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Abstract
We propose a framework for learning robust, adaptive,

appearance models to be used for motion-based tracking of

natural objects. The approach involves a mixture of stable

image structure, learned over long time courses, along with

2-frame motion information and an outlier process. An on-

line EM-algorithm is used to adapt the appearance model

parameters over time. An implementation of this approach

is developed for an appearance model based on the filter

responses from a steerable pyramid. This model is used

in a motion-based tracking algorithm to provide robustness

in the face of image outliers, such as those caused by oc-

clusions. It is also provides the ability to adapt to natu-

ral changes in appearance, such as those due to facial ex-

pressions or variations in 3D pose. We show experimental

results on a variety of natural image sequences of people

moving within cluttered environments.

1 Introduction

One of the main factors that limits the performance of

visual tracking algorithms is the lack of suitable appearance

models. This is true of template-matching methods that do

not adapt to appearance changes, and it is true of motion-

based tracking where the appearance model can change

rapidly, allowing models to drift away from targets.

This paper proposes a robust, adaptive appearance model

for motion-based tracking of complex natural objects. The

model adapts to slowly changing appearance, and it main-

tains a natural measure of the stability of the observed im-

age structure during tracking. By identifying stable prop-

erties of appearance we can weight them more heavily for

motion estimation, while unstable properties can be propor-

tionately downweighted.

The generative model for appearance is formulated as a

mixture of three components, namely, a stable component

that is learned with a relatively long time-course, a 2-frame

transient component, and an outlier process. The stable

model identifies the most reliable structure for motion esti-

mation, while the two-frame constraints provide additional

information when the appearance model is being initialized

or provides relatively few constraints. The parameters of

the model are learned efficiently with an on-line version of

the EM algorithm.

The appearance model and the tracker can be used with

different types of image properties. Here we consider a

class of models that express image appearance in terms

of the complex-valued coefficients of a steerable pyramid.

This wavelet-based model allows for the stability at differ-

ent scales or in different spatial neighborhoods to be as-

sessed independently.

Together these components yield a robust motion esti-

mator that naturally combines both stable appearance con-

straints and two-frame motion constraints. The approach

is robust with respect to occlusions, significant image de-

formations, and natural appearance changes like those oc-

curring with facial expressions and clothing. The appear-

ance model framework supports tracking and accurate im-

age alignment for a variety of possible applications, such as

localized feature tracking, and tracking models for which

relative alignment and position is important, such as limbs

of a human body.

2 Previous Work

Although not always described as such, every motion es-

timation and tracking method embodies some representa-

tion of image appearance. The common appearance mod-

els include templates [8, 13, 14, 15], view-based subspace

models [2, 9], the most recent frame in 2-frame flow esti-

mation [16, 17], temporally filtered, motion-compensated

images [10, 18, 20], and global statistics [1, 3].

Tracking with fixed templates can be reliable over short

durations, but it copes poorly with appearance changes over

longer durations that occur in most applications. Reliability

can be improved with the use of subspace models of appear-

ance [2, 9], but these are object specific and often require

training prior to tracking. Frey [8] proposed a tracker with

image templates that model the mean and the variance of

each pixel during tracking. The method we propose below

bears some similarity to this; however, we use wavelets, on-

line learning, and a robust mixture model instead of a Gaus-

sian density at each pixel.

The use of global statistics, such as color histograms

have been popular for tracking [1, 3], but they will not accu-

rately register the model to the image in many cases. These

methods also fail to accurately track regions that share sim-

ilar statistics with nearby regions.



Figure 1. Cropped images from a 1200 frame sequence

taken with handheld video camera. The ellipse shows the

region in which the motion and appearance are estimated.

Motion-based trackers integrate motion estimates

through time. With 2-frame motion estimation the appear-

ance model is, implicitly, just the most recently observed

image. This has the advantage of adapting rapidly to

appearance changes, but it suffers because models often

drift away from the target. This is especially problematic

when the motions of the target and background are similar.

Motion estimation can be improved by accumulating an

appearance model through time. Indeed, optimal motion

estimation can be formulated as the estimation of both

motion and appearance simultaneously [20]. For example,

one could filter the stabilised images with linear IIR filters

[10, 18]. But linear filtering does not provide robustness to

outliers or measures of stability.

This paper describes a robust appearance model that

adapts to changes in image appearance. The three key con-

tributions include: 1) an appearance model that identifies

stable structure and naturally combines both stable struc-

ture and transient image information; 2) an on-line version

of EM for learning model parameters; and 3) a tracking al-

gorithm which simultaneously estimates both motion and

appearance. Like all adaptive appearance models there is a

natural trade-off that depends on the time-course of adap-

tation. Faster time courses allow rapid adaptation to ap-

pearance change, while slower time courses provide greater

persistence of the model, which allow one to cope with oc-

clusions and other outliers. Here we find a balance between

different time courses with a natural mixing of both 2-frame

motion information and stable appearance that is learned

over many frames.

3 WSL Appearance Model Framework

We first introduce the model with a single real-valued

data observation, say dt at each frame t. As a motiva-

tional example, consider tracking a region, such as the face

in Fig. 1 (see also [21]), using a simple parametric mo-

tion model. As the subject’s head moves, the local ap-

pearance of the stabilized image can be expected to vary

smoothly due to changes in 3D viewpoint and to changes

in the subject’s facial expression. We also expect the oc-

casional burst of outliers caused by occlusion and sudden

appearance changes, such as when the glasses are removed.

These phenomena motivate the components of our ap-

pearance model. The first component is the stable model,

S, which is intended to capture the behaviour of tempo-

rally stable image observations when and where they occur.

In particular, given that the stable component generated the

observation dt, we model the probability density for dt by

the Gaussian density ps(dt j�s;t; �
2
s;t). Here �s;t and �2

s;t

are piecewise, slowly varying functions specifying the mean

and variance of the Gaussian model.

The second component of the model accounts for data

outliers, which are expected to arise due to failures in track-

ing, or occlusion. We refer to the corresponding random

process as the ‘lost’ component, and denote it by L. The

probability density for L, denoted by p l(dt), is taken to be

a uniform distribution over the observation domain.

The synthetic signal depicted in Figure 2(top) provides

an idealized example of these generative processes. The

smooth (dashed blue) curve represents the piecewise slowly

varying appearance signal. The observed data (red) has

been corrupted by long-tailed noise formed from a mixture

of the Gaussian density ps(dtj�s;t; �
2
s;t), and the broad dis-

tribution pl(dt) for the lost component. In accordance with

our discussion of Figure 1, we have also included an ap-

pearance discontinuity at frame 600, and a burst of outliers

representing an occluder between frames 300 and 315.

The third component of our model is motivated by the

the desire to integrate the appearance model with an image-

based tracking algorithm. That is, for a selected image re-

gion we wish to learn a model for the dominant stable im-

age structure within the region and to simultaneously track

it. This is difficult because we do not expect to have an

initial stable appearance model, nor a good idea for how

the object moves. The third component, called the wander-

ing model W , determines what should be tracked in such a

situation. In effect, this wandering component permits the

tracker described in Section 6 to gracefully degrade to a 2-

frame motion tracker when the appearance model does not

account for enough past data observations.

The wandering component needs to allow both for more

rapid temporal variations and shorter temporal histories

than are required for the reliable estimation of the stable

model parameters. As such, we choose the probability den-

sity for dt, given that it is generated by W , to be the Gaus-

sian density pw(dt j dt�1). Here the mean is simply the ob-

servation from the previous frame, d t�1, and the variance is

fixed at �2w.
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Figure 2. Estimation using on-line EM. (top) The original

data (thin red) with true state (dashed blue) and the esti-

mated mean of the stable process (thick black). The noise

is a mixture of Gaussian and uniform densities, with mix-

ing probabilities (0.9, 0.1), except for 15 frames at 300

which are pure outliers. (bottom) Mixing probabilities for

S (black),W (dashed red), and the L (light green).

The three components W , S, and L, are combined in a

probabilistic mixture model for dt,

p(dt j qt;mt; dt�1) = mwpw(dt; dt�1) +

msps(dt; qt) + ml pl(dt) ; (1)

where m = (mw;ms;ml) are the mixing probabilities, and

qt = (�s;t; �
2
s;t) contains the mean and variance parameters

of the stable component of the model.

4 Parameter Estimation with On-line EM

Our goal is to estimate the parameters of the generative

model in (1), namely, the mean and variance of the predic-

tion of the data, dt, by the stable process, q = (�s; �
2
s),

and the mixing probabilities m = (mw;ms;ml). More-

over, since we plan to apply the estimation scheme to filter

responses, we seek a simple computational algorithm which

requires a small amount of memory for each observation.

Anticipating a recursive formulation, and allowing for

temporal adaptation of the model parameters, we consider

data observations under an exponential envelope located at

the current time, St(k) = �e�(t�k)=� , for k � t. Here,

� = ns= log 2, where ns is the half-life of the envelope

in frames, and � = 1 � e�1=� so the envelope weights

St(k) sum to 1. With this envelope we can express the

log-likelihood of the observation history, d t = fdkg
t
k=0,

according to the density in (1):

L(dt jmt; qt) =
�1X

k=t

St(k) log p(dk jmt; qt; dk�1) (2)

where mt and qt denote parameters relevant to the data un-

der the temporal support envelope S t(k). Although these

parameters change slowly through time, we first consider

an EM-algorithm [4] for estimating mt and qt that assumes

they are constant under the temporal window. The form of

these EM-updates provides the basis for our on-line method.

Given a current guess for the state variables mt and qt

(constant over the temporal window), the E-step provides

the ownership probabilities for each observation dk:

oi;t(dk) =
mi;t pi(dk; qt; dt�1)

p(dk; mt; qt; dk�1)
; (3)

for i 2 fw; s; lg (see [4]). Conditioned on these owner-

ships, the M-step then computes new maximum likelihood

estimates for the parameters mt and qt. First, the updated

mixture probabilities, mt, are given by

mi;t = K

�1X

k=t

St(k) oi;t(dk) (4)

for i 2 fw; s; lg (we have reused the notationmi;t to denote

the updated values). Here K is a normalization constant to

ensure that the mixing probabilities sum to one. Similarly,

the M-step for the mean and variance are

�s;t =
M1;t

ms;t

; �2s;t =
M2;t

ms;t

� �2s;t ; (5)

where Mj;t are the ownership weighted first- and second-

order moments,

Mj;t =

�1X

k=t

St(k) d
j
k os;t(dk) ; (6)

for j = 1; 2. The standard EM-algorithm then consists of

iterating the steps outlined in equations (3) – (6).

This EM-algorithm requires that the data from previous

times be retained to compute os;t(dk), which is impractical

for an on-line approach. Instead we adopt an approxima-

tion to (3) – (6). To this end, we first exploit a recursive

expression for the exponential support S t(k) to obtain,

Mj;t= St(t) d
j
t os;t(dt) +

�1X

k=t�1

St(k) d
j

k os;t(dk) ;

= �d
j
t os;t(dt) + (1��)

�1X

k=t�1

St�1(k) d
j
k os;t(dk) ; (7)

In order to avoid having to retain past data, we approxi-

mate the current ownership of past data by the ownerships

at the times the data were first observed. That is, we replace

os;t(dk) by os;k(dk), to obtain the approximate moments

M̂j;t = � d
j
t os;t(dt) + (1��)

�1X

k=t�1

St�1(k) d
j
k os;k(dk) ;

= � d
j
t os;t(dt) + (1� �) M̂j;t�1 (8)



We also approximate the mixing probabilities the same way:

m̂i;t = � oi;t(dt) + (1� �) m̂i;t�1 : (9)

for i 2 fs; w; lg. One further deviation from these equa-

tions is used to avoid singular situations; i.e., we impose a

non-zero lower bound on the mixing probabilities and � s;t.

In this approximation to the batch EM in (3) – (6), as

mentioned above, we do not update the data ownerships

of the past observations. Therefore when the model pa-

rameters change rapidly this on-line approximation is poor.

Fortunately, this typically occurs when the data are not sta-

ble, which usually results in a low mixing probability and

a broad variance for S in any case. Conversely, when the

mean and variance drift slowly, the on-line approximation

is typically very good (see Fig. 2).

Given sudden changes in appearance, or unstable data,

the S process often loses track of the mean, and is given a

small mixing probability (see Fig. 2). Thus it is necessary to

occasionally restart the appearance model. Here we restart

the model whenever the ms;t falls below a fixed threshold

(we used 0.1). This is done by simply resetting the values

of all state variables. The new values for the mixing prob-

abilities mi;t are 0.4, 0.15, and 0.45 for i = w; s; l. The

smaller value for ms;t reflects an initial uncertainty for the

S model. The new values for the momentsMj;t for j = 1; 2
are taken to be dtms;t and �2s;0ms;t, respectively. In effect

this restarts the stable model with a mean given by the cur-

rent observation dt, and a variance given by the constant

�2s;0. Here we use �s;0 = �w=1:5. These same values are

used for initialization in the first frame.

Figure 2 illustrates the EM procedure on our 1D exam-

ple with half-life ns = 8. Initially the W model owns most

of the data until the stable S model gains confidence. Dur-

ing the outlier burst at frame 300 the outlier L model owns

a greater share of the data. At the jump at frame 600 the

S component is a poor predictor for the data, and its mix-

ing probability drops quickly. Accordingly, because the W
component can explain the data, its mixing probability in-

creases. At frame 625 the S model mixing probability drops

sufficiently low that the procedure restarts, after which the

S model locks back onto the true state.

5 Wavelet-based Appearance Model

There are many properties of image appearance that one

could learn for tracking and object search. Examples in-

clude local color statistics, multiscale filter responses, and

localized edge fragments. In this work, we applied the

on-line EM procedure to responses of a steerable pyramid

(based on the G2 and H2 filters of [7]). Steerable pyra-

mids provide a description of the image at different scales

and orientations which is useful for coarse-to-fine differen-

tial motion estimation, and for isolating stability at different

scales. Here we use G2 and H2 filters at two scales, tuned

to wavelengths of 8 and 16 pixels (subsampled by factors of

2 and 4), with 4 orientations at each scale.

From the filter outputs, we chose to maintain a repre-

sentation of the phase structure as our appearance model.

This gives us a natural degree of amplitude and illumina-

tion independence, and it provides the fidelity for accurate

image alignment afforded by phase-based methods [5, 6].

Phase responses associated with small filter amplitudes, or

those deemed unstable according to the technique described

in [5], were treated as outliers.

In what follows, given an image pyramid and a tar-

get region Nt, let fd(x; t)gx2Nt
denote the set of phase

observations from all filters at time t in the region. Let

At = f(m(x; t); q(x; t)gx2Nt
denote the entire appearance

model of the phase at each orientation, scale, and spatial lo-

cation in Nt. The half-life of the exponential temporal sup-

port, St(k), was set to ns = 20 frames. The other parame-

ters of the on-line EM estimator are: 1) the outlier probabil-

ity, which is uniform on [��; �); 2) the standard deviation

of the W process on phase differences, which we take to

be mean-zero Gaussian with �w = 0:35�; and 3) the mini-

mum standard deviation of the stable process, �s;0 = 0:1�.

These latter parameters are specific to the use of phase.

6 Motion-Based Tracking

We demonstrate the behaviour of the adaptive, phase-

based appearance model in the context of tracking nonrigid

objects. For this demonstration we manually specify an el-

liptical region N0 at time 0. The tracking algorithm then

estimates the image motion and the appearance model as it

tracks the dominant image structure in Nt over time.

The motion is represented in terms of frame-to-frame

parameterized image warps. In particular, given the warp

parameters at, a pixel x at frame t � 1 corresponds to the

image location xt = w(x; at) at time t, where w(x; at) is

the warp function. We use similarity transforms here, so

at = (ut; �t; �t) is a 4-vector describing translation, rota-

tion, and scale changes, respectively. Given the parameter

vector at, Nt is just the elliptical region provided by warp-

ing Nt�1 by w(x; at). Other parameterized image warps

and other forms of image regions could also be used.

To find an optimal warp we (locally) maximize the sum

of the data log likelihood and a log prior that provides a

preference for slow and smooth motions (cf. [19]). In terms

of the motion and appearance models outlined above, the

data log-likelihood can be expressed as

L(fd(w(x; at); t)g jAt�1) = (10)
X

x2Nt�1

log p(d(w(x; at); t) jmx;t�1; qx;t�1; d(x; t� 1)) :

Intuitively, this can be understood as follows: data at the

current frame t is warped back to the coordinates of frame

t � 1 according to the parameters at. The log likelihood

of this warped data fd(w(x; at); t)g is then computed with

respect to the appearance model At�1.



Figure 3. Each row shows, from left to right, the tracking region, the stable component’s mixing probability ms(x; t), mean �s(x; t),
and ownership probability os(x; t). The rows correspond to frames 244, 259, 274, and 289, top to bottom. Note the model persistence

and the drop in data ownership within the occluded region.

The prior is introduced mainly to cope with occlusions,

and to exploit the persistence of the stable component S.

We take the prior density over the motion parameters a t =
(ut; �t; �t), conditioned on the motion at time t � 1, ât�1,

to be a product of two 4D Gaussians:

p(at j ât�1) = G(at; ~�; C1) G(at; ât�1; C2) : (11)

The first Gaussian prefers slow motions, with mean ~� �
(0; 0; 0; 1) and covariance C1 � diag(82; 82; 0:052; 0:012).
Here, translations are measured in pixels, rotational ve-

locities in radians, and the scale parameter is a multi-

plicative factor so ~� specifies the identity warp. The sec-

ond Gaussian prefers slow changes in motion, with C2 �
diag(1; 1; 0:022; 0:012).

In order to estimate at we can almost directly apply the

EM-algorithm described in [11]. We omit the details due

to space limitations, and instead just sketch the E-step and

M-step. The E-step determines the ownership probabilities

for the backwards warped data fd(w(x; at); t)g, as in (3)

above. The M-step uses these ownerships to form a linear

system for the update Æat:

(As + �Aw)Æat = bs + �bw : (12)

Here, Ai is a 4 � 4 matrix and bi a 4-vector, for i = w; s.

These quantities are formed from the motion constraints

weighted by the ownership probabilities for the W and S
processes, respectively (see [11]). Also, � is a weighting

factor for the wandering constraints. A proper M-step for

maximizing the likelihood in (10) would use the weight � =
1. We have found it useful to downweight the constraints

owned by the wandering model by a factor of � = 1=n s,

where ns is the half-life of the exponential temporal win-

dow used in the appearance model. We use coarse-to-fine

matching and deterministic annealing (see [11], [12]) in fit-

ting the warp parameters.

Once the warp parameters at have been determined, we

convect the appearance model At�1 forward to the current

time t using the warp specified by at. To perform this warp



Figure 4. The adaptation of the model during tracking. (top) The target region in selected frames 200, 300, 480. (bottom) The stable

component’s mixing probability (left) and mean (right) for the selected frames.

Figure 5. Adaptation to changes of expression. (top) The target region in selected frames 420, 455, 490. (bottom) The stable

component’s mixing probability (left) and mean (right) for the selected frames (time increases left to right in each set). Note how

the regions around the mouth and eyebrows adapt, while others remain stable.

we use a piecewise constant interpolant for the WSL state

variables m(x; t�1) and �s(x; t�1). This interpolation was

expected to be too crude to use for the interpolation of the

mean �(x; t� 1) for the stable process, so instead the mean

is interpolated using a piecewise linear model. The spatial

phase gradient for this interpolation is determined from the

gradient of the filter responses at the nearest pixel to the

desired location x on the image pyramid sampling grid [6].

7 Experiments

The behaviour of the tracking algorithm is illustrated in

Fig. 3 where we plot the elliptical target regionNt, the mix-

ing probability ms(x; t), the mean �s(x; t), and the data

ownership os;t(x; t) for the stable component, each overlaid

on the original images. In these and the following images

we only show responses where ms(x; t) is greater than a

fixed threshold. Thus, blank areas indicate that the appear-

ance model has not found stable structure. As is expected,

the significant responses (shown in black) for the S compo-

nent occur around higher contrast image regions.

For Fig. 3 the processing was started roughly 70 frames

prior to the one shown on the top row [21]. The significant

responses for ms;t and os;t demonstrate that the appearance

model successfully identified stable structure, typically in-

side the object boundary. On the second and third rows

of Fig. 3, where the person is occluded by the sign, note

that ms(x; t) decays smoothly in the occluded region due

to the absence of data support, while the mean �s(x; t) re-

mains roughly fixed until ms falls below the plotting thresh-

old. This clearly demonstrates the persistence of the ap-

pearance model. The third row depicts the model after



Figure 6. Robust tracking despite occlusion. Tracking results for frames 200, 205, 210 and 215 are shown, top to bottom. The

elliptical tracking region, and the stable model’s mixing probability, mean and ownership are arranged left to right. Note that the

model is misaligned during the occlusion (see the second and third images on the second row) but that it promptly realigns. Also,

note the stability and model persistence (left three columns), along with the reduced data ownership on the hand (right column).

roughly 20 frames of occlusion (recall the half-life of the

model is ns = 20), by which time the weaker components

in S have disappeared. However, the model continues to

track through this occlusion event and maintains the sta-

ble model on the visible portion of the subject. When the

person emerges from behind the occluder, the appearance

model rebuilds the dissipated stable model.

The ability to adapt to changing appearance is demon-

strated in Fig. 4 [21]. Here, despite the person turning to

walk in the opposite direction (at frame 300), the S com-

ponent maintains a reasonable model for the stable image

structure.

One of our goals was to track and identify stable prop-

erties in images of nonrigid objects, such as in the example

shown in Fig. 5. From the images of ms in Fig. 5(bottom

left), notice that the mouth region was initially identified as

stable, but after the person smiles the stability is weakened

significantly. Once the new expression has been held for

about 20 frames the structure is again identified as stable.

Other parts of the face, such as the eyebrows show similar

behaviour. Conversely, the values of ms near the hairline

and on nose continue to increase through these events, indi-

cating that they are consistently stable and, overall, the head

is being accurately tracked.

The behaviour during a brief occlusion event is shown

in Fig. 6, where the person’s hand reaches up to brush their

hair back. The model persists, with ms and �s remaining

essentially constant despite the occlusion. By contrast, no-

tice that the data ownerships os;t clearly reflect the pres-

ence of the occluder. Also note that the data ownerships are

not perfect; there are some false matches to the appearance

model in the area of the occluder. Presumably these are a re-

sult of ‘accidental’ alignments of the phase responses from

the occluder with those of the appearance model. Given that

the minimum standard deviation for �s is 0:1�, we should

expect the false target rate to be reasonably high. In fact,

these false targets appear to drag the model into misalign-

ment during the occlusion (see the caption in Fig. 6 for



Figure 7. Tracking with partial occlusion along with vari-

able lighting, appearance and size. The camera was station-

ary, and the sequences are each roughly 250 frames. We

show the highlighted target region for selected frames su-

perimposed on the last frame.

a pointer to this), but that the appearance model is subse-

quently able to lock back on. Such a misalignment would

clearly persist in any 2-frame tracking algorithm.

Finally, Fig. 7 shows the stability of the joint estimation

of motion and appearance, despite significant changes in

size and lighting conditions. Even more challenging for the

current method are the (at times) small target regions, and

the small separation of the object motion from the back-

ground motion (about a pixel per frame). Also, roughly half

the target region is occluded by the bushes at times. The two

runs depicted in Fig. 7 are close to the limit of our approach

in terms of these latter sources of difficulty.

In our tests we have identified two failure modes [21].

The first is caused by acceptance of non-target constraints

as being consistent with the appearance model (see discus-

sions of Figs. 3, 6 and 7). These erroneous constraints per-

turb the alignment of the model and, if this effect is suffi-

ciently large, a tracking failure can occur. Second, when the

tracked object consistently moves with its background, then

the appearance model also learns the background structure.

Tracking can fail if the object then moves independently.

Possible topics for future work include the incorporation

of colour and brightness data into the appearance model,

and the use of the stable appearance model for image match-

ing to recover from tracking failures caused by total occlu-

sion.
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