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Abstract This paper presents a novel method for detect-

ing and localizing objects of a visual category in cluttered

real-world scenes. Our approach considers object catego-

rization and figure-ground segmentation as two interleaved

processes that closely collaborate towards a common goal.

As shown in our work, the tight coupling between those two

processes allows them to benefit from each other and im-

prove the combined performance.

The core part of our approach is a highly flexible learned

representation for object shape that can combine the infor-

mation observed on different training examples in a proba-

bilistic extension of the Generalized Hough Transform. The

resulting approach can detect categorical objects in novel

images and automatically infer a probabilistic segmentation

from the recognition result. This segmentation is then in turn

used to again improve recognition by allowing the system

to focus its efforts on object pixels and to discard mislead-

ing influences from the background. Moreover, the informa-

tion from where in the image a hypothesis draws its support

is employed in an MDL based hypothesis verification stage

to resolve ambiguities between overlapping hypotheses and

factor out the effects of partial occlusion.
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An extensive evaluation on several large data sets shows

that the proposed system is applicable to a range of differ-

ent object categories, including both rigid and articulated

objects. In addition, its flexible representation allows it to

achieve competitive object detection performance already

from training sets that are between one and two orders of

magnitude smaller than those used in comparable systems.
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1 Introduction

Object recognition has reached a level where current ap-

proaches can identify a large number of previously seen and

known objects. However, the more general task of object

categorization, that is of recognizing unseen-before objects

of a given category and assigning the correct category label,

is still less well-understood. Obviously, this task is more dif-

ficult, since it requires a method to cope with large within-

class variations of object colors, textures, and shapes, while

retaining at the same time enough specificity to avoid mis-

classifications. This is especially true for object detection in

cluttered real-world scenes, where objects are often partially

occluded and where similar-looking background structures

can act as additional distractors. Here, it is not only neces-

sary to assign the correct category label to an image, but also

to find the objects in the first place and to separate them from

the background.

Historically, this step of figure-ground segmentation has

long been seen as an important and even necessary precursor

for object recognition (Marr 1982). In this context, segmen-

tation is mostly defined as a data driven, that is bottom-up,
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process. However, except for cases where additional cues

such as motion or stereo could be used, purely bottom-up

approaches have so far been unable to yield figure-ground

segmentations of sufficient quality for object categorization.

This is also due to the fact that the notion and definition of

what constitutes an object is largely task-specific and can-

not be answered in an uninformed way. The general failure

to achieve task-independent segmentation, together with the

success of appearance-based methods to provide recognition

results without prior segmentation, has led to the separation

of the two areas and the further development of recognition

independent from segmentation. It has been argued, how-

ever, both in computer vision (Bajcsy et al. 1990) and in

human vision (Peterson 1994; Vecera and O’Reilly 1998;

Needham 2001) that recognition and segmentation are heav-

ily intertwined processes and that top-down knowledge from

object recognition can and should be used for guiding the

segmentation process.

In our work, we follow this inspiration by addressing

object detection and segmentation not as separate entities,

but as two closely collaborating processes. In particular, we

present a local-feature based approach that combines both

capabilities into a common probabilistic framework. As our

experiments will show, the use of top-down segmentation

improves the recognition results considerably.

In order to learn the appearance variability of an ob-

ject category, we first build up a codebook of local appear-

ances that are characteristic for (a particular viewpoint of)

its member objects. This is done by extracting local features

around interest points and grouping them with an agglom-

erative clustering scheme. As this initial clustering step will

be applied to large data sets, an efficient implementation is

crucial. We therefore evaluate different clustering methods

and describe an efficient algorithm that can be used for the

codebook generation process.

Based on this codebook, we then learn an Implicit Shape

Model (ISM) that specifies where on the object the code-

book entries may occur. As the name already suggests, we

do not try to define an explicit model for all possible shapes

a class object may take, but instead define “allowed” shapes

implicitly in terms of which local appearances are consis-

tent with each other. The advantages of this approach are its

greater flexibility and the smaller number of training exam-

ples it needs to see in order to learn possible object shapes.

For example, when learning to categorize articulated objects

such as cows or pedestrians, our method does not need to see

every possible articulation in the training set. It can com-

bine the information of a front leg seen on one training in-

stance with the information of a rear leg from a different

instance to recognize a test image with a novel articulation,

since both leg positions are consistent with the same object

hypothesis. This idea is similar in spirit to approaches that

represent novel objects by a combination of class prototypes

(Jones and Poggio 1996), or of familiar object views (Ull-

man 1998). However, the main difference of our approach is

that here the combination does not occur between entire ex-

emplar objects, but through the use of local image features,

which again allows a greater flexibility.

Directly connected to the recognition procedure, we de-

rive a probabilistic formulation for the top-down segmen-

tation problem, which integrates learned knowledge of the

recognized category with the supporting information in the

image. The resulting procedure yields a pixel-wise figure-

ground segmentation as a result and extension of recogni-

tion. In addition, it delivers a per-pixel confidence estimate

specifying how much this segmentation can be trusted.

The automatically computed top-down segmentation is

then in turn used to improve recognition. First, it allows

to only aggregate evidence over the object region and dis-

card influences from the background. Second, the informa-

tion from where in the image a hypothesis draws its support

makes it possible to resolve ambiguities between overlap-

ping hypotheses. We formalize this idea in a criterion based

on the Minimum Description Length (MDL) principle. The

resulting procedure constitutes a novel mechanism that al-

lows to analyze scenes containing multiple objects in a prin-

cipled manner. The whole approach is formulated in a scale-

invariant manner, making it applicable in real-world situa-

tions where the object scale is often unknown.

We experimentally evaluate the different components of

our algorithm and quantify the robustness of the resulting

approach to object detection in cluttered real-world scenes.

Our results show that the proposed scheme achieves good

detection results for both rigid and articulated object cate-

gories while being robust to large scale changes.

This paper is structured as follows. The next section dis-

cusses related work. After that, Sect. 3 introduces our un-

derlying codebook representation. The following three sec-

tions then present the main steps of the ISM approach for

recognition (Sect. 4), top-down segmentation (Sect. 5), and

segmentation-based verification (Sect. 6). Section 7 exper-

imentally evaluates the different stages of the system and

applies it to several challenging multi-scale test sets of dif-

ferent object categories, including cars, motorbikes, cows,

and pedestrians. A final discussion concludes our work.

2 Related Work

In the following, we give an overview of current approaches

to object detection and categorization, with a focus on the

structural representations they employ. In addition, we docu-

ment the recent transition from recognition to top-down seg-

mentation, which has been developing into an area of active

research.
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2.1 Structure Representations for Object Categorization

A large class of methods match object structure by com-

puting a cost term for the deformation needed to transform

a prototypical object model to correspond with the image.

Prominent examples of this approach include Deformable

Templates (Yuille et al. 1989; Sclaroff 1997), Morphable

Models (Jones and Poggio 1998), or Shape Context Match-

ing (Belongie et al. 2002). The main difference between

them lies in the way point correspondences are found and

in the choice of energy function for computing the defor-

mation cost (e.g. Euclidean distances, strain energy, thin

plate splines, etc.). Cootes et al. (1998) extend this idea and

characterize objects by means and modes of variation for

both shape and texture. Their Active Appearance Models

first warp the object to a mean shape and then estimate the

combined modes of variation of the concatenated shape and

texture models. For matching the resulting AAMs to a test

image, they learn the relationship between model parame-

ter displacements and the induced differences in the recon-

structed model image. Provided that the method is initial-

ized with a close estimate of the object’s position and size,

a good overall match to the object is typically obtained in a

few iterations, even for deformable objects.

Wiskott et al. (1997) propose a different structural model

known as Bunch Graph. The original version of this ap-

proach represents object structure as a graph of hand-defined

locations, at which local jets (multidimensional vectors of

simple filter responses) are computed. The method learns

an object model by storing, for each graph node, the set

(“bunch”) of all jet responses that have been observed in

this location on a hand-aligned training set. During recogni-

tion, only the strongest response is taken per location, and

the joint model fit is optimized by an iterative elastic graph

matching technique. This approach has achieved impressive

results for face identification tasks, but an application to

more object classes is made difficult by the need to model

a set of suitable graph locations.

In contrast to those deformable representations, most

classic object detection methods either use a monolithic ob-

ject representation (Rowley et al. 1998; Papageorgiou and

Poggio 2000; Dalal and Triggs 2005) or look for local fea-

tures in fixed configurations (Schneiderman and Kanade

2004; Viola and Jones 2004). Schneiderman and Kanade

(2004) express the likelihood of object and non-object ap-

pearance using a product of localized histograms, which

represent the joint statistics of subsets of wavelet coeffi-

cients and their position on the object. The detection deci-

sion is made by a likelihood-ratio classifier. Multiple detec-

tors, each specialized to a certain orientation of the object,

are used to achieve recognition over a variety of poses, in-

cluding frontal and profile faces and various views of pas-

senger cars. Their approach achieves very good detection re-

sults on standard databases, but is computationally still rela-

tively costly. Viola and Jones (2004) instead focus on build-

ing a speed-optimized system for face detection by learning

a cascade of simple classifiers based on Haar wavelets. In re-

cent years, this class of approaches has been shown to yield

fast and accurate object detection results under real-world

conditions (Torralba et al. 2004). However, a drawback of

these methods is that since they do not explicitly model lo-

cal variations in object structure (e.g. from body parts in dif-

ferent articulations), they typically need a large number of

training examples in order to learn the allowed changes in

global appearance.

One way to model these local variations is by represent-

ing objects as an assembly of parts. Mohan et al. (2001) use

a set of hand-defined appearance parts, but learn an SVM-

based configuration classifier for pedestrian detection. The

resulting system performs significantly better than the orig-

inal full-body person detector by (Papageorgiou and Poggio

2000). In addition, its component-based architecture makes

it more robust to partial occlusion. Heisele et al. (2001)

use a similar approach for component-based face detection.

As an extension of Mohan et al.’s approach, their method

also includes an automatic learning step for finding a set of

discriminative components from user-specified seed points.

More recently, several other part-classifier approaches have

been proposed for pedestrian detection (Ronfard et al. 2002;

Mikolajczyk et al. 2004; Wu and Nevatia 2005), also based

on manually specified parts.

Burl et al. (1998) learn the assembly of hand-selected

(appearance) object parts by modeling their joint spatial

probability distribution. Weber et al. (2000) build on the

same framework, but also learn the local parts and estimate

their joint distribution. Fergus et al. (2003) extend this ap-

proach to scale-invariant object parts and estimate their joint

spatial and appearance distribution. The resulting Constel-

lation Model has been successfully demonstrated on several

object categories. In its original form, it modeled the rel-

ative part locations by a fully connected graph. However,

the complexity of the combined estimation step restricted

this model to a relatively small number of (only 5–6) parts.

In later versions, Fergus et al. (2005) therefore replaced the

fully-connected graph by a simpler star topology, which can

handle a far larger number of parts using efficient inference

algorithms (Felzenszwalb and Huttenlocher 2005).

Agarwal et al. (2004) keep a larger number of object parts

and apply a feature-efficient classifier for learning spatial

configurations between pairs of parts. However, their learn-

ing approach relies on the repeated observation of cooccur-

rences between the same parts in similar spatial relations,

which again requires a large number of training examples.

Ullman et al. (2002) represent objects by a set of fragments

that were chosen to maximize the information content with

respect to an object class. Candidate fragments are extracted
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at different sizes and from different locations of an initial set

of training images. From this set, their approach iteratively

selects those fragments that add the maximal amount of in-

formation about the object class to the already selected set,

thus effectively resulting in a cover of the object. In addi-

tion, the approach automatically selects, for each fragment,

the optimal threshold such that it can be reliably detected.

For recognition, however, only the information which model

fragments were detected is encoded in a binary-valued fea-

ture vector (similar to Agarwal and Roth’s), onto which

a simple linear classifier is applied without any additional

shape model. The main challenge for this approach is that

the complexity of the fragment selection process restricts the

method to very low image resolutions (e.g. 14 × 21 pixels),

which limits its applicability in practice.

Robustness to scale changes is one of the most impor-

tant properties of any recognition system that shall be ap-

plied in real-world situations. Even when the camera loca-

tion is relatively fixed, objects of interest may still exhibit

scale changes of at least a factor of two, simply because

they occur at different distances to the camera. It is therefore

necessary that the recognition mechanism itself can com-

pensate for a certain degree of scale variation. Many cur-

rent object detection methods deal with the scale problem

by performing an exhaustive search over all possible ob-

ject positions and scales (Papageorgiou and Poggio 2000;

Schneiderman and Kanade 2004; Viola and Jones 2004;

Mikolajczyk et al. 2004; Dalal and Triggs 2005; Wu and

Nevatia 2005). This exhaustive search imposes severe con-

straints, both on the detector’s computational complexity

and on its discriminance, since a large number of potential

false positives need to be excluded. An opposite approach

is to let the search be guided by image structures that give

cues about the object scale. In such a system, an initial in-

terest point detector tries to find structures whose extent can

be reliably estimated under scale changes. These structures

are then combined to derive a comparatively small number

of hypotheses for object locations and scales. Only those hy-

potheses that pass an initial plausibility test need to be ex-

amined in detail. In recent years, a range of scale-invariant

interest point detectors have become available which can

be used for this purpose (Lindeberg 1998; Lowe 2004;

Mikolajczyk et al. 2005b; Kadir and Brady 2001; Tuytelaars

and van Gool 2004; Matas et al. 2002).

In our approach, we combine several of the above ideas.

Our system uses a large number of automatically selected

parts, based on the output of an interest point operator, and

combines them flexibly in a star topology. Robustness to

scale changes is achieved by employing scale-invariant in-

terest points and explicitly incorporating the scale dimen-

sion in the hypothesis search procedure. The whole ap-

proach is optimized for efficient learning and accurate de-

tection from small training sets.

2.2 From Recognition to Top-Down Segmentation

The traditional view of object recognition has been that

prior to the recognition process, an earlier stage of percep-

tual organization occurs to determine which features, loca-

tions, or surfaces most likely belong together (Marr 1982).

As a result, the segregation of the image into a figure and

a ground part has often been seen as a prerequisite for recog-

nition. In that context, segmentation is mostly defined as

a bottom-up process, employing no higher-level knowledge.

State-of-the-art segmentation methods combine grouping of

similar image regions with splitting processes concerned

with finding most likely borders (Shi and Malik 1997;

Sharon et al. 2000; Malik et al. 2001). However, grouping

is mostly done based on low-level image features, such as

color or texture statistics, which require no prior knowledge.

While that makes them universally applicable, it often leads

to poor segmentations of objects of interest, splitting them

into multiple regions or merging them with parts of the back-

ground (Borenstein and Ullman 2002).

Results from human vision indicate, however, that ob-

ject recognition processes can operate before or intertwined

with figure-ground organization and can in fact be used to

drive the process (Peterson 1994; Vecera and O’Reilly 1998;

Needham 2001). In consequence, the idea to use object-

specific information for driving figure-ground segmentation

has recently developed into an area of active research. Ap-

proaches, such as Deformable Templates (Yuille et al. 1989),

or Active Appearance Models (Cootes et al. 1998) are typi-

cally used when the object of interest is known to be present

in the image and an initial estimate of its size and loca-

tion can be obtained. Examples of successful applications

include tracking and medical image analysis.

Borenstein and Ullman (2002) represent object knowl-

edge using image fragments together with their figure-

ground labeling (as learned from a training set). Class-

specific segmentations are obtained by fitting fragments to

the image and combining them in jigsaw-puzzle fashion,

such that their figure-ground labels form a consistent map-

ping. While the authors present impressive results for seg-

menting side views of horses, their initial approach includes

no global recognition process. As only the local consistency

of adjacent pairs of fragments is checked, there is no guar-

antee that the resulting cover really corresponds to an ob-

ject and is not just caused by background clutter resem-

bling random object parts. In more recent work, the ap-

proach is extended to also combine the top-down segmen-

tation with bottom-up segmentation cues in order to obtain

higher-quality results (Borenstein et al. 2004).

Tu et al. (2003) have proposed a system that integrates

face and text detection with region-based segmentation of

the full image. However, their focus is on segmenting im-

ages into meaningful regions, not on separating objects of

interest from the background.
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Yu and Shi (2003) and Ferrari et al. (2004) both present

parallel segmentation and recognition systems. Yu and Shi

formulate the segmentation problem in a graph theoretic

framework that combines patch and pixel groupings, where

the final solution is found using the Normalized Cuts crite-

rion (Shi and Malik 1997). Ferrari et al. start from a small set

of initial matches and then employ an iterative image explo-

ration process that grows the matching region by searching

for additional correspondences and segmenting the object in

the process. Both methods achieve good segmentation re-

sults in cluttered real-world settings. However, both systems

need to know the exact objects beforehand in order to extract

their most discriminant features or search for additional cor-

respondences.

In our application, we cannot assume the objects to be

known beforehand—only familiarity with the object cate-

gory is required. This means that the system needs to have

seen some examples of the object category before, but those

do not have to be the ones that are to be recognized later. Ob-

viously, this makes the task more difficult, since we cannot

rely on any object-specific feature, but have to compensate

for large intra-class variations.

3 Codebook Representations

The first task of any local-feature based approach is to de-

termine which features in the image correspond to which

object structures. This is generally known as the correspon-

dence problem. For detecting and identifying known ob-

jects, this translates to the problem of robustly finding ex-

actly the same structures again in new images under varying

imaging conditions (Schmid and Mohr 1996; Lowe 1999;

Ferrari et al. 2004). As the ideal appearance of the model

object is known, the extracted features can be very spe-

cific. In addition, the objects considered by those approaches

are often rigid, so that the relative feature configuration

stays the same for different images. Thus, a small num-

ber of matches typically suffices to estimate the object

pose, which can then in turn be used to actively search for

new matches that consolidate the hypothesis (Lowe 1999;

Ferrari et al. 2004).

When trying to find objects of a certain category, how-

ever, the task becomes more difficult. Not only is the feature

appearance influenced by different viewing conditions, but

both the object composition (i.e. which local structures are

present on the object) and the spatial configuration of fea-

tures may also vary considerably between category mem-

bers. In general, only very few local features are present

on all category members. Hence, it is necessary to employ

a more flexible representation.

In this section, we introduce the first level of such a rep-

resentation. As basis, we use an idea inspired by the work

of (Burl et al. 1998; Weber et al. 2000), and (Agarwal et al.

2004). We build up a vocabulary (in the following termed

a codebook) of local appearances that are characteristic for

a certain viewpoint of an object category by sampling lo-

cal features that repeatedly occur on a set of training im-

ages of this category. Features that are visually similar are

grouped together in an unsupervised clustering step. The

result is a compact representation of object appearance in

terms of which novel images can be expressed. When pur-

suing such an approach, however, it is important to repre-

sent uncertainty on all levels: while matching the unknown

image content to the known codebook representation; and

while accumulating the evidence of multiple such matches,

e.g. for inferring the presence of the object.

Codebook representations have become a popular tool

for object categorization recently, and many approaches use

variations of this theme (Burl et al. 1998; Weber et al. 2000;

Fergus et al. 2003; Li et al. 2003; Agarwal et al. 2004;

Borenstein and Ullman 2002; Ullman et al. 2002; Felzen-

szwalb and Huttenlocher 2005). However, there are still

large differences in how the grouping step is performed, how

the matching uncertainty is represented, and how the code-

book is later used for recognition. In the following, we de-

scribe our codebook generation procedure and review two

popular methods for achieving the grouping step, namely

k-means and agglomerative clustering. As the latter usu-

ally scales poorly to large data sets, we present an efficient

average-link clustering algorithm which runs at the same

time and space complexity as k-means. This algorithm is

not based on an approximation, but computes the exact re-

sult, thus making it possible to use agglomerative clustering

also for large-scale codebook generation. After the remain-

ing stages of our recognition method have been introduced,

Sect. 7.3 will then present an experimental comparison of

the two clustering methods in the context of a recognition

task.

3.1 Codebook Generation

We start by applying a scale-invariant interest point de-

tector to obtain a set of informative regions for each im-

age. By extracting features only from those regions, the

amount of data to be processed is reduced, while the in-

terest point detector’s preference for certain structures as-

sures that “similar” regions are sampled on different ob-

jects. Several different interest point detectors are available

for this purpose. In this paper, we use and evaluate Harris

(Harris and Stephens 1988), Harris-Laplace (Mikolajczyk

et al. 2005b), Hessian-Laplace (Mikolajczyk et al. 2005b),

and Difference-of-Gaussian (DoG) (Lowe 2004) detectors.

We then represent the extracted image regions by a local

descriptor. Again, several descriptor choices are available

for this step. In this paper, we compare simple Greyvalue
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Fig. 1 Local information used in the codebook generation process:

(left) interest points; (right) features extracted around the interest

points (visualized by the corresponding image patches). In most of our

experiments, between 50 and 200 features are extracted per object

Patches (Agarwal et al. 2004), SIFT (Lowe 2004), and Lo-

cal Shape Context (Belongie et al. 2002; Mikolajczyk and

Schmid 2005) descriptors. In order to develop the different

stages of our approach, we will abstract from the concrete

choice of region detector and descriptor and simply refer

to the extracted local information by the term feature. Sec-

tions 7.5 and 7.6 will then systematically evaluate the differ-

ent choices for the detectors and descriptors. Figure 1 shows

the extracted features for two example images (in this case

using Harris interest points). As can be seen from those ex-

amples, the sampled information provides a dense cover of

the object, leaving out only uniform regions. This process is

repeated for all training images, and the extracted features

are collected.

Next, we group visually similar features to create a code-

book of prototypical local appearances. In order to keep the

representation as simple as possible, we represent all fea-

tures in a cluster by their mean, the cluster center. Of course,

a necessary condition for this is that the cluster center is a

meaningful representative for the whole cluster. In that re-

spect, it becomes evident that the goal of the grouping stage

must not be to obtain the smallest possible number of clus-

ters, but to ensure that the resulting clusters are visually

compact and contain the same kind of structure. This is an

important consideration to bear in mind when choosing the

clustering method.

3.2 Clustering Methods

3.2.1 K-means Clustering

The k-means algorithm (MacQueen 1967) is one of the

simplest and most popular clustering methods. It pursues

a greedy hill-climbing strategy in order to find a partition of

the data points that optimizes a squared-error criterion. The

algorithm is initialized by randomly choosing k seed points

for the clusters. In all following iterations, each data point

is assigned to the closest cluster center. When all points

have been assigned, the cluster centers are recomputed as the

means of all associated data points. In practice, this process

converges to a local optimum within few iterations.

Many approaches employ k-means clustering because of

its computational simplicity, which allows to apply it to very

large data sets (Weber et al. 2000). Its time complexity is

O(Nkℓd), where N is the number of data points of dimen-

sionality d ; k is the desired number of clusters; and ℓ is the

number of iterations until the process converges. However,

k-means clustering has several known deficiencies. Firstly,

it requires the user to specify the number of clusters in

advance. Secondly, there is no guarantee that the obtained

clusters are visually compact. Because of the fixed value

of k, some cluster centers may lie in-between several “real”

clusters, so that the mean image is not representative of all

grouped patches. Thirdly, k-means clustering is only effi-

cient for small values of k; when applied to our task of find-

ing a large number (k ≈ N
10

) of visually compact clusters, its

asymptotic run-time becomes quadratic. Last but not least,

the k-means procedure is only guaranteed to find a local op-

timum, so the results may be quite different from run to run.

3.2.2 Agglomerative Clustering

Other approaches therefore use agglomerative clustering

schemes, which automatically determine the number of

clusters by successively merging features until a cut-off

threshold t on the cluster compactness is reached (Agar-

wal et al. 2004; Leibe and Schiele 2003). However, both

the runtime and the memory requirements are often sig-

nificantly higher for agglomerative methods. Especially the

memory requirements impose a practical limit. The standard

average-link algorithm, as found in most textbooks, requires

an O(N2) similarity matrix to be stored. In practice, this

means that the algorithm is only suitable for up to 15–25,000

input points on today’s machines. After that, its space re-

quirements outgrow the size of the available main memory,

and the algorithm incurs detrimental page swapping costs.

Given the large amounts of data that need to be processed,

an efficient implementation of the clustering algorithm is

therefore not only a nice extension, but indeed crucial for its

applicability. Fortunately, it turns out that for special choices

of the clustering criterion and similarity measure, including

the ones we are using, a more efficient algorithm is avail-

able that runs in O(N2d) and needs only O(N) space. Al-

though the basic components of this algorithm are already

more than 25 years old, it has so far been little known in the

Computer Vision community. The following section will de-

scribe its derivation in more detail.



Int J Comput Vis (2008) 77: 259–289 265

3.3 RNN Algorithm for Agglomerative Clustering

The main complexity of the standard average-link algorithm

comes from the effort to ensure that clusters are merged

in the right order. The improvement presented in this sec-

tion is due to the insight by de Rham (1980) and Benzécri

(1982) that for some clustering criteria, the same results can

be achieved also when specific clusters are merged in a dif-

ferent order.

The algorithm is based on the construction of reciprocal

nearest neighbor pairs (RNN pairs), that is of pairs of points

a and b, such that a is b’s nearest neighbor and vice versa

(de Rham 1980; Benzécri 1982). It is applicable to clus-

tering criteria that fulfill Bruynooghe’s reducibility property

(Bruynooghe 1977). This criterion demands that when two

clusters ci and cj are agglomerated, the similarity of the

merged cluster to any third cluster ck may only decrease,

compared to the state before the merging action:

sim(ci, cj ) ≥ sup(sim(ci, ck), sim(cj , ck)) ⇒

sup(sim(ci, ck), sim(cj , ck)) ≥ sim(ci ∪ cj , ck). (1)

The reducibility property has the effect that the agglom-

eration of a reciprocal nearest-neighbor pair does not al-

ter the nearest-neighbor relations of any other cluster. It

is easy to see that this property is fulfilled, among oth-

ers, for the group average criterion (regardless of the em-

ployed similarity measure) and the centroid criterion based

on correlation (though not on Euclidean distances). Let X=

{x(1), . . . , x(N)} and Y = {y(1), . . . , y(M)} be two clusters.

Then those criteria are defined as

group avg.: sim(X,Y ) =
1

NM

N
∑

i=1

M
∑

j=1

sim(x(i), y(j)), (2)

centroid: sim(X,Y ) = sim

(

1

N

N
∑

i=1

x(i),
1

M

M
∑

j=1

y(j)

)

. (3)

As soon as an RNN pair is found, it can be agglomerated

(a complete proof that this results in the correct clustering

can be found in (Benzécri 1982)). The key to an efficient

implementation is thus to ensure that RNNs can be found

with as little recomputation as possible.

This can be achieved by building a nearest-neighbor

chain (Benzécri 1982). An NN-chain consists of an arbi-

trary point, followed by its nearest neighbor, which is again

followed by its nearest neighbor from among the remain-

ing points, and so on. It is easy to see that each NN-chain

ends in an RNN pair. The strategy of the algorithm is thus to

start with an arbitrary point (Algorithm 1, step (1)) and build

up an NN-chain (2,3). As soon as an RNN pair is found,

the corresponding clusters are merged if their similarity is

Algorithm 1 The RNN algorithm for Average-Link cluster-

ing with nearest-neighbor chains.

// Start the chain L with a random point v ∈ V .

// All remaining points are kept in R.

last ← 0; lastsim[0] ← 0

L[last] ← v ∈ V ; R ← V\v (1)

while R �= ∅ do

// Search for the next NN in R and retrieve its similarity sim.

(s, sim) ← getNearestNeighbor(L[last], R) (2)

if sim > lastsim[last] then

// No RNNs → Add s to the NN chain

last ← last + 1

L[last] ← s; R ← R\{s}

lastsim[last] ← sim (3)

else

// Found RNNs → agglomerate the last two chain links

if lastsim[last] > t then

s ← agglomerate(L[last],L[last − 1])

R ← R∪ {s}

last ← last − 2 (4)

else

// Discard the current chain.

last ← −1

end if

end if

if last < 0 then

// Initialize a new chain with another random point v ∈ R.

last ← last + 1

L[last] ← v ∈R; R ← R\{v} (5)

end if

end while

above the cut-off threshold t ; else the current chain is dis-

carded (4). The reducibility property guarantees that when

clusters are merged this way, the nearest-neighbor assign-

ments stay valid for the remaining chain members, which

can thus be reused for the next iteration. Whenever the cur-

rent chain runs empty, a new chain is started with another

random point (5). The resulting procedure is summarized in

Algorithm 1.

An amortized analysis of this algorithm shows that a full

clustering requires at most 3(N − 1) iterations of the main

loop (Benzécri 1982). The run-time is thus bounded by the

time required to search the nearest neighbors, which is in the

simplest case O(Nd). For low-dimensional data, this can

be further reduced by employing efficient NN-search tech-

niques.

When a new cluster is created by merging an RNN pair,

its new similarity to other clusters needs to be recomputed.

Applying an idea by (Day and Edelsbrunner 1984), this can

be done in O(N) space if the cluster similarity can be ex-

pressed in terms of centroids. In the following, we show that
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this is the case for group average criteria based on correla-

tion or Euclidean distances.

Let 〈· · ·〉 denote the inner product of a pair of vectors and

μx,μy be the cluster means of X and Y . Then the group

average clustering criterion based on correlation can be re-

formulated as

sim(X,Y ) =
1

NM

N
∑

i=1

M
∑

j=1

〈x(i), y(j)〉 = 〈μx,μy〉, (4)

which follows directly from the linearity property of the in-

ner product.

Let μx,μy and σ 2
x , σ 2

y be the cluster means and variances

of X and Y . Then it can easily be verified that the group av-

erage clustering criterion based on Euclidean distances can

be rewritten as

sim(X,Y ) = −
1

NM

N
∑

i=1

M
∑

j=1

(x(i) − y(j))2

= −(σ 2
x + σ 2

y + (μx − μy)
2). (5)

Using this formulation, the new distances can be obtained

in constant time, requiring just the storage of the mean and

variance for each cluster. Both the mean and variance of the

updated cluster can be computed incrementally:

μnew =
Nμx + Mμy

N + M
, (6)

σ 2
new =

1

N + M

(

Nσ 2
x + Mσ 2

y +
NM

N + M
(μx − μy)

2

)

.

(7)

Taken together, these steps result in an average-link clus-

tering algorithm with O(N2d) time and O(N) space com-

plexity. Among some other criteria, this algorithm is ap-

plicable to the group average criterion with correlation or

Euclidean distances as similarity measure. As the method re-

lies heavily on the search for nearest neighbors, its expected-

time complexity can in some cases further be improved by

using efficient NN-search techniques.

As a side note, we want to point out that for the cases

considered in our experiments, where the number k of clus-

ters is almost of the same order as N , average-link clustering

and standard k-means have the same asymptotic time com-

plexity. Since in our experiments between 10 and 25 itera-

tions were necessary for k-means to converge, this number

combines with the value of k to form an effective time com-

plexity of O(N2d).

Which clustering method is better suited for our applica-

tion can only be evaluated in the context of an entire system.

In Sect. 7.3, we therefore compare codebooks generated by

k-means and agglomerative clustering for an object detec-

tion task. The results suggest that, although very similar de-

tection performance can be achieved with both clustering

methods, the lesser compactness of k-means clusters makes

it more costly for later stages of the system to represent the

matching uncertainty sufficiently well. In the following sec-

tions, we therefore use agglomerative clustering for code-

book generation.

4 Object Categorization with an Implicit Shape Model

4.1 Shape Representation

As basic representation for our approach we introduce the

Implicit Shape Model ISM(C) = (C,PC), which consists of

a class-specific alphabet C (the codebook) of local appear-

ances that are prototypical for the object category, and of

a spatial probability distribution PC which specifies where

each codebook entry may be found on the object.

We make two explicit design choices for the probabil-

ity distribution PC . The first is that the distribution is de-

fined independently for each codebook entry. This results in

a star-shaped structural model, where the position of each

local part is only dependent on the object center. The ap-

proach is flexible, since it allows to combine object parts

during recognition that were initially observed on different

training examples. In addition, it is able to learn recogni-

tion models from relatively small training sets, as our ex-

periments will demonstrate. The second constraint is that

the spatial probability distribution for each codebook entry

is estimated in a non-parametric manner. This enables the

method to model the true distribution in as much detail as

the training data permits instead of making a possibly over-

simplifying Gaussian assumption.

4.2 Learning the Shape Model

Let C be the learned appearance codebook, as described in

the previous section. The next step is to learn the spatial

probability distribution PC (see Fig. 2 and Algorithm 2).

For this, we perform a second iteration over all training im-

ages and match the codebook entries to the images. Here,

we activate not only the best-matching codebook entry, but

all entries whose similarity is above t , the cut-off thresh-

old already used during agglomerative clustering. For every

codebook entry, we store all positions it was activated in,

relative to the object center.

By this step, we model the uncertainty in the codebook

generation process. If a codebook is “perfect” in the sense

that each feature can be uniquely assigned to exactly one

cluster, then the result is equivalent to a nearest-neighbor

matching strategy. However, it is unrealistic to expect such

clean data in practical applications. We therefore keep each

possible assignment, but weight it with the probability that

this assignment is correct. It is easy to see that for similarity
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Fig. 2 The training procedure. Local features are extracted around interest points and clustered to form an appearance codebook. For each

codebook entry, a spatial occurrence distribution is learned and stored in non-parametric form (as a list of occurrences)

Algorithm 2 The training procedure.

// Create an appearance codebook C.

F ← ∅ // Initialize the set of feature vectors F

for all training images do

Apply the interest point detector.

for all interest regions ℓk = (ℓx , ℓy , ℓs) with descriptors fk

do

F ← F ∪ fk

end for

end for

Cluster F with cut-off threshold t and keep cluster centers C.

// Compute occurrences Occ.

for all codebook entries Ci do

Occ[i] ← ∅ // Initialize occurrences for codebook entry Ci

end for

for all training images do

Let (cx , cy) be the object center at a reference scale.

Apply the interest point detector.

for all interest regions ℓk = (ℓx , ℓy , ℓs) with descriptors fk

do

for all codebook entries Ci do

if sim(Ci , fk) ≥ t then

// Record an occurrence of codebook entry Ci

Occ[i] ← Occ[i] ∪ (cx − ℓx , cy − ℓy , ℓs)

end if

end for

end for

end for

scores smaller than t , the probability that this patch could

have been assigned to the cluster during the codebook gen-

eration process is zero; therefore we do not need to consider

those matches. The stored occurrence locations, on the other

hand, reflect the spatial distribution of a codebook entry over

the object area in a non-parametric form. Algorithm 2 sum-

marizes the training procedure.

4.3 Recognition Approach

Figure 3 illustrates the following recognition procedure.

Given a new test image, we again apply an interest point

detector and extract features around the selected locations.

The extracted features are then matched to the codebook to

activate codebook entries using the same mechanism as de-

scribed above. From the set of all those matches, we col-

lect consistent configurations by performing a Generalized

Hough Transform (Hough 1962; Ballard 1981; Lowe 2004).

Each activated entry casts votes for possible positions of the

object center according to the learned spatial distribution

PC . Consistent hypotheses are then searched as local max-

ima in the voting space. When pursuing such an approach,

it is important to avoid quantization artifacts. In contrast to

usual practice (e.g. Lowe 1999), we therefore do not dis-

cretize the votes, but keep their original, continuous values.

Maxima in this continuous space can be accurately and ef-

ficiently found using Mean-Shift Mode Estimation (Cheng

1995; Comaniciu and Meer 2002). Once a hypothesis has

been selected, all patches that contributed to it are collected

(Fig. 3(bottom)), thereby visualizing what the system re-

acts to. As a result, we get a representation of the object

including a certain border area. This representation can op-

tionally be further refined by sampling more local features.

The backprojected response will later serve as the basis for

computing a category-specific segmentation, as described in

Sect. 5.

4.3.1 Probabilistic Hough Voting

In the following, we cast the voting procedure into a prob-

abilistic framework (Leibe and Schiele 2003; Leibe et al.

2004). Let f be our evidence, an extracted image feature

observed at location ℓ. By matching it to the codebook,

we obtain a set of valid interpretations Ci with probabili-

ties p(Ci |f, ℓ). If a codebook cluster matches, it casts votes

for different object positions. That is, for every Ci , we can

obtain votes for several object categories/viewpoints on and

positions x, according to the learned spatial distribution

p(on, x|Ci, ℓ). Formally, this can be expressed by the fol-

lowing marginalization:

p(on, x|f, ℓ) =
∑

i

p(on, x|f,Ci, ℓ)p(Ci |f, ℓ). (8)



268 Int J Comput Vis (2008) 77: 259–289

Fig. 3 The recognition procedure. Local features are extracted around

interest points and compared to the codebook. Matching patches then

cast probabilistic votes, which lead to object hypotheses that can op-

tionally be later refined by sampling more features. Based on the back-

projected hypotheses, we then compute a category-specific segmenta-

tion

Since we have replaced the unknown image feature by a

known interpretation, the first term can be treated as inde-

pendent from f . In addition, we match patches to the code-

book independent of their location. The equation thus re-

duces to

p(on, x|f, ℓ) =
∑

i

p(on, x|Ci, ℓ)p(Ci |f ), (9)

=
∑

i

p(x|on,Ci, ℓ)p(on|Ci, ℓ)p(Ci |f ). (10)

The first term is the probabilistic Hough vote for an object

position given its class label and the feature interpretation.

The second term specifies a confidence that the codebook

cluster is really matched on the target category as opposed

to the background. This can be used to include negative ex-

amples in the training process. Finally, the third term reflects

the quality of the match between image feature and code-

book cluster.

When casting votes for the object center, the object scale

is treated as a third dimension in the voting space (Leibe

and Schiele 2004). If an image feature found at location

(ximg, yimg, simg) matches to a codebook entry that has been

observed at position (xocc, yocc, socc) on a training image, it

votes for the following coordinates:

xvote = ximg − xocc(simg/socc), (11)

yvote = yimg − yocc(simg/socc), (12)

svote = (simg/socc). (13)

Thus, the vote distribution p(x|on,Ci, ℓ) is obtained by cast-

ing a vote for each stored observation from the learned oc-

currence distribution PC . The ensemble of all such votes to-

gether is then used to obtain a non-parametric probability

density estimate for the position of the object center.

In order to avoid a systematic bias, we require that each

sampled feature have the same a-priori weight. We there-

fore need to normalize the vote weights such that both the

p(Ci |f ) and the p(x|on,Ci, ℓ) integrate to one. In our ex-

periments, we spread the weight p(Ci |f ) uniformly over all

valid patch interpretations (setting p(Ci |f ) = 1
|C∗|

, with |C∗|

the number of matching codebook entries), but it would also

be possible to let the p(Ci |f ) distribution reflect the rela-

tive matching scores, e.g. by using a Gibbs-like distribution

p(Ci |f ) = 1
Z

exp{−d(Ci, f )2/T } with a suitable normaliza-

tion constant Z. The complete voting procedure is summa-

rized in Algorithm 3.

4.3.2 Scale-Adaptive Hypothesis Search

Next, we need to find hypotheses as maxima in the voting

space. For computational efficiency, we employ a two-stage

search strategy (see Fig. 4 and Algorithm 4). In a first stage,

votes are collected in a binned 3D Hough accumulator ar-

ray in order to quickly find promising locations. Candidate

maxima from this first stage are then refined in the second

stage using the original (continuous) 3D votes.

Intuitively, the score of a hypothesis h = (on, x) can be

obtained by marginalizing over all features that contribute to

this hypothesis

p(on, x) =
∑

k

p(on, x|fk, ℓk)p(fk, ℓk), (14)

where p(fk, ℓk) is an indicator variable specifying which

features (fk, ℓk) have been sampled by the interest point de-

tector. However, in order to be robust to intra-class variation,
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Fig. 4 Visualization of the scale-invariant voting procedure. The

continuous votes (a) are first collected in a binned accumu-

lator array (b), where candidate maxima can be quickly de-

tected (c). The exact Mean-Shift search is then performed only

in the regions immediately surrounding those candidate max-

ima (d)

Algorithm 3 The ISM vote generation algorithm.

// Initialize the set of probabilistic votes V .

V ← ∅

Apply the interest point detector to the test image.

for all interest regions ℓk = (ℓx , ℓy , ℓs) with descriptors fk do

// Initialize the set of matches M

M ← ∅

// Record all matches to the codebook

for all codebook entries Ci do

if sim(fk,Ci) ≥ t then

M ← M∪ (i, ℓx , ℓy , ℓs) // Record a match

end if

end for

for all matching codebook entries C∗
i

do

p(C∗
i
|fk) ← 1

|M|
//Set the match weight

end for

// Cast the votes

for all matches (i, ℓx , ℓy , ℓs) ∈M do

for all occurrences occ ∈ Occ[i] of codebook entry Ci do

//Set the vote location

x ← (ℓx − occx
ℓs

occs
, ℓy − occy

ℓs
occs

,
ℓs

occs
)

//Set the occurrence weight

p(on, x|Ci , ℓ) ← 1
|Occ[i]|

// Cast a vote (x,w,occ, ℓ) for position x with weight w

w ← p(on, x|Ci , ℓ)p(Ci |fk)

V ← V ∪ (x,w,occ, ℓ)

end for

end for

end for

we have to tolerate small shape deformations. We therefore

formulate the search in a Mean-Shift framework with the

following kernel density estimate:

p̂(on, x) =
1

Vb

∑

k

∑

j

p(on, xj |fk, ℓk)K

(

x − xj

b

)

(15)

Algorithm 4 The scale-adaptive hypothesis search algo-

rithm.

// Sample the voting space V in a regular grid to obtain

// promising starting locations.

for all grid locations x do

score(x) ← applyMSMEKernel(K,x)

end for

// Refine the local maxima using MSME with a scale-adaptive

// kernel K . Keep all maxima above a threshold θ .

for all grid locations x do

if x is a local maximum in a 3 × 3 neighborhood then

// Apply the MSME search

repeat

score ← 0, xnew ← (0,0,0), sum ← 0

for all votes (xk,wk, occk, ℓk) do

if xk is inside K(x) then

score ← score + wkK(
x−xk
b(x)

)

xnew ← xnew + xkK(
x−xk
b(x)

)

sum ← sum + K(
x−xk
b(x)

)

end if

end for

score ← 1
Vb(x)

score

x ← 1
sumxnew

until convergence

if score ≥ θ then

Create hypothesis h for position x.

end if

end if

end for

where the kernel K is a radially symmetric, nonnegative

function, centered at zero and integrating to one; b is the

kernel bandwidth; and Vb is its volume. From (Comaniciu

and Meer 2002), we know that a Mean-Shift search using

this formulation will quickly converge to local modes of the

underlying distribution. Moreover, the search procedure can

be interpreted as kernel density estimation for the position

of the object center.
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Fig. 5 Intermediate results during the recognition process. (a) orig-

inal image; (b) sampled interest regions; (c) extracted features that

could be matched to the codebook; (d) probabilistic votes; (e) sup-

port of the strongest hypothesis. (Note that the voting process takes

place in a continuous space. The votes are just discretized for visual-

ization)

From the literature, it is also known that the perfor-

mance of the Mean-Shift procedure depends critically on

a good selection for the kernel bandwidth b. Various ap-

proaches have been proposed to estimate the optimal band-

width directly from the data (e.g. Comaniciu et al. 2001;

Collins 2003). In our case, however, we have an intuitive in-

terpretation for the bandwidth as a search window for the

position of the object center. As the object scale increases,

the relative errors introduced by (11–13) cause votes to be

spread over a larger area around the hypothesized object

center and thus reduce their density in the voting space. As

a consequence, the kernel bandwidth should also increase

in order to compensate for this effect. We can thus make

the bandwidth dependent on the scale coordinate and obtain

the following balloon density estimator (Comaniciu et al.

2001):

p̂(on, x) =
1

Vb(x)

∑

k

∑

j

p(on, xj |fk, ℓk)K

(

x − xj

b(x)

)

.

(16)

For K we use a uniform ellipsoidal or cuboidal kernel with a

radius corresponding to 5% of the hypothesized object size.

Since a certain minimum bandwidth needs to be maintained

for small scales, though, we only adapt the kernel size for

scales greater than 1.0.

4.4 Summary

We have thus formulated the multi-scale object detection

problem as a probabilistic Hough Voting procedure from

which hypotheses are found by a scale-adaptive Mean-Shift

search. Figure 5 illustrates the different steps of the recog-

nition procedure on a real-world example. For this example,

the system was trained on 119 car images taken from the La-

belMe database (Russell et al. 2005). When presented with

the test image, the system applies a DoG interest point de-

tector and extracts a total of 437 features (Fig. 5(b)). How-

ever, only about half of them contain relevant structure and

pass the codebook matching stage (Fig. 5(c)). Those features

then cast probabilistic votes, which are collected in the vot-

ing space. As a visualization of this space in Fig. 5(d) shows,

Fig. 6 Visualization of the top-down segmentation procedure. For

each hypothesis h, we compute a per-pixel figure probability map

p(figure|h) and a ground probability map p(ground|h). The final seg-

mentation is then obtained by building the likelihood ratio between

figure and ground

only few features form a consistent configuration. The sys-

tem searches for local maxima in the voting space and re-

turns the correct detection as strongest hypothesis. By back-

projecting the contributing votes, we retrieve the hypothe-

sis’s support in the image (Fig. 5(e)), which shows that the

system’s reaction has indeed been produced by local struc-

tures on the depicted car.

5 Top-Down Segmentation

The backprojected hypothesis support already provides a

rough indication where the object is in the image. As the

sampled patches still contain background structure, how-

ever, this is not a precise segmentation yet. On the other

hand, we have expressed the a-priori unknown image con-

tent in terms of a learned codebook; thus, we know more

about the semantic interpretation of the matched patches for

the target object. In the following, we will show how this

information can be used to infer a pixel-wise figure-ground

segmentation of the object (Fig. 6).

In order to learn this top-down segmentation, our ap-

proach requires a reference figure-ground segmentation for

the training images. While this additional information might

not always be available, we will demonstrate that it can be
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used to improve recognition performance significantly, as

our experimental results in Sect. 7 will show.

5.1 Theoretical Derivation

In this section, we describe a probabilistic formulation for

the segmentation problem (Leibe and Schiele 2003). As a

starting point, we take an object hypothesis h = (on, x) ob-

tained by the algorithm from the previous section. Based

on this hypothesis, we want to segment the object from the

background.

Up to now, we have only dealt with image patches. For

the segmentation, we now want to know whether a certain

image pixel p is figure or ground, given the object hypoth-

esis. More precisely, we are interested in the probability

p(p = figure|on, x). The influence of a given feature f on

the object hypothesis can be expressed as

p(f, ℓ|on, x) =
p(on, x|f, ℓ)p(f, ℓ)

p(on, x)
, (17)

=

∑

i p(on, x|Ci, ℓ)p(Ci |f )p(f, ℓ)

p(on, x)
(18)

where the patch votes p(on, x|f, ℓ) are obtained from the

codebook, as described in the previous section. Given these

probabilities, we can obtain information about a specific

pixel by marginalizing over all patches that contain this

pixel:

p(p = figure|on, x)

=
∑

p∈(f,ℓ)

p(p = figure|on, x, f, ℓ)p(f, ℓ|on, x) (19)

where p(p = figure|on, x, f, ℓ) denotes some patch-specific

segmentation information, which is weighted by the influ-

ence p(f, ℓ|on, x) the patch has on the object hypothesis.

Again, we can resolve patches by resorting to learned patch

interpretations C stored in the codebook:

p(p = fig.|on, x)

=
∑

p∈(f,ℓ)

∑

i

p(p = fig.|on, x, f,Ci, ℓ)p(f,Ci, ℓ|on, x)

=
∑

p∈(f,ℓ)

∑

i

p(p = fig.|on, x,Ci, ℓ)

×
p(on, x|Ci, ℓ)p(Ci |f )p(f, ℓ)

p(on, x)
. (20)

This means that for every pixel, we effectively build a

weighted average over all segmentations stemming from

patches containing that pixel. The weights correspond to the

patches’ respective contributions to the object hypothesis.

We further assume uniform priors for p(f, ℓ) and p(on, x),

Algorithm 5 The top-segmentation algorithm.

// Given: hypothesis h and supporting votes Vh.

for all supporting votes (x,w,occ, ℓ) ∈ Vh do

Let imgmask be the segmentation mask corresponding to occ.

Let sz be the size at which the interest region ℓ was sampled.

Rescale imgmask to sz.

u0 ← (ℓx − 1
2
sz)

v0 ← (ℓy − 1
2
sz)

for all u ∈ [0,sz− 1] do

for all v ∈ [0,sz− 1] do

imgpf ig(u − u0, v − v0)+= w · imgmask(u, v)

imgpgnd (u − u0, v − v0)+= w · (1 − imgmask(u, v))

end for

end for

end for

so that these elements can be factored out of the equations.

For the ground probability, the result is obtained in a similar

fashion:

p(p = ground|on, x)

=
∑

p∈(f,ℓ)

∑

i

(1 − p(p=fig.|on, x,Ci, ℓ))p(f,Ci, ℓ|on, x).

(21)

The most important part in this formulation is the per-

pixel segmentation information p(p = figure|on, x,Ci, ℓ),

which is only dependent on the matched codebook entry,

no longer on the image feature. In Borenstein and Ullman’s

approach (Borenstein and Ullman 2002) a fixed segmen-

tation mask is stored for each codebook entry. Applied to

our framework, this would be equivalent to using a reduced

probability p(p = figure|Ci, on). In our approach, however,

we remain more general and keep a separate segmentation

mask for every recorded occurrence position of each code-

book entry (extracted from the training images at the loca-

tion and scale of the corresponding interest region and stored

as a 16 × 16 pixel mask). We thus take advantage of the full

probability p(p = figure|on, x,Ci, ℓ). As a result, the same

local image structure can indicate a solid area if it is in the

middle of e.g. a cow’s body, and a strong border if it is part of

a leg. Which option is finally selected depends on the current

hypothesis and its accumulated support from other patches.

However, since at this point only votes are considered that

support a common hypothesis, it is ensured that only consis-

tent interpretations are used for the segmentation.

In order to obtain a segmentation of the whole image

from the figure and ground probabilities, we build the like-

lihood ratio for every pixel:

L =
p(p = figure|on, x) + ǫ

p(p = ground|on, x) + ǫ
. (22)

Figure 6 and Algorithm 5 summarize the top-down segmen-

tation procedure. As a consequence of our non-parametric
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Fig. 7 An example where object knowledge compensates for missing edge information

Fig. 8 Segmentation result of a partially occluded car. The system is able to segment out the pedestrian, because it does not contribute to the car

hypothesis

representation for PC , the resulting algorithm is very simple

and can be efficiently computed on the GPU (in our current

implementation taking only 5–10 ms per hypothesis).

Figures 7 and 8 show two example segmentations of

cars,1 together with p(p = figure|on, x), the system’s con-

fidence in the segmentation result (the darker a pixel, the

higher its probability of being figure; the lighter it is, the

higher its probability of being ground). Those examples

highlight some of the advantages a top-down segmentation

can offer compared to bottom-up and gradient-based ap-

proaches. At the bottom of the car shown in Fig. 7, there

is no visible border between the black car body and the dark

shadow underneath. Instead, a strong shadow line extends

much further to the left of the car. The proposed algorithm

can compensate for that since it has learned that if a code-

book entry matches in this position relative to the object cen-

ter, it must contain the car’s border. Since at this point only

those patch interpretations are considered that are consistent

with the object hypothesis, the system can infer the miss-

ing contour. Figure 8 shows another interesting case. Even

though the car in the image is partially occluded by a pedes-

trian, the algorithm correctly finds it. Backprojecting the hy-

pothesis yields a good segmentation of the car, without the

occluded area. The system is able to segment out the pedes-

trian, because the corresponding region does not contribute

to the car hypothesis. This capability is very hard to achieve

for a system purely based on pixel-level discontinuities.

1For better visualization, the segmentation images in Figs. 7(c)

and 8(c) show not L but sigmoid(logL).

6 Segmentation-Based Hypothesis Verification

6.1 Motivation

Up to now, we have integrated information from all features

in the image, as long as they agreed on a common object

center. Indeed, this is the only available option in the ab-

sence of prior information about possible object locations.

As a result, we had to tolerate false positives on highly tex-

tured regions in the background, where many patches might

be matched to some codebook structure, and random peaks

in the voting space could be created as a consequence.

Now that a set of hypotheses H = {hi} = {(on, xi)} is

available, however, we can iterate on it and improve the

recognition results. The previous section has shown that we

can obtain a probabilistic top-down segmentation from each

hypothesis and thus split its support into figure and ground

pixels. The basic idea of this verification stage is now to

only aggregate evidence over the figure portion of the im-

age, that is over pixels that are hypothesized to belong to the

object, and discard misleading information from the back-

ground. The motivation for this is that correct hypotheses

will lead to consistent segmentations, since they are backed

by an existing object in the image. False positives from ran-

dom background clutter, on the other hand, will often result

in inconsistent segmentations and thus in lower figure prob-

abilities.

At the same time, this idea allows to compensate for a

systematic bias in the initial voting scheme. The probabilis-

tic votes are constructed on the principle that each feature

has the same weight. This leads to a competitive advantage

for hypotheses that contain more matched features simply
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Fig. 9 (Color online) (left) Two examples for overlapping hypothe-

ses (in red); (middle) p(p = figure|h) probabilities for the correct and

(right) for the overlapping hypotheses. The overlapping hypothesis in

the above example is almost fully explained by the two correct detec-

tions, while the one in the lower example obtains additional support

from a different region in the image

because their area was more densely sampled by the inter-

est point detector. Normalizing a hypothesis’s score by the

number of contributing features, on the other hand, would

not produce the desired results, because the corresponding

image patches can overlap and may also contain background

structure. By accumulating evidence now over the figure

pixels, the verification stage removes this overcounting bias.

Using this principle, each pixel has the same potential in-

fluence, regardless of how many sampled patches it is con-

tained in.

Finally, this strategy makes it possible to resolve ambi-

guities from overlapping hypotheses in a principled manner.

When applying the recognition procedure to real-world test

images, a large number of the initial false positives are due to

secondary hypotheses which overlap part of the object (see

Fig. 9). This is a common problem in object detection that is

particularly prominent in scenes containing multiple objects.

Generating such secondary hypotheses is a desired prop-

erty of a recognition algorithm, since it allows the method

to cope with partial occlusions. However, if enough support

is present in the image, the secondary detections should be

suppressed in favor of other hypotheses that better explain

the image. Usually, this problem is solved by introducing

a bounding box criterion and rejecting weaker hypotheses

based on their overlap. However, such an approach may lead

to missed detections, as the second example in Fig. 9 shows.

Here the overlapping hypothesis really corresponds to a sec-

ond car, which would be rejected by the simple bounding

box criterion.

Again, using the top-down segmentation our system can

improve on this and exactly quantify how much support the

overlapping region contains for each hypothesis. In particu-

lar, this permits us to detect secondary hypotheses, which

draw all their support from areas that are already better

explained by other hypotheses, and distinguish them from

true overlapping objects. In the following, we derive a crite-

rion based on the principle of Minimal Description Length

(MDL), which combines all of those motivations.

6.2 MDL Formulation

The MDL principle is an information theoretic formalization

of the general notion to prefer simple explanations to more

complicated ones. In our context, a pixel can be described

either by its grayvalue or by its membership to a scene ob-

ject. If it is explained as part of an object, we also need to

encode the presence of the object (“model cost”), as well

as the error that is made by this representation. The MDL

principle states that the best encoding is the one that mini-

mizes the total description length for the image, given a set

of models.

In accordance with the notion of description length, we

can define the savings (Leonardis et al. 1995) in the encod-

ing that can be obtained by explaining part of an image by

the hypothesis h:

Sh = K0Sarea − K1Smodel − K2Serror . (23)

In this formulation, Sarea corresponds to the number N of

pixels that can be explained by h; Serror denotes the cost for

describing the error made by this explanation; and Smodel

describes the model complexity. Since objects at different

scales take up different portions of the image, we make the

model cost dependent on the expected area As an object oc-

cupies at a certain scale.2 As an estimate for the error cost

we collect, over all pixels that belong to the segmentation of

h, the negative figure log-likelihoods:

Serror = − log
∏

p∈Seg(h)

p(p = fig.|h))

= −
∑

p∈Seg(h)

logp(p = fig.|h)

=
∑

p∈Seg(h)

∞
∑

n=1

1

n
(1 − p(p = fig.|h))n

≈
∑

p∈Seg(h)

(1 − p(p = fig.|h)). (24)

Here we use a first-order approximation for the logarithms,

which we found to be more stable with respect to outliers

and unequal sampling, since it avoids the logarithm’s singu-

larity around zero. In effect, the resulting error term can be

understood as a sum over all pixels allocated to a hypothe-

sis h of the probabilities that this allocation was incorrectly

made.

2When dealing with only one object category, the true area As can be

replaced by the simpler term s2, since the expected area grows quadrat-

ically with the object scale and the constant K1 can be set to incorpo-

rate the proportionality factor. However, when multiple categories or

different views of the same object category are searched for, the model

cost needs to reflect their relative size differences.
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The constants K0, K1, and K2 are related to the average

cost of specifying the segmented object area, the model, and

the error, respectively. They can be determined on a purely

information-theoretical basis (in terms of bits), or they can

be adjusted in order to express the preference for a particu-

lar type of description. In practice, we only need to consider

the relative savings between different combinations of hy-

potheses. Thus, we can divide (23) by K0 and, after some

simplification steps, we obtain

Sh = −
K1

K0
+

(

1 −
K2

K0

)

N

As

+
K2

K0

1

As

∑

p∈Seg(h)

p(p = fig.|h)

= −κ1 + (1 − κ2)
N

As

+κ2
1

As

∑

p∈Seg(h)

p(p = fig.|h), (25)

= −κ1 +
1

As

∑

p∈Seg(h)

((1 − κ2) + κ2p(p = fig.|h)). (26)

This leaves us with two parameters: κ2 = K2
K0

, which encodes

the relative importance that is assigned to the support of a

hypothesis, as opposed to the area it explains; and κ1 = K1
K0

,

which specifies the total weight a hypothesis must accumu-

late in order to provide any savings. Essentially, (26) for-

mulates the merit of a hypothesis as the sum over its pixel

assignment likelihoods, together with a regularization term

κ2 to compensate for unequal sampling and a counterweight

κ1. In our experiments, we leave κ2 at a fixed setting and

plot the performance curves over the value of κ1.

Using this framework, we can now resolve conflicts be-

tween overlapping hypotheses. Given two hypotheses h1

and h2, we can derive the savings of the combined hypothe-

sis (h1 ∪ h2):

Sh1∪h2
= Sh1

+ Sh2
−Sarea(h1 ∩ h2) + Serror(h1 ∩ h2).

(27)

Both the overlapping area and the error can be computed

from the segmentations obtained in Sect. 5. Sarea(h1 ∩ h2)

is just the area of overlap between the two segmentations.

Let h1 be the higher-scoring hypothesis of the two in terms

of the optimization function. Under the assumption that h1

opaquely occludes h2, we can adjust for the error term

Serror(h1 ∩ h2) by setting p(p = figure|h2) = 0 wherever

p(p = figure|h1) > p(p = ground|h1), that is for all pixels

that belong to the segmentation of h1.

The goal of this procedure is to find the combination

of hypotheses that provides the maximum savings and thus

best explains the image. Leonardis et al. have shown that

this can be formulated as a quadratic Boolean optimiza-

tion problem as follows (Leonardis et al. 1995). Let mT =

(m1,m2, . . . ,mM ) be a vector of indicator variables, where

mi has the value 1 if hypothesis hi is present, and 0 if it is

absent in the final description. In this formulation, the objec-

tive function for maximizing the savings takes the following

form:

S(m̂) = max
m

mT Qm = mT

⎡

⎢

⎣

q11 · · · q1M

...
. . .

...

qM1 · · · qMM

⎤

⎥

⎦
m. (28)

The diagonal terms of Q express the savings of a particular

hypothesis hi

qii = Shi
= −κ1 + (1 − κ2)

N

As

+
κ2

As

∑

p∈Seg(hi)

p(p = fig.|hi) (29)

while the off-diagonal terms handle the interaction between

overlapping hypotheses

qij =
1

2As∗

(

−(1 − κ2)|Oij | − κ2

∑

p∈Oij

p(p = figure|h∗)

)

(30)

where h∗ denotes the weaker of the two hypotheses hi and

hj and Oij = Seg(hi) ∩ Seg(hj ) is the area of overlap be-

tween their segmentations. As the number of possible com-

binations grows exponentially with increasing problem size,

it may become intractable to search for the globally optimal

solution. In practice, however, we found that only a rela-

tively small number of hypotheses interact in most cases, so

that it is usually sufficient to just compute a greedy approxi-

mation. Algorithm 6 summarizes the verification procedure.

7 Experimental Evaluation

7.1 Test Datasets and Experimental Protocol

In order to evaluate our method’s performance and compare

it to state-of-the-art approaches, we apply our system to sev-

eral different test sets of increasing difficulty.

UIUC Cars(side) The UIUC single-scale test set consists

of 170 images containing 200 side views of cars of approx-

imately the same size. The UIUC multi-scale test set con-

sists of 108 images containing 139 car side views at different

scales. Both sets include instances of partially occluded cars,

cars that have low contrast with the background, and images

with highly textured backgrounds. For all experiments on

these datasets, we train our detector on an own training set
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Algorithm 6 The MDL verification algorithm.

Input: hypotheses H = {hi} and corresponding segmentations
{

(img
(i)
pf ig

, img
(i)
pgnd

)
}

.

Output: indicator vector m of selected hypotheses.

// Build up the matrix Q =
{

qij

}

for all hypotheses hi ∈H do

sum ← 0, N ← 0

Let Ai be the expected area of hi at its detected scale.

// Set the diagonal elements

for all pixels p ∈ img do

if img
(i)
pf ig

(p) > img
(i)
pgnd

(p) then

sum ← sum + img
(i)
pf ig

(p)

N ← N + 1

end if

end for

qii ← −κ1 + (1 − κ2) N
Ai

+ κ2
1
Ai

sum

// Set the interaction terms

for all hypotheses hj ∈H, j �= i do

sum ← 0, N ← 0

Let k ∈ {i, j} be the index of the weaker hypothesis.

for all pixels p ∈ img do

if img
(i)
pf ig

(p) > img
(i)
pgnd

(p)∧

img
(j)
pf ig

(p) > img
(j)
pgnd

(p) then

sum ← sum + img
(k)
pf ig

(p)

N ← N + 1

end if

end for

qij ← 1
2
(−(1 − κ2) N

Ak
− κ2

1
Ak

sum)

end for

end for

// Greedy search for the best combination of hypotheses

m ← (0,0, . . . ,0), finished ← false

repeat

for all unselected hypotheses hi do

m̃ ← m, m̃(i) ← 1

Si ← m̃T Qm̃ − mT Qm // Savings when hi is selected

end for

k ← arg maxi(Si)

if Sk > 0 then

m(k) ← 1

else

finished ← true

end if

until finished

of only 50 hand-segmented images3 (mirrored to represent

both car directions) that were originally prepared for a dif-

ferent experiment. Thus, our detector remains more general

3All training sets used in our experiments, as well as executables of

the recognition system, are made available on the following webpage:

http://www.vision.ee.ethz.ch/bleibe/ism/.

and is not tuned to the specific test conditions. Since the

original UIUC sets were captured at a far lower resolution

than our training images, we additionally rescaled all test

images by a constant factor prior to recognition (Note that

this step does not increase the images’ information content).

All experiments on these sets are performed using the

evaluation scheme and detection tolerances from (Agarwal

et al. 2004) based on bounding box overlap: a hypothesis

with center coordinates (x, y, s) is compared with an an-

notation rectangle of size (width,height) and center coordi-

nates (x∗, y∗, s∗) and accepted if

|x − x∗|2

(0.25width)2
+

|y − y∗|2

(0.25height)2
+

|s/s∗ − 1|2

(0.25)2
≤ 1. (31)

In addition, only one hypothesis per object is accepted as

correct detection; any additional hypothesis on the same ob-

ject is counted as false positive.

CalTech Cars(rear) In addition to side views, we also test

on rear views of cars using the 526 car and 1,370 non-car

images of the CalTech cars-brad data set. This data set

contains road scenes with significant scale variation, taken

from the inside of a moving vehicle. The challenge here is

to reliably detect other cars driving in front of the camera

vehicle while restricting the number of false positives on

background structures. For those experiments, our system

is trained on the 126 (manually segmented) images of the

CalTech cars-markus data set.

In order to evaluate detection accuracy with possibly

changing bounding box aspect ratios, we adopt a slightly

changed evaluation criterion for this and all following ex-

periments (Leibe et al. 2005). We still check whether the de-

tected bounding box center is close enough to the annotated

center using the first two terms of (31), but we additionally

demand that the mutual overlap between the hypothesis and

annotation bounding boxes is at least 50%. Again, at most

one hypothesis per object is counted as correct detection.

TUD Motorbikes Next, we evaluate our system on the

TUD Motorbikes set, which is part of the PASCAL collec-

tion (Everingham 2006). This test set consists of 115 images

containing 125 motorbike side views at different scales and

with clutter and occlusion. For training, we use 153 motor-

bike side views from the CalTech database which are shown

in front of uniform background allowing for easy segmen-

tation (a subset of the 400 images (Fergus et al. 2003) used

for training).

VOC’05 Motorbikes In order to show that our results also

generalize to other scenarios, we apply our system to the

VOC motorbike test2 set, which has been used as a local-

ization benchmark in the 2005 PASCAL Challenge (Ever-

ingham 2006). This data set consists of 202 images contain-

ing a total of 227 motorbikes at different scales and seen
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from different viewpoints. For this experiment, we use the

same training set of 153 motorbike side views as above, but

since only 39% of the test cases are shown in side views, the

maximally achievable recall for our system is limited.

Leeds Cows The above datasets contain only relatively

rigid objects. In order to also quantify our method’s robust-

ness to changing articulations, we next evaluate it on a data-

base of video sequences of walking cows originally used for

detecting lameness in livestock (Magee and Boyle 2002).

Each sequence shows one or more cows walking from right

to left in front of different, static backgrounds. For train-

ing, we took out all sequences corresponding to three back-

grounds and extracted 113 randomly chosen frames, for

which we manually created a reference segmentation. We

then tested on 14 different video sequences showing a to-

tal of 18 unseen cows in front of novel backgrounds and

with varying lighting conditions. Some test sequences con-

tain severe interlacing and MPEG-compression artifacts and

significant noise. Altogether, the test suite consists of a total

of 2217 frames, in which 1682 instances of cows are visible

by at least 50%. This provides us with a significant number

of test cases to quantify both our method’s ability to deal

with different articulations and its robustness to (boundary)

occlusion.

TUD Pedestrians Last but not least, we evaluate our

method on the TUD pedestrian set. This highly challeng-

ing test set consists of 206 images containing crowded street

scenes in an Asian metropolis with a total of 595 annotated

pedestrians, most of them in side views (Leibe et al. 2005).

The reason why we only speak of “annotated” pedestrians

here is that in the depicted crowded scenes, it is often not

obvious where to draw the line and decide whether a pedes-

trian should be counted or not. People occur in every state

of occlusion, from fully visible to just half a leg protruding

behind some other person. We therefore decided to anno-

tate only those cases where a human could clearly detect

the pedestrian without having to resort to reasoning. As a

consequence, all pedestrians were annotated where at least

some part of the torso was visible. For this experiment, our

detector was trained on use 210 training images of pedes-

trian side views, recorded in Switzerland with a static cam-

era, for which a motion segmentation was computed with a

Grimson-Stauffer background model (Stauffer and Grimson

1999).

7.2 Object Detection Performance

In order to demonstrate the different stages of our system,

we first apply it to the UIUC single-scale cars dataset. Since

this dataset contains only very limited scale variation, we

use Harris interest points and simple 25 × 25 patch fea-

tures compared by normalized correlation. Figure 10 shows

Method Agarwal Garg Fergus ISM, ISM + Mutch

(2004) (2002) (2003) no MDL MDL (2006)

EER ∼79% ∼88% 88.5% 91.0% 97.5% 99.9%

Fig. 10 Comparison of our results on the UIUC single-scale car data-

base with others reported in the literature

a recall-precision curve (RPC) of our method’s performance

before and after the MDL verification stage. As can be seen

from the figure, the initial voting stage succeeds to gener-

alize from the small 50-image training set and achieves al-

ready good detection results with an Equal Error Rate (EER)

performance of 91% (corresponding to 182 out of 200 cor-

rect detections with 18 false positives). When the MDL cri-

terion is applied as a verification stage, the results are signif-

icantly improved, and the EER performance increases from

91% to 97.5%. Without the verification stage, our algorithm

could reach this recall rate only at the price of a reduced

precision of only 74.1%. This means that for the same recall

rate, the verification stage manages to reject 64 additional

false positives while keeping all correct detections. In addi-

tion, the results become far more stable over a wider para-

meter range than before.

The same figure and the adjacent table also show a com-

parison of our method’s performance with other results re-

ported in the literature. With an EER performance of 97.5%,

our method presents a significant improvement over previ-

ous results. In very recent work, Mutch and Lowe (2006)

reported even better performance with 99.94% EER us-

ing densely sampled features and a biologically motivated

multi-level representation. This indicates that there may still

be some potential for improvement in the feature extraction

stage. In the following sections, we will therefore examine

different choices for the feature detector and descriptor.

Some example detections in difficult settings and the cor-

responding top-down segmentations can be seen in Fig. 11.

Those results show that our method still works in the pres-

ence of occlusion, low contrast, and cluttered backgrounds.
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Fig. 11 Example object detections, figure probabilities, and segmentations automatically generated by our method

Fig. 12 All error cases (missing detections and false positives) our

algorithm returned on the UIUC single-scale car test set

At the EER point, our method correctly finds 195 of the

200 test cases with only 5 false positives. All of those error

cases are displayed in Fig. 12. The main reasons for missing

detections are combinations of several factors, such as low

contrast, occlusion, and image plane rotation, that push the

object hypothesis below the acceptance threshold. The false

positives are due to richly textured backgrounds on which a

large number of spurious object parts are found.

In addition to the recognition results, our method auto-

matically generates object segmentations from the test im-

ages. Even though the quality of the original images is rather

low, the segmentations are reliable and can serve as a basis

for later processing stages, e.g. to further improve the recog-

nition results using global methods. In particular, the exam-

ples show that the system can not only detect cars despite

partial occlusion, but it is often even able to segment out the

occluding structure.4

7.3 Experimental Comparison of Clustering Algorithms

Next, we evaluate the different clustering methods by apply-

ing them to the same data set and comparing the suitability

of the resulting codebooks for recognition. The evaluation

is based on two criteria. One is the recognition performance

the codebook allows. The other is its representational qual-

ity, as measured by the number of occurrences that need to

be stored, which determines the effective cost of the recog-

nition process.

Starting from the 50-image training set, a total of 6,413

patches are extracted with the Harris interest point opera-

tor. Average-link clustering with normalized correlation as

similarity measure and a cut-off threshold of t = 0.7 pro-

duces 2,104 visually compact clusters. However, 1,241 of

these clusters contain only one patch, which means that they

do not correspond to any repeating structure. We therefore

discard those clusters and keep only the remaining 863 pro-

totypes. In comparison, k-means clustering is executed with

different values for k ranging from 100 to 2,000. In addition

to the original codebooks, we also try the codebook reduc-

tion step and measure the performance when single-patch

clusters are removed.

Figure 13 shows the results of this experiment. In the left

diagram, the recognition performance is plotted as a func-

tion of the codebook size. The codebook obtained by k-

means reaches approximately the same performance as the

4In the presented examples, our method is also able to segment out the

car windows, since those were labeled ground in the training data.
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Fig. 13 Comparison of codebooks built with k-means and average-

link clustering. (left): Recognition performance on the UIUC car data-

base. (right): Number of stored activations needed to represent the

matching uncertainty. As can be seen from the plots, the k-means code-

book achieves nearly the same performance as the one built by average-

link clustering, but it requires more than twice as many activations to

be stored

one obtained by average-link clustering when k is set to

a similar number of clusters. This is the case for both the

original and the reduced k-means codebook (without single-

patch clusters). However, as can be seen from the right dia-

gram, the number of occurrences for this codebook size is

more than twice as high for k-means as for average-link

clustering. All in all, the k-means codebook with k = 800

clusters generates 42,310 occurrences from the initial 6,413

training patches, while the more specific average-link code-

book can represent the full appearance distribution with only

17,281 occurrences.

We can thus draw the following conclusions. First, the ex-

periment confirms that the proposed uncertainty modeling

stage can indeed compensate for a less specific codebook.

As can be seen from Fig. 13(left), the recognition perfor-

mance degrades gracefully for both smaller and larger values

of k. This result has important consequences for the scala-

bility of our approach, since it indicates that the method can

be applied even to cases where no optimal codebook is avail-

able. Second, the experiment indicates that the visually more

compact clusters produced by average-link clustering may

be better suited to our problem than the partition obtained by

k-means and may lead to tighter spatial occurrence distrib-

utions with fewer entries that need to be stored. Ideally, this

result would have to be verified by more extensive experi-

ments over several test runs and multiple datasets. However,

together with the additional advantage that the compactness

parameter of agglomerative clustering is only dependent on

the selected feature descriptor, whereas the k of k-means has

to be adjusted anew for every new training set, the experi-

ment already provides a strong argument for agglomerative

clustering.

7.4 Effect of the Training Set Size

Next, we explore the effect of the training set size on de-

tection performance. Up to now, all detectors in this section

have been trained on the original 50 car images. We now

compare their performance when only a subset of those im-

ages is considered. In addition to the single-scale Harris de-

tector, we also apply a scale-invariant DoG detector (Lowe

2004). Figure 14 shows the resulting performance for differ-

ent training set sizes from 5 to 50 images. As can be seen

from the plot, both the Harris and the DoG codebook reach

90% EER performance already with 20 training examples.

When more training images are added, the Harris codebook

further improves to the known rate of 97.5%. In contrast, the

performance of the DoG detector reaches a saturation point

and increases only to 91% for the full training set. Here the

advantage of seeing more training images is offset by the

increased variance in patch appearance caused by the addi-

tional scale dimension.

Apart from this evaluation, the figure also compares the

performance for the original codebooks with the reduced

codebooks that are obtained when all single-patch clusters

are discarded. It can be observed that the two versions show

some differences for the initial voting stage, which however

level out when the MDL verification stage is applied. Con-

sidering that the original codebooks typically contain more

than twice as many clusters as the reduced versions, the re-

duction step can thus be safely advised in order to increase

run-time performance.
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Fig. 14 EER performance on the UIUC database for varying training

set sizes: (left) for the Harris detector; (right) for the DoG detector.

The plots show the performance for the original codebooks and for the

reduced codebooks when all single-patch clusters are discarded. As

can be seen from the plots, both detectors achieve good performance

already with 20 training examples. Moreover, the experiment shows

that the codebook reduction step does not lead to a decrease in perfor-

mance

7.5 Comparison of Different Interest Point Detectors

In the next experiment, we evaluate the effect of the interest

point detector on recognition performance. In previous stud-

ies, interest point detectors have mainly been evaluated in

terms of their repeatability. Consequently, significant effort

has been spent on making the detectors discriminant enough

that they find exactly the same structures again under dif-

ferent viewing conditions. However, in our case, the task

is to recognize and localize previously unseen objects of a

given category. This means that we cannot assume to find

exactly the same structures again; instead the system needs

to generalize and find structures that are similar enough to

known object parts while still allowing enough flexibility to

cope with variations. Also, because of the large intra-class

variability, more potential matching candidates are needed

to compensate for inevitable mismatches. Last but not least,

the interest points should provide a sufficient cover of the

object, so that it can be recognized even if some important

parts are occluded. Altogether, this imposes a rather differ-

ent set of constraints on the interest point detectors, so that

their usefulness for our application can only be determined

by an experimental comparison.

In the following experiment, we evaluate three different

types of scale-invariant interest point operators: the Harris-

Laplace and Hessian-Laplace detectors (Mikolajczyk et al.

2005b) and the DoG (Difference of Gaussian) detector

(Lowe 2004). All three operators have been shown to yield

high repeatability (Mikolajczyk et al. 2005b), but they differ

in the type of structures they respond to. The Harris-Laplace

and Hessian-Laplace detectors look for scale-adapted max-

ima of the Harris function and Hessian determinant, re-

spectively, where the locations along the scale dimension

are found by the Laplacian-of-Gaussian (Mikolajczyk et al.

2005b). The DoG detector (Lowe 2004) finds regions at 3D

scale-space extrema of the Difference-of-Gaussian.

In a first step, we analyze the different detectors’ robust-

ness to scale changes. In particular, we are interested in the

limit to the detectors’ performance when the scale of the test

images is altered by a large (but known) factor and the frac-

tion of familiar image structures is thus decreased. In the

following experiment, the UIUC single-scale car database

images are rescaled to different sizes and the performance

is measured as a function of the scaling factor relative to

the size of the training examples. Figure 15(left) shows the

EER performances that can be achieved for scale changes

between factor 0.4 (corresponding to a scale reduction of

1:2.5) and factor 2.2. When the training and test images

are approximately of the same size, the single-scale Harris

codebook is highly discriminant and provides the good per-

formance described in the previous sections. However, the

evaluation shows that it is only robust to scale changes up to

about 20%, after which its performance quickly drops. As a

result of its scale selection step, the Harris-Laplace code-

book performs more stably over a larger range of scales.

However, with 69% at the EER, its absolute performance

is far below that of the single-scale version. The main rea-

son for this poor performance is that the Harris-Laplace de-

tector returns a smaller absolute number of interest points

on the object, so that a sufficient cover is not always guar-

anteed. Although previous studies have shown that Harris-

Laplace points are more discriminant individually (Dorko

and Schmid 2003), their smaller number is a strong disad-

vantage. The Hessian-Laplace and DoG detectors, on the
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Fig. 15 (left): EER performance over scale changes relative to the

size of the training examples. While optimal for the single-scale case,

the Harris codebook is only robust to small scale changes. The DoG

and Hessian-Laplace codebooks, on the other hand, maintain high

performance over a large range of scales. (right): A comparison of

the performances with and without the scale-adaption mechanism. As

can be seen from the plot, the adapted search window size is neces-

sary for scales greater than 1.0, but reduces performance for smaller

scales, since a certain minimum search window size needs to be main-

tained

other hand, both find enough points on the objects and are

discriminant enough to allow reliable matches to the code-

book. They start with 92.5% and 91%, respectively, for test

images at the same scale and can compensate for both en-

largements and size reductions of more than a factor of two.

If only one type of points shall be used, they are thus better

suited for use in our framework. Figure 15(right) also shows

that the system’s performance quickly degrades without the

scale adaptation step from Sect. 4.3.2, confirming that this

step is indeed important.

7.6 Comparison of Different Local Descriptors

In the previous experiments, we have only considered sim-

ple image patches as basic features of our recognition sys-

tem. While this has been a straightforward choice, it is not

necessarily optimal. However, our approach is not restricted

to patches, but can in principle be operated with any type

of local feature. Recently, a vast array of different local de-

scriptors have become available, and several studies have in-

vestigated their suitability for object categorization (Miko-

lajczyk et al. 2005a; Seemann et al. 2005). In the follow-

ing experiment, we evaluate two of those region descriptors.

SIFT descriptors (Lowe 2004) are 3D histograms of gradi-

ent locations and orientations with 4 × 4 location and 8 ori-

entation bins, resulting in 128-dimensional feature vectors.

Local Shape Context (Belongie et al. 2002) descriptors are

histograms of gradient orientations sampled at edge points

in a log-polar grid. Here we use them in the implementa-

tion of (Mikolajczyk and Schmid 2005) with 9 location and

4 orientation bins and thus 36 dimensions. For comparison,

we include our previous choice of 25 × 25 pixel Patches

(Agarwal et al. 2004; Leibe et al. 2004), which lead to a

descriptor of length 625. The evaluation is performed with

an own implementation of the DoG detector and Patch de-

scriptor. For all other detectors and descriptors, we use the

implementations publicly available at the Oxford Interest

Point Webpage (http://www.robots.ox.ac.uk/~vgg/research/

affine). Patches are compared using Normalized Correla-

tion; all other descriptors are compared using Euclidean dis-

tances.

One open parameter has to be adjusted for each cue,

namely the question how much the clustering step should

compress the training features during codebook generation.

When using agglomerative clustering, this translates to the

question how to set the cut-off and matching threshold t for

optimal performance. Clearly, this parameter depends on the

choice of descriptor. In order to find good values for this

parameter and analyze its influence on recognition perfor-

mance, we applied all 9 detector/descriptor combinations to

the TUD motorbikes set and compared their EER detection

performance for 5–8 different threshold settings. Figure 16

shows the results of this experiment, separated per descrip-

tor. We can make two observations. First, when comparing

descriptors across different detectors, a clear performance

optimum can be found at certain similarity values for all

three descriptors. Those threshold settings can thus serve

as default values whenever the descriptors are used in fu-

ture experiments. Second, the results allow to rank the de-

tector/descriptor combinations based on their performance.

For the descriptors, SIFT and Shape Context perform con-

sistently best over all three detectors. For the detectors,

Hessian-Laplace and DoG perform best in all but one case.
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In terms of combinations, DoG+SIFT and DoG+Shape

Context obtain the best performance with 87% EER.

7.7 Results for Other Test Sets

In the following, we evaluate the system on more difficult

scenes, containing multiple objects at different scales. In ad-

dition to cars, we apply our algorithm to three additional

categories: motorbikes, cows, and pedestrians.

7.7.1 UIUC Multi-Scale Cars

First, we present results on the UIUC multi-scale database

(Agarwal et al. 2004). Figure 17(a) shows the results of this

experiment. The black line corresponds to the performance

reported by (Agarwal et al. 2004), with an EER of about

45%. In contrast, our approach based on DoG interest points

and Patch features achieves an EER performance of 85.6%,

corresponding to 119 out of 132 correct detections with 20

false positives. Using Hessian-Laplace interest points and

local Shape Context features, this result is again signifi-

cantly improved to an EER performance of 95%. This num-

ber also compares favorably to the performance reported by

Mutch and Lowe (2006), who obtained 90.6% EER with

their method.

7.7.2 Motorbikes

Next, we show our system’s results on motorbikes. Fig-

ure 17(b) summarizes the results from Sect. 7.6 on the TUD

motorbike set. The best performance is achieved by the com-

binations of DoG and SIFT/Shape Context, both with an

EER score of 87%. Figure 18 shows example detections on

difficult images from this test set that demonstrate the ap-

pearance variability spanned by the motorbike category and

the segmentation quality that can be achieved by our ap-

proach. As these results show, our method manages to adapt

to different appearances and deliver accurate segmentations,

even in scenes with difficult backgrounds and partial occlu-

sion. Due to the larger appearance variability of motorbikes,

however, it is in general not possible anymore to segment out

the occluding structure (as was the case for the car category

in the previous experiments).

In order to ensure that the results generalize also to dif-

ferent settings, we apply our approach to the more challeng-

ing VOC motorbikes set using the same parameter settings

as for the previous experiment. Figure 17(c) shows the re-

sults of this experiment. Since only about 39% of the test

cases are visible in the side views our detector was trained

on, the EER performance is not as meaningful; instead, we

compare recall in the high-precision range. From this, it can

be seen that the best recognition performance is achieved by

the combinations of DoG+SIFT and DoG+Shape Context,
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Fig. 18 Examples for the variety of motorbike shapes and appearances

that are still reliably detected and segmented

which both find half the available side views at a precision

of 90%. Considering the difficulty of the test set, this is still

a very good result. The best recall is achieved by the fea-

ture combination DoG+Patch with an EER performance of

48%. For comparison, we also show the performance curves

for two other approaches from the 2005 PASCAL Challenge

(Everingham 2006): the one from Garcia and Delakis (2004)

and the one from Dalal and Triggs (2005). (For fairness it

must be said, however, that only our DoG+Patch version

was entered into the original competition and trained on the

slightly smaller training set provided there; the other feature

combinations were produced afterwards).

7.7.3 Rear Views of Cars

Next, we apply our system to the detection of rear views

of cars, using the cars-brad set of CalTech database.

Figure 17(d) displays the detection results for two feature

types: DoG+Patch and Hessian-Laplace+Shape Context.

The dashed curves show the detection performance on the

526 positive images; the solid lines show the performance

taking also the 1370 background images into account. Since

many of the annotated cars are strongly occluded, only about

82% recall can be reached. However, the results show that

Table 1 Performance comparison on a present/absent classification

task for two of the CalTech categories with other methods from the

literature, according to the evaluation scheme in (Fergus et al. 2003)

Data Set Motorbikes Cars Rear

Weber (2000) 88.0% –

Opelt (2004) 92.2% –

Thureson (2004) 93.2% –

Fergus (2003) 93.3% 90.3%

J. Zhang (2007) 98.5% 98.3%

Deselaers (2005) – 98.9%

W. Zhang (2005) 99.0% –

ISM (Patch) 94.0% 93.9%

ISM (SC) 97.4% 96.7%

Fig. 19 Examples for (a) correct detections of rear views of cars on

the CalTech data set and for some typical problem cases: (b) alignment

of the detection bounding box on the car’s shadow; (c) incorrect scale

estimates; (d) spurious detections caused by similar image structures

our approach yields very accurate detections. Looking at the

90% precision level, our approach achieves 74.4% recall on

the positive set, which only reduces to 70.9% recall when

the 1370 negative images are added (corresponding to 0.103

and 0.027 false positives per image, respectively).

Since no other localization results on this data set have

been reported in the literature so far, we also evaluate our

method on an object present/absent classification task, ac-

cording to the evaluation scheme in (Fergus et al. 2003). In

order to decide whether or not a test image contains a rear

view of a car, we apply our scale-invariant detector with a

scale search range of [0.3,1.5] and classify an image with

the label present if at least one detection can be found. Ta-

ble 1 shows the results of this experiment. With DoG+Patch

features, our approach achieves an EER classification per-

formance of 93.9%. Using Hessian-Laplace+Shape Con-

text, this result improves to 96.7%. Both results compare

favorably with (Fergus et al. 2003). Similar results can

be achieved for the CalTech motorbikes, as also shown in

the same table. As a comparison with other more recent

approaches shows, however, discriminative methods using



284 Int J Comput Vis (2008) 77: 259–289

densely sampled features and SVM classifiers seem to be

generally more suited to this classification task.

Figure 19(a) presents some examples of correct detec-

tions on the test set. As can be observed, the approach is

able to find a large variety of car appearances at different

scales in the images. Some typical problem cases are shown

in the bottom part of the figure. As the car’s shadow proves

to be an important feature for detection, a displaced shadow

sometimes leads to a misaligned bounding box (Fig. 19(b)).

Another cause for incorrect detections are self-similarities

in the car structure at different scales that sometimes lead to

a wrong scale estimate (Fig. 19(c)). Finally, some spurious

detections are found on regions with similar image structure

(Fig. 19(d)).

7.7.4 Cows

Up to now, we have only considered static objects in our ex-

periments. Even though environmental conditions can vary

greatly, cars and motorbikes are still rather restricted in their

possible shapes. This changes when we consider articulated

objects, such as walking animals. In order to fully demon-

strate our method’s capabilities, we therefore apply it to the

Leeds cows set. The 2217 frames from this test suite pro-

vide us with a significant number of test cases to quantify

both our method’s ability to deal with different articulations

and its robustness to (boundary) occlusion. Using video se-

quences for testing also allows to avoid any bias caused by

selecting only certain frames. However, since we are still

interested in a single-frame recognition scenario, we apply

our algorithm to each frame separately. That is, no tempo-

ral continuity information is used for recognition, which one

would obviously add for a tracking scenario.

We apply our method to this test set using exactly the

same detector settings as before to obtain equal error rate

for the single-scale car experiments. Using Harris interest

points and Patch descriptors, our detector correctly finds

1535 out of the 1682 cows, corresponding to a recall of

91.2%. With only 30 false positives over all 2217 frames, the

overall precision is at 98.0%. Figure 17(e) shows the preci-

sion and recall values as a function of the visible object area.

As can be seen from this plot, the method has no difficul-

ties in recognizing cows that are fully visible (99.1% recall

at 99.5% precision). Moreover, it can cope with significant

partial occlusion. When only 60% of the object is visible,

recall only drops to 79.8%. Even when half the object is oc-

cluded, the recognition rate is still at 69.0%. In some rare

cases, even a very small object portion of about 20–30% is

already enough for recognition (such as in the leftmost im-

age in Fig. 21). Precision constantly stays at a high level.

False positives mainly occur when only one pair of legs is

fully visible and the system generates a competing hypothe-

sis interpreting the front legs as rear legs, or vice versa. Usu-

ally, such secondary hypotheses are filtered out by the MDL

Fig. 20 Example detections and automatically generated segmenta-

tions from one cow sequence. (middle row) segmentations obtained

from the initial hypotheses; (bottom row) segmentations from refined

hypotheses (with additional features sampled in a uniform grid)

Fig. 21 Example detections and automatically generated segmenta-

tions from another cow sequence. Note in particular the leftmost im-

age, where the cow is correctly recognized and segmented despite a

large degree of occlusion

stage, but if the correct hypothesis does not have enough

support in the image due to partial visibility, the secondary

hypothesis sometimes wins.

Figures 20 and 21 show example detection and segmen-

tation results for two of the sequences used in this evalu-

ation. As can be seen from these images, the system not

only manages to recognize unseen-before cows with novel

texture patterns, but it also provides good segmentations for

them. Again, we want to emphasize that no tracking infor-

mation is used to generate these results. On the contrary,

the capability to generate object segmentations from single

frames could make our method a valuable supplement to

many current tracking algorithms, allowing to (re)initialize

them through shape cues that are orthogonal to those gained

from motion estimates.

7.7.5 Pedestrians

Finally, we apply our approach to pedestrian detection in

crowded street scenes using the challenging TUD pedes-

trian set. Figure 17(f) shows the results of this experiment.

Using DoG+Patches, our approach achieves an EER perfor-

mance of 64% (corresponding to 363 correct detections with

204 false positives) (Leibe et al. 2005). Applying Hessian-

Laplace and SIFT/Shape Context features, this performance
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Fig. 22 (Color online) Example detections of our approach on difficult crowded scenes from the TUD Pedestrian test set (at the EER). Correct

detections are shown in yellow, false positives in red

is again improved to 80% EER (476 correct detections with

119 false positives).

As already pointed out before, these quantitative results

should be regarded with special consideration. Many pedes-

trians in the test set are severely occluded, and it is often

difficult to decide whether a pedestrian should be annotated

or not. As a consequence, our detector still occasionally re-

sponded to pedestrians that were not annotated. On the other

hand, a significant number of the annotated pedestrians are

so severely occluded that it would be unrealistic to expect

any current algorithm to reach 100% recognition rate with

only a small number of false positives. In order to give a bet-

ter impression of our method’s performance, Fig. 22 there-

fore shows obtained detection results on example images

from the test set (at the EER). As can be seen from those ex-

amples, the proposed method can reliably detect and localize

pedestrians in crowded scenes and with severe overlaps.

7.7.6 Results on Other Datasets

To conclude, we present some example results on images

from the LabelMe database (Russell et al. 2005) to demon-

strate that our system can also be applied when dealing with

very large images, where a large number of potential false

positives need to be rejected. Those results are however only

intended to give a visual impression of our method’s perfor-

mance, not as a systematic evaluation (which the LabelMe

dataset also wouldn’t permit due to its dynamically changing

nature). Figure 23 shows example detections on several such

images, processed at their original resolution of 2048×1536

pixels, and combining both a car and a pedestrian detector.

As can be seen from those results, the system yields accurate

detections even under those conditions while keeping only a

small number of false positives.

8 Discussion and Conclusion

In this paper, we have proposed a method for learning the

appearance and spatial structure of a visual object category

in order to recognize novel objects of that category, localize

them in cluttered real-world scenes, and automatically seg-

ment them from the background. We have provided efficient

algorithms for each of those step and evaluated the result-

ing recognition performance on several large data sets. Our

results show that the method scales well to different object

categories and achieves good object detection and segmen-

tation performance in difficult real-world scenes.

A main contribution of our work is the integration of ob-

ject category detection and figure-ground segmentation into

a common probabilistic framework. As shown in our exper-

iments, the tight coupling between those two processes al-

lows both to benefit from each other and improve their indi-

vidual performances. Thus, the initial recognition phase not
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Fig. 23 Example detections on difficult test images from the MIT La-

belMe data set (Russell et al. 2005). All images were processed at their

original resolution of 2048 × 1536 pixels. The results confirm our ap-

proach’s ability to yield accurate detections in such complex scenes

with only very few false positives, as the enlargements in the bottom

rows show

only initializes the top-down segmentation process with a

possible object location, but it also provides an uncertainty

estimate of local measurements and of their influence on

the object hypothesis. In return, the resulting probabilistic

segmentation permits the recognition stage to focus its ef-

fort on object pixels and discard misleading influences from

the background. Altogether, the two processes collaborate

in an iterative evidence aggregation scheme which tries to
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make maximal use of the information extracted from the im-

age.

In addition to improving the recognition performance

for individual hypotheses, the top-down segmentation also

allows to determine exactly where a hypothesis’s support

came from and which image pixels were responsible for

it. We have used this property to design a mechanism that

resolves ambiguities between overlapping hypotheses in a

principled manner. This mechanism constitutes a fundamen-

tal novelty in object detection and results in more accu-

rate acceptance decisions than conventional criteria based

on bounding box overlap.

The core part of our approach is the Implicit Shape Model

defined in Sect. 4.3. This implicit representation is flexi-

ble enough that it can combine the information of local ob-

ject parts observed on different training examples and in-

terpolate between the corresponding objects. As a result,

our approach can learn object models from few examples

and achieve competitive object detection performance al-

ready with training sets that are between one and two or-

ders of magnitude smaller than those used in comparable

approaches. Taking a broader view, this implicit model can

be seen as a further generalization of the Hough Transform

to work with uncertain data. In our approach, we have used

this capability to represent the uncertainty from intra-class

variation, but it would also be possible to use it with dif-

ferent sources of uncertainty, e.g. for the identification of

known objects under lighting variations.

The run time of the resulting approach mainly depends

on three factors: model complexity (the number of code-

book entries and occurrences), image size, and the selected

search scale range. Using our current implementation, the

single-scale car detector based on Harris points takes be-

tween 2–3 s for a typical 320 × 240 test image. Typical run-

times of the pedestrian detector (without our more recent

GPU-based top-down segmentation) range between 4–7 s

for the same image size, including feature extraction, detec-

tion, top-down segmentation, and MDL verification. We ex-

pect that both run-times can still be considerably improved

by a more efficient implementation.

The system can still be extended in several ways. For

very large scale changes such as the ones encountered in

the last experiment, it can be advantageous to work on sev-

eral rescaled versions of the image, simply because of com-

putational efficiency. Other possible extensions include the

integration of multiple cues and the combination of several

detectors for multi-category discrimination. Finally, many

real-world applications require that objects be recognized

from multiple viewpoints. While this can in principle be

achieved by simply stacking several single-view detectors,

such an approach would not take advantage of the possibility

to share features (Torralba et al. 2004). Extending the ISM

approach towards this goal will be a topic of future work.
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