±0.0122 ±0.0012

Ship
GT 191,428 0.1919 0.4401 0.7926
SG 191,854 0.1961 0.4458 0.7811
ER ±426 ±0.0042 ±0.0057 ±0.0115

Soccer Field
GT 169,883 0.7205 0.3933 0.4577
SG 160,125 0.7163 0.3875 0.4612
ER ±9758 ±0.0042 ±0.0058 ±0.0035

Vehicles
GT 102,657 0.4229 0.3166 0.5926
SG 108,941 0.4195 0.3192 0.5933
ER ±6284 ±0.0034 ±0.0026 ±0.0007

GT = ground truth; SG = segmented; ER = error.

3.4.3. Spectral–Spatial Features (SSFs)

Mathematical morphology [41] is one of the well-known paradigms that equips op-
erators with the ability to generate high-quality SSFs [42]. Erosion and dilation are basic
mathematical morphology operations that examine an image’s geometrical structures by
comparing them to small patterns called structuring elements.

Attribute filters (AF): Various flat regions of the image, or areas of the image that have
comparable gray levels are used to extract various types of information, specified by the
feature names. An image’s equivalent tree representation can be used to effectively build
attribute filters as in [43]. By applying a threshold to all of the image’s mapped values, the
following sets of higher- and lower-level sets (i.e., flat zones) are created that can be further
classified into subcategories:

U( f ) = {X : X ∈ ConComp([ f ≥ λ]), λ ∈ Z}
L( f ) = {X : X ∈ ConComp([ f < λ]), λ ∈ Z} , (12)

where ConComp denotes the connected components of the generic image. An inclusion
relationship [33] exists between the interconnected components that are obtained by either
the lowest- or the highest-level sets.

Attribute profiles (APs): APs define a generic collection of profiles that make use of
the attribute filter’s flexibility to conduct a more thorough investigation of the scene.

Extended attribute profiles: Because hyperspectral sensors acquire data across many
spectral bands, extended attribute profiles (EAPs) based on morphological attribute filters
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are used to analyze hyperspectral high-resolution images. The EAPs are based on the
application of the APs to hyperspectral data.

EAP = {AP(PC1), AP(PC2), . . . , AP(PCc)}, (13)

where PC denotes one principal component obtained by applying principal component
analysis to the data.

Extended multi-attribute profiles (EMAPs): Many features can be used to extract
spatial elements more effectively; hence, EMAPs combine multiple EAPs into a single data
structure.

EMAP =
{

EAPa1 , EAP′a2
, . . . , EAP′am

}
. (14)

The spatial information extraction in the EMAP is substantially more powerful than
a single EAP; however, processing these features incurs a substantial cost in terms of
computation, as the max-tree and min-tree are generated just once for each PC and are
processed with various attributes at multiple stages. The visual results of SSFs over areal
images are presented in Figure 5.

Figure 5. Spectral–spatial feature representation: (a) original image (left) and corresponding SSF
extraction (right) from UCM dataset; (b) original image (left) and corresponding SSF extraction (right)
from AID.

3.4.4. Super-Pixel Pattern

We present a method for creating super-pixels following [44] that is faster and more
memory-effective than current approaches. It demonstrates state-of-the-art boundary
conformance and enhances the segmentation efficiency. Simple linear iterative clustering is
a modification of k-means for super-pixel creation, with two critical differences: the first
one is reducing optimization time by narrowing the search area based on super-pixel size,
which leads to significantly fewer distance calculations, and the second one describes that
there is no dependence of the number of super-pixels k on how many pixels N there are;
hence, the complexity is reduced to a linear function. It is possible to regulate the size and
coherence of the super-pixels using color and spatial distance combined as a weighted
distance metric.

Super-pixels correspond to clusters in color-image plane space. This causes an issue
in determining the distance measure DistF. To compute the distance between a pixel i



Remote Sens. 2022, 14, 1550 10 of 26

and cluster center Ck, distance measure DistF is used. A color space [l a b]T having a
range of known values is considered for color representation of every pixel. The pixel’s
position

[
x y

]T , on the other hand, may take a range of values that vary according to
the size of the image. We need to compute two distances, i.e., normalized color distance
and spatial distance. We then combine these two distances into a single measure by their
respective maximum distances within a cluster, Norspt and Norcol . In doing so, DistF is
written as

distcol =
√(

lj − li
)2

+
(
aj − ai

)2
+
(
bj − bi

)2,

distspt =
√(

xj − xi
)2

+
(
yj − yi

)2,

DistF =

√(
dc

Norcol

)2
+
(

ds
Norspt

)2
.

(15)

Results of super-pixel patterns computed over some remote sensing images from UCM
dataset are presented in Figure 6.

Figure 6. Results of super-pixel patterns on some remote sensing images from UCM dataset: (a) super-
pixels patterns applied on UCM images; (b) homogeneous regions extracted from super-pixel pat-
terns.

3.5. Feature Fusion

The CNN, Haralick features, SSFs, and super-pixel patterns are computed separately
as FeatureCNN , FeatureHaralick, FeatureSS, and FeatureSP, respectively. All these feature
vectors are merged as in [45] to form a complete fused feature vector and normalized before
fusion, to ensure that the individual feature vectors elements do not surpass other elements.
Once normalization is performed, the CNN, Haralick, SSF, and super-pixel patterns are
pooled to form a complete fused feature vector.

FeatureF = [FeatureCNN FeatureHaralick FeatureSS FeatureSP]. (16)

A high-dimensional feature vector is obtained as a result of the two-level decomposi-
tion of complex images while feature analysis is executed. Consequently, an inadequate
classification is witnessed when the input feature vectors have high dimensions. Therefore,
reducing the size of feature vectors is important in order to reduce computational costs and
improve performance. For the purpose, GA-based [46] feature selection is employed to
obtain the reduced dimensional feature vector FeatureFin:

FeatureFin = GA[FeatureF]. (17)
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3.6. Object Categorization: Multiple Kernel Learning

The proposed system employs MKL [17] to achieve object categorization on the basis
of multiple regions and signatures of the regions in complex remote sensing imagery, as
shown in Figure 7. During object categorization, an image I having a number of c clusters
obtained from the segmented and labeled objects that are presented in various distinct
colors is taken to extract descriptor DI , which describes the region R of the image I. Now,
to compute the signature xI , a function fR from local descriptors DI as fR : DI → xI is
incorporated. Mathematically, fR can be written as follows:

Centerc =
1
|c|∑I ∑i DicI , (18)

µc =
1
|c|∑I ∑i(DicI − Centerc)(DicI − Centerc)

>, (19)

µI,c = ∑i(DicI − Centerc)(DicI − Centerc)
> − µc, (20)

where Centerc represent clusters center c, entire descriptors are described by |c| in the
clusters c for all the images from a class, descriptors of image I that belong to cluster c are
shown as DicI , and the mean of those centered descriptors belonging to c is denoted by µc,
while µj,c is the signature computed from the image I. Then, a vector VECI,C is obtained
from µI,c. The computation of signature vector xI of image I for all c is performed by the
concatenation of all VECI,C.

VECI = (VECI,1 . . . VECI,C). (21)

Figure 7. Object categorization using MKL over an image from RESISC45 dataset.

3.7. Probability-Based Object-to-Object Relations (OORs)

After recognition of multiple objects in a complex scene, the relationship between
these objects is identified. To enhance the scene recognition performance, object-to-object
relations (OORs) [47] are computed on the basis of contextual information regarding objects.
As complex scenes comprise multiple co-occurring visual features, these OORs significantly
recognize patterns to understand the scenes. For instance, a car is likely to be seen on roads
instead of the sky or water, while a ship is likely to be in the sea or water instead of on
roads. To determine the OORs, several features and relative positions of the objects are
considered. Initially, to find the weight of the j-th target object for j ∈ {1, 2, . . . , n} with
respect to another relevant i-th object for i ∈ {1, 2, . . . , n}, a dot product is computed as
follows:

wt(j, i) =
f j · fi

d(j, i)
, (22)
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where the visual cures of the j-th and i-th object are represented by f j and fi, respectively.
The distance between the j-th and i-th object is denoted by (j, i). Lastly, to determine the
relation of the j-th object with other objects, the following expression is used:

Rj = ∑i wt(j, i) · f n
i , (23)

where the visual features of the i-th object are denoted by f n
i . While the relations are

computed between the objects, the scene labels are predicted by the classifier on the basis
of these OORs. Figure 8 presents a schematic view of OORs.

Figure 8. Schematic view of OORs between object triplets present in the remote sensing imagery.

3.8. Scene Recognition: Fully Convolutional Network

Once the OOR is determined, object triplets and probabilities are forwarded to the
FCN that classifies the scenes by incorporating the object category and contextual relation-
ship between those objects. FCN [48] is an architecture that is mostly used for semantic
segmentation. FCN employs locally connected layers, including convolution, pooling, and
up-sampling, in a variety of ways. Avoiding dense layers results in fewer parameters (i.e.,
making the networks faster to train). Additionally, because all connections are local, an
FCN can be used with varying image sizes. The network is composed of a down-sampling
path for extracting and interpreting context, as well as an up-sampling path for localization.

A fully convolutional network (FCN) with the following hyperparameters is used
to classify the remote sensing scenes: a learning rate of 0.01, a batch size of 16, and 32
conv_block1 filters, 64 conv_block2 filters, 128 conv_block3 filters, 264 conv_block4 filters,
and 512 conv_block5 filters. Although we could choose a learning rate with a floating-
point value between 0.0001 and 0.1, a learning rate of 0.01 led to the best results during
our training process for remote scene classification over the benchmark datasets under
consideration, i.e., UCM, AID, and RESISC45 datasets. Similarly, the batch size can range
from 1–100, but the power of 2 is mostly chosen as the batch size; we chose 16 (24) following
its better performance during training. Figure 9 depicts the results of scene classification on
a benchmark dataset.
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Figure 9. Scene recognition results over RESISC45 dataset by applying fully convolutional network
through categorized objects and analyzed object-to-object relations.

4. Experimental Results

To evaluate the training/testing performance of the proposed model, we used the
leave-one-out cross-validation method on three publicly available datasets: AID, RESIEC45
dataset, and UCM dataset.

4.1. Datasets Description
4.1.1. Aerial Images Dataset

The Aerial Images Dataset (AID) [49] is a newly created large-scale aerial image
collection. The AID comprises 30 classes having 10,000 images. Each class is composed of
200–400 images, and every image contains at least two objects and at most eight objects. The
dataset covers the following aerial scene types: airport, bare land, baseball field, beach, bridge,
center, church, commercial, dense residential, desert, farmland, forest, industrial, meadow, medium
residential, mountain, park, parking, playground, pond, port, railway station, resort, river, school,
sparse residential, square, stadium, and viaduct. Figure 10 presents some example images from
the AID.

Figure 10. A few classes of Aerial Image Dataset having rich texture features with diverse back-
grounds.
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4.1.2. RESISC45 Dataset

The RESISC45 dataset [50] is one of the well-known benchmarks for remote sensing
image scene classification. This dataset was created by Northwestern Polytechnical Univer-
sity (NWPU); therefore, it is also named NWPU-RESISC45, and it consists of 31,500 remote
sensing images of 45 various scene classes. Each class comprises 700 images with a mini-
mum of two and maximum of 10 objects in each class. These classes are airplane, airport,
basketball diamond, baseball court, beach, bridge, forest, golf course, etc. Figure 11 shows a few
classes of he f NWPU-RESISC45 dataset.

Figure 11. A few class representatives of the NWPU-RESISC45 dataset.

4.1.3. UCM Dataset

The UCM dataset [51] is a benchmark that is publicly available for research purposes.
The dataset comprises 21 classes with 100 images in each class. The number of objects in
each class may vary from two to seven depending on the class scenario. The dimensions of
the images are 256 × 256 pixels. For several cities across the country, the USGS National
Map Urban Area Imagery collection was used to manually extract the imagery. The
classes are labeled as agricultural, airplane, baseball diamond, beach, buildings, chaparral, dense
residential, forest, freeway, golf course, harbor, intersection, medium residential, mobile home park,
overpass, parking lot, river, runway, sparse residential, storage tanks, and tennis court. Figure 12
illustrates a few examples of the UCM dataset.

Figure 12. A few classes of the UCM dataset.
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4.2. Experimental Evaluation

In this section, we present the recognition accuracies based on the confusion matrices
computed over three complex datasets: the AID, UCM dataset, and RESISC45 dataset. For
OCSC, we used an FCN as a classifier, and the proposed system was evaluated by the leave-
one-subject-out (LOSO) cross-validation technique. Figure 13 demonstrates the results over
the UCM dataset with an average of 98.75% scene classification accuracy. Figure 14 presents
a classification accuracy of 97.73% over the AID, and Figure 15 demonstrates an average
accuracy of 96.57% over the RESISC45 dataset.

Class-wise accuracies may be studied with the color code against each class label on
the left of the graph, which is specified for the corresponding class. The mixture of different
colors on the right denotes different classes present in the result which may be encoded
as misclassification. Misclassification is interpreted as a color in the graph line above that
specific class, which is a false positive (FP), or a color in the mixture below the original
class, which is a false negative (FN). For instance, the FL class in the AID shows both FPs
and FNs in the graph along with correct predictions, where CH and DS are FPs, while FR
and IN are FNs shown in the graph.

Figure 13. The recognition accuracy of OCSC model over UCM dataset. AG = agricultural; AP = air-
plane; BD = baseball diamond; BH = beach; BG = building; CP = chaparral; DR = dense residential;
FR = forest; FW = freeway; GC = golf course; HB = harbor; IS = intersection; MR = medium residential;
MP = mobile home park; OP = overpass; PG = parking; RV = river; RW = runway; SR = sparse
residential; ST = storage tank; TC = tennis court.
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Figure 14. The recognition accuracy of OCSC model over AID. AP = airplane; BL = bare land;
BB = baseball field; BH = beach; BR = bridge; CR = center; CH = church; CM = commercial; DR = dense
residential; DS = desert; FL = farmland; FR = forest; IN = industrial; MW = meadow; MR = medium
residential; MT = mountain; PK = park; PG = parking; PD = playground; PN = pond; PT = port;
RS = railway station; RT = resort; RV = river; SL = school; SR = sparse residential; SQ = square;
SM = stadium; ST = storage tank; VD = viaduct.
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Figure 15. The recognition accuracy of OCSC model over RESISC45 dataset. AP = airplane; AT = air-
port; BB = baseball diamond; BC = basketball court; BH = beach; BR = bridge; CH = church;
CP = chaparral; CF = circular formland; CL = cloud; CM = commercial area; DR = dense residential;
DS = desert; FR = forest; FW = freeway; GC = golf course; GT = ground track field; HR = harbor;
ID = island; IN = industrial area; IS = intersection; LK = lake; MW = meadow; MR = medium
residential; MK = mobile home park; MT = mountain; OP = overpass; PL = palace; PG = parking
lot; RW = railway; RS = railway station; RF = rectangular formland; RV = river; RD = roundabout;
RW = runway; SI = sea ice; SP = ship; SB = snow berg; SR = sparse residential; SM = stadium;
ST = storage tank; TC = tennis court; TR = terrace; TS = thermal power station; WT = wetland.
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The recognition results of the UCM dataset show that GC, HB, and PG had lower
accuracies compared to other scene classes. However, the overall recognition accuracy was
better and comparable with other state-of-the-art methods. There are a total of 21 classes in
the UCM dataset; out of those, we achieved remarkable performance on 18 classes, while
the other three classes had good results, nearly equivalent to other existing methods.

Similar to the UCM dataset, we observed better performance over the AID compared
to other SOTA techniques, as presented in Figure 14. Most of the classes demonstrated
remarkable results in terms of accuracy. Higher accuracy was achieved by more than 20
classes including RV, SQ, SM, ST, and VD, while some other classes (DR, DS, FL, and PD)
still need improvement. For instance, the IN class achieved an accuracy of 90% as shown in
Figure 14, which demonstrates that 2% of cases were incorrectly recognized as FL and 8%
of cases were misclassified as “DS”. Likewise, class-wise accuracies may be studied with
the color against each class label on the left of the graph, where a mixture of different colors
on the right denotes misclassification.

Analogous to that of the UCM and AID, the OCSC model demonstrated excellent
performance when evaluated over the RESISC45 dataset. Figure 15 illustrates that most of
the classes depicted exceptional performance in terms of recognition accuracy including
PG and MW with accuracies of 99%, where MW was misclassified 1% of the time as MK,
while the lowest accuracy was noted for the CL class, where CL was misclassified as CM,
DR, and DS 9%, 8%, and 4% of the time, respectively.

In this section, experimental evaluation was performed on benchmarks including the
AID, UCM dataset, and RESISC45 dataset. At first, the CNN and classical features (i.e.,
SSFs, Haralick features, and super-pixel patterns) were given to the most commonly used
classifier artificial neural network (ANN), and its results were obtained. Then, the same
features were given to a deep belief network (DBN) for recognition. Finally, a comparison
of the recognition results using conventional approaches with that of the proposed OCSC
model using FCN was performed. Tables 2–4 present the comparison results of precision,
recall, and F1 Score over the AID, RESISC45 dataset, and UCM dataset, respectively.

Table 2. Scene classification results against three classifiers on AID.

Classes ANN DBN FCN (Ours)

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

AP 0.768 0.732 0.75 0.811 0.855 0.832 0.901 0.977 0.937
BL 0.883 0.765 0.82 0.754 0.815 0.783 0.965 0.965 0.965
BB 0.691 0.813 0.747 0.688 0.755 0.72 0.824 0.972 0.892
BH 0.724 0.798 0.759 0.617 0.845 0.713 0.977 0.911 0.943
BR 0.817 0.841 0.829 0.754 0.933 0.834 0.899 0.931 0.917
CC 0.677 0.875 0.763 0.725 0.841 0.779 0.891 0.889 0.89
CM 0.755 0.839 0.795 0.697 0.798 0.744 0.915 0.787 0.846
DR 0.695 0.759 0.726 0.711 0.899 0.794 0.872 0.854 0.911
DT 0.786 0.698 0.739 0.695 0.884 0.778 0.928 0.971 0.949
FL 0.695 0.764 0.728 0.654 0.815 0.726 0.971 0.892 0.93
FR 0.754 0.856 0.802 0.632 0.856 0.727 0.915 0.977 0.945
IN 0.655 0.813 0.725 0.719 0.796 0.756 0.811 0.892 0.85

MW 0.771 0.792 0.781 0.705 0.862 0.776 0.913 0.928 0.92
MR 0.798 0.733 0.764 0.733 0.784 0.758 0.986 0.966 0.976
MN 0.699 0.795 0.744 0.826 0.698 0.757 0.897 0.937 0.917
PK 0.784 0.875 0.827 0.798 0.814 0.806 0.912 0.901 0.906
PG 0.789 0.839 0.813 0.771 0.761 0.766 0.977 0.887 0.93
PD 0.681 0.821 0.744 0.811 0.886 0.847 0.799 0.916 0.854
PN 0.719 0.788 0.752 0.631 0.818 0.712 0.855 0.891 0.873
RS 0.725 0.811 0.766 0.801 0.875 0.836 0.925 0.917 0.921
RT 0.774 0.859 0.814 0.783 0.836 0.809 0.936 0.977 0.956
RV 0.615 0.694 0.652 0.697 0.825 0.756 0.871 0.871 0.871
SL 0.664 0.851 0.746 0.665 0.851 0.747 0.995 0.951 0.973
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Table 2. Cont.

Classes ANN DBN FCN (Ours)

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

SR 0.776 0.785 0.78 0.709 0.898 0.792 0.956 0.879 0.916
SQ 0.764 0.809 0.786 0.722 0.835 0.774 0.891 0.903 0.897
SM 0.687 0.717 0.702 0.715 0.746 0.73 0.819 0.916 0.865
ST 0.694 0.839 0.76 0.812 0.816 0.814 0.977 0.921 0.948
VT 0.639 0.775 0.7 0.789 0.857 0.822 0.887 0.911 0.899
AP 0.715 0.795 0.753 0.745 0.877 0.806 0.973 0.935 0.954
BL 0.636 0.699 0.666 0.781 0.798 0.789 0.985 0.905 0.943

Mean 0.728 0.794 0.758 0.732 0.831 0.776 0.914 0.921 0.916

In this section, we present the precision, recall, and F-1 measures computed over
three complex datasets, the AID, UCM dataset, and RESISC45 dataset. We applied ANN
and DBN for the remote sensing scene classification and compared the results with FCN
(proposed) model. Although there were some comparable results in a few classes over the
AID, we overall observed a significant improvement compared to the other well-known
classifiers. A few classes including BR and DR showed better recall using DBN, while PD
had better precision using DBN; however, results were overall excellent in all classes using
the proposed model. Similarly, the mean values of precision, recall, and F1 score were
highest when applying FCN (proposed model).

Table 3. Scene classification results against three classifiers on RESISC45 dataset.

Classes ANN DBN FCN (Ours)

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

AP 0.611 0.874 0.719 0.622 0.717 0.666 0.901 0.977 0.937
AT 0.637 0.769 0.697 0.783 0.865 0.822 0.899 0.845 0.871
BD 0.712 0.825 0.764 0.759 0.786 0.772 0.995 0.951 0.973
BC 0.698 0.813 0.751 0.768 0.937 0.844 0.986 0.915 0.949
BG 0.672 0.749 0.708 0.651 0.831 0.757 0.967 0.903 0.934
BH 0.655 0.875 0.749 0.748 0.875 0.807 0.844 0.869 0.859
BR 0.751 0.839 0.793 0.879 0.831 0.854 0.871 0.839 0.855
CL 0.697 0.781 0.737 0.728 0.729 0.728 0.872 0.921 0.896
CH 0.743 0.829 0.784 0.688 0.866 0.767 0.886 0.938 0.911
CF 0.779 0.787 0.783 0.825 0.781 0.802 0.985 0.954 0.969
CD 0.702 0.854 0.771 0.716 0.698 0.707 0.901 0.977 0.937
CA 0.699 0.772 0.734 0.803 0.865 0.833 0.883 0.965 0.922
DR 0.785 0.801 0.793 0.776 0.758 0.767 0.995 0.951 0.973
DT 0.734 0.791 0.761 0.868 0.801 0.833 0.986 0.937 0.961
FT 0.709 0.767 0.737 0.689 0.774 0.729 0.967 0.903 0.934
FW 0.664 0.775 0.715 0.791 0.875 0.831 0.844 0.861 0.852
GC 0.637 0.739 0.684 0.711 0.839 0.770 0.977 0.839 0.903
GT 0.649 0.812 0.721 0.782 0.881 0.829 0.872 0.921 0.896
HR 0.711 0.738 0.724 0.686 0.787 0.733 0.886 0.938 0.911
IA 0.753 0.813 0.782 0.658 0.824 0.732 0.985 0.954 0.969
IN 0.668 0.745 0.704 0.854 0.761 0.805 0.901 0.977 0.937
ID 0.622 0.851 0.719 0.783 0.824 0.803 0.883 0.965 0.922
LK 0.677 0.751 0.712 0.852 0.699 0.768 0.995 0.951 0.973
MD 0.711 0.825 0.764 0.755 0.785 0.770 0.986 0.937 0.961
MR 0.787 0.694 0.738 0.677 0.823 0.743 0.967 0.903 0.934
MH 0.689 0.785 0.734 0.711 0.785 0.746 0.844 0.875 0.859
MN 0.791 0.839 0.814 0.816 0.819 0.817 0.977 0.839 0.903
OP 0.698 0.789 0.741 0.794 0.895 0.841 0.872 0.851 0.861
PC 0.655 0.818 0.727 0.729 0.852 0.786 0.886 0.938 0.911



Remote Sens. 2022, 14, 1550 20 of 26

Table 3. Cont.

Classes ANN DBN FCN (Ours)

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Pk 0.785 0.755 0.770 0.688 0.815 0.746 0.985 0.954 0.969
RL 0.709 0.745 0.727 0.645 0.758 0.697 0.967 0.903 0.934
RS 0.615 0.698 0.654 0.731 0.775 0.752 0.844 0.875 0.859
RF 0.822 0.739 0.778 0.779 0.881 0.827 0.977 0.839 0.903
RV 0.746 0.699 0.722 0.745 0.721 0.733 0.872 0.921 0.896
RT 0.699 0.811 0.751 0.654 0.819 0.727 0.886 0.938 0.911
RN 0.775 0.782 0.778 0.697 0.754 0.724 0.985 0.954 0.969
SI 0.716 0.757 0.736 0.725 0.688 0.706 0.901 0.977 0.937
SH 0.883 0.765 0.82 0.811 0.669 0.733 0.883 0.965 0.922
SB 0.788 0.801 0.794 0.735 0.715 0.725 0.995 0.951 0.973
SR 0.811 0.735 0.771 0.824 0.689 0.750 0.986 0.937 0.961
SD 0.699 0.619 0.657 0.755 0.745 0.751 0.967 0.903 0.934
ST 0.754 0.785 0.769 0.846 0.778 0.811 0.844 0.875 0.859
TC 0.768 0.838 0.801 0.661 0.829 0.736 0.977 0.839 0.903
TR 0.872 0.721 0.789 0.693 0.818 0.75 0.872 0.921 0.896
TP 0.689 0.738 0.713 0.778 0.736 0.756 0.886 0.938 0.911

WD 0.661 0.654 0.657 0.688 0.744 0.715 0.985 0.954 0.969

Mean 0.735 0.794 0.761 0.763 0.813 0.784 0.947 0.939 0.942

A similar pattern was observed when we applied three different classifiers over the
RESISC45 dataset. We experienced a better precision value for BR and ST classes, while
AT, BC, BH, FW, and OP classes had better recall value compared to the proposed method
when a DBN was applied to the same dataset. Nevertheless, the mean precision, recall, and
F1 score were the highest amongst the three well-known classifiers.

Table 4. Scene classification results against three classifiers on UCM dataset.

Classes ANN DBN FCN (Ours)

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

AG 0.837 0.658 0.737 0.699 0.899 0.787 0.967 0.903 0.934
AP 0.755 0.788 0.811 0.815 0.875 0.844 0.844 0.875 0.860
BD 0.792 0.753 0.815 0.741 0.819 0.787 0.977 0.839 0.903
BH 0.873 0.707 0.781 0.784 0.944 0.857 0.872 0.921 0.896
BG 0.799 0.791 0.795 0.785 0.859 0.821 0.886 0.938 0.912
CP 0.701 0.825 0.758 0.667 0.769 0.715 0.985 0.954 0.970
DR 0.766 0.811 0.788 0.719 0.688 0.704 0.901 0.977 0.938
FR 0.783 0.711 0.746 0.883 0.965 0.923 0.809 0.951 0.881
FW 0.699 0.764 0.731 0.792 0.881 0.835 0.995 0.951 0.973
GC 0.715 0.795 0.753 0.763 0.896 0.825 0.986 0.937 0.961
HB 0.855 0.801 0.828 0.648 0.821 0.725 0.967 0.903 0.934
IS 0.785 0.815 0.828 0.791 0.798 0.795 0.844 0.875 0.860

MR 0.821 0.802 0.83 0.737 0.809 0.772 0.977 0.839 0.903
MP 0.787 0.655 0.715 0.783 0.898 0.837 0.872 0.921 0.896
OP 0.845 0.669 0.747 0.897 0.762 0.825 0.886 0.938 0.912
PG 0.769 0.759 0.764 0.799 0.711 0.753 0.985 0.954 0.970
RV 0.811 0.661 0.729 0.675 0.855 0.755 0.967 0.903 0.934
RW 0.845 0.716 0.776 0.795 0.789 0.79 0.844 0.875 0.860
SR 0.775 0.797 0.806 0.819 0.773 0.796 0.977 0.839 0.903
ST 0.771 0.824 0.797 0.719 0.898 0.799 0.872 0.921 0.896
TC 0.786 0.891 0.836 0.801 0.795 0.798 0.886 0.938 0.912

Mean 0.789 0.777 0.783 0.768 0.835 0.801 0.919 0.913 0.916
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For a comprehensive evaluation, we compared the proposed system with various ex-
isting state-of-the-art (SOTA) methods including the self-attention feature selection module
represented by SAFENet [52], label augmentation via ResNet18 + LA + KL [53], ACNet [54]
for exploring local and global features integrated with some attention techniques for re-
mote scene classification, ARCNet-VGGnet16 [55], Deep Fusion [56] using two-stream
deep architecture for high-resolution aerial images classification, Fusion by Addition [57],
and Siamese ResNet50 [58]. We compared the mean accuracy of scene classification, and
the results are illustrated in Table 5. It is demonstrated that the boosted performance of
our proposed OCSC system outperformed the other reported methods in terms of mean
accuracy. Specifically, comparing BoVW and SAFENet depicts an increase in the accuracy
of scene classification that validates the effectiveness of feature fusion in our model. Fur-
thermore, there is also an increase in the scene classification accuracy compared to ACNet
over the AID and FESIEC45 dataset, although somewhat low but comparable accuracy was
observed on the UCM dataset.

Table 5. Comparison of scene classification accuracies of SOTA methods with the proposed OCSC
model.

Author/Method Mean Accuracy %

AID Dataset UCM Dataset RESIEC Dataset

SAFENet [52] 86.91 + 0.44 86.79 + 0.33 81.32 + 0.62
ResNet18 + LA + KL [53] 96.52 99.21 95.26
DBSNet [59] 92.93 97.90 –
CaffeNet [49] 89.53 ± 0.31 95.02 ± 0.81 –
GoogLeNet [49] 86.39 ± 0.55 94.31 ± 0.89 –
VGG-VD1-16 [49] 89.64 ± 0.36 95.21 ± 1.20 –
Deep Fusion [56] 94.58 98.02 –
Fusion by Addition [57] 91.87 97.42 –
Siamse ResNet50 [58] – 94.29 95.95

Proposed 97.73 98.75 96.57

4.3. Ablation Study

We presented various features including CNN, Haralick, spectral-spatial, and super-
pixel patterns. Here, we discuss the focal point of whether each of the features adds
something new to the system to determine if all these features are essential for the OCSC
system. To answer this, we conducted experiments to validate the influence of feature
fusion and used a greedy approach that incrementally added features to our system starting
with the best ones, i.e., CNN. Initially, we started experiments with CNN features only and
achieved scene recognition accuracies of 91.37%, 91.88%, and 90.55% over the AID, UCM
dataset, and NWPU-RESISC45 dataset, respectively. Then, we added super-pixel patterns
and fused them with CNN features, observing significantly enhanced performance from
91.37% to 92.69% for AID, 91.88% to 93.19% for the UCM dataset, and 90.55% to 93.57% for
the NWPU-RESISC45 dataset. The improved performance motivated us to further increase
the number of features, similarly to the fusion of CNN and super-pixel patterns (SPPs)
demonstrated earlier. Next, we conducted experiments with the addition of SSFs to the
previously fused set of features. Fusion of SSFs to the already fused features set of CNN
and SPP produced better results in terms of accuracy compared to the results obtained by
previously fused features. An increase in the performance of recognition accuracy was
witnessed from 92.69% to 94.19%, 93.19% to 94.99%, and 93.57% to 95.25% over the AID,
UCM dataset, and NWPU-RESISC45 dataset, respectively. Therefore, we fused another
classical feature, Haralick feature, with the already fused version of features and performed
experiments for object categorization and scene classification. Combining all the features
produced the best recognition performance with overall recognition accuracies of 97.73%,
98.75%, and 96.57% for the AID, UCM dataset, and NWPU-RESISC45 dataset, respectively.
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Figure 16 demonstrates the effectiveness of features while incorporating a greedy approach
for feature fusion over different benchmark datasets for scene classification.

Figure 16. Recognition accuracies of OCSC model over three benchmark datasets using feature fusion
under greedy approach.

It is clear from the results presented in the Figure 16 that fusion of CNN and classical
features produced comparative results to CNN. This was a bit different for the UCM dataset,
where our approach had less but acceptable accuracy when considering the computational
complexity of both techniques. The well-known CNN models are computationally complex
compared to FCM. The details of computational time are illustrated in Table 6. We tested
these algorithms on an Intel system with 32 GB RAM and Intel (R) Core (TM) i7-1065G7
CPU @ 1.30 GHz 1.50 GHz, along with an NVIDIA GeForce GPU. The proposed model
had the least computational time required for the segmentation of remote sensing images
compared to CNN.

Table 6. Computation time comparison of proposed segmentation technique with CNN over bench-
mark datasets.

Algorithm/Method Dataset FCM FCM + MRF CNN

Average computation time
(s)

UCM 57.7 × 21 = 1211.7 85.1 × 21 = 1787.1 86.9 × 21 = 1824.9

AID 61.5 × 30 = 1845.0 87.9 × 30 = 2637.0 88.5 × 30 = 2655.0

RESISC45 67.1 × 45 = 3019.5 91.5 × 45 = 4117.5 92.8 × 45 = 4176.0

5. Discussion

The proposed OCSC was designed to achieve object categorization and scene recog-
nition over remote sensing imagery. In this article, we developed a framework that uses
FCM for the segmentation of RS images and MRF for labeling of the segmented images.
The labeled images were then further analyzed for extraction of features including CNN
features and classical features (Haralick features, Spectral–spatial features, super-pixel
patterns). Here, CNN features were extracted using a pretrained CNN model (VGG16),
while classical features were extracted through machine learning techniques and mathe-
matical formulation. These extracted features were then combined using a parallel fusion
mechanism and optimized before transmitting to MKL as input, where various categories of
objects were specified. Once the objects were categorized, the object-to-object relationship
was determined, and a fully convolutional network was employed to classify the scenes.
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Initially, the segmentation process is the fundamental module to properly classify
remote sensing imagery. Therefore, an effective mechanism of FCM segmentation was
incorporated to achieve significant results for segmented regions from the complex high-
resolution scene images. After obtaining segmented regions, as a postprocessing step, an
MRF was applied to obtain the labeled objects for further processing of feature extraction.
During this labeling phase, the segmented regions were analyzed on the basis of the regions
(connected, disconnected), and postprocessing was performed to more accurately isolate
the boundaries of the regions segmented in the previous phase. These improved segmented
regions were then labeled on the basis of a perceptual grouping mechanism, where each
segmented region was assigned with a unique label (color).

This complementary module for labeling significantly enhanced the object catego-
rization. We conducted experiments for both modules i.e., by employing only FCM for
segmentation and by applying MRF for postprocessing and labeling of segmented regions.
When only FCM-based segmentation was performed, the object categorization on the
benchmark datasets achieved less accuracy; however, we saw an improvement when we
added postprocessing and labeling of the objects using MRF before analysis for feature
extraction. The performance in terms of object categorization accuracy was significantly
increased. The details of these experimental results were demonstrated in the ablation
experiment section. Moreover, our approach of feature fusion after extracting CNN fea-
tures and classical features had an impact on the recognition accuracy of the scene, which
led to the overall enhanced scene classification. The effect of different features on object
categorization and scene recognition was illustrated in detail in the ablation experiment
section.

We applied ANN and DBN for the remote sensing scene classification and compared
the results with FCN (proposed) model. Although there were some comparable results in a
few classes over the AID dataset, we overall observed a significant improvement compared
to the other well-known classifiers. A few classes including BR and DR showed better
recall using DBN, while PD had better precision using DBN; however, overall results were
excellent in all classes using the proposed model. Similarly, the mean values of precision,
recall, and F1 score were highest when applying FCN (proposed model).

A similar pattern was observed when we applied three different models over the
RESISC45 dataset. We experienced a better precision value for BR and ST classes, while AT,
BC, BH, FW, and OP classes had a better recall value compared to the proposed method.
Nevertheless, the mean precision, recall, and F1 score were the highest amongst the three
well-known classifiers.

While working with the OCSC model, despite the tremendous performance, we
were also confronted with some limitations and constraints. Some tiny objects, such as
people and animals, eluded our classification. Similarly, multiple vehicles were sometimes
recognized as single vehicles when they were occluded by more than 50% in terms of pixels.

6. Conclusions

The proposed OCSC system was designed to achieve object categorization and scene
classification over various complex aerial scene images and publicly available benchmark
datasets. In this paper, we incorporated FCM followed by MRF to segment and label
the aerial images from different remote sensing benchmark datasets. Furthermore, we
analyzed these labeled images for extraction of classical and deep features. Moreover,
these features were taken as input for object categorization by employing MKL. After
the successful categorization of multiple objects present in the remote scene images, the
inter-object relationships were computed to finally classify the scenes by applying FCN.
The remarkable results of the proposed model show that it outperformed the SOTA remote
sensing scene classification techniques.
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