
Robust Online Belief Space Planning in Changing Environments:

Application to Physical Mobile Robots

Ali-akbar Agha-mohammadi, Saurav Agarwal, Aditya Mahadevan,

Suman Chakravorty, Daniel Tomkins, Jory Denny, Nancy M. Amato

Abstract— Motion planning in belief space (under motion and
sensing uncertainty) is a challenging problem due to the compu-
tational intractability of its exact solution. The Feedback-based
Information RoadMap (FIRM) framework made an important
theoretical step toward enabling roadmap-based planning in
belief space and provided a computationally tractable version
of belief space planning. However, there are still challenges in
applying belief space planners to physical systems, such as the
discrepancy between computational models and real physical
models. In this paper, we propose a dynamic replanning scheme
in belief space to address such challenges. Moreover, we present
techniques to cope with changes in the environment (e.g.,
changes in the obstacle map), as well as unforeseen large
deviations in the robot’s location (e.g., the kidnapped robot
problem). We then utilize these techniques to implement the
first online replanning scheme in belief space on a physical
mobile robot that is robust to changes in the environment and
large disturbances. This method demonstrates that belief space
planning is a practical tool for robot motion planning.

I. INTRODUCTION

Sequential decision making under uncertainty is a key

prerequisite for many robotics applications. Consider an

autonomous, low-cost mobile robot that is subject to motion

noise and lacks exact measurements due to sensor noise.

Controlling this robot and planning motions for it is an in-

stance of the Partially-Observable Markov Decision Process

(POMDP) [13], [23] problem, which is a formal framework

for sequential decision making under uncertainty. However,

the POMDP problem is also notorious for its computational

intractability. Methods such as [11], [15], [18], [24], [25]

reduce the computation burden of POMDPs and aim to

solve more challenging and realistic problems. Recently, the

Feedback-based Information RoadMap (FIRM) framework

[3] takes an important theoretical step toward realistic scenar-

ios by significantly reducing the computational complexity

of planning under uncertainty.

Additionally, handling changes in the environment (e.g.,

obstacles), changes in the goal location, and large deviations

Agha-mohammadi is with the Laboratory for Information and Decision
Systems, MIT, Cambridge, MA, 02139. Agarwal and Chakravorty are with
the Dept. of Aerospace Engineering, and Mahadevan, Tomkins, Denny,
and Amato are with the Dept. of Computer Science and Engineering,
Texas A&M University, TX, 77843, USA. Emails: aliagha@mit.edu
{sauravag,mahadeven,schakrav,kittsil,jorydenny
amato}@tamu.edu. This research supported in part by AFOSR Grant
FA9550-08-1-0038 and by NSF awards CNS-0551685, CCF-0833199,
CCF-0830753, IIS-0916053, IIS-0917266, EFRI-1240483, RI-1217991, by
NIH NCI R25 CA090301-11, by Chevron, IBM, Intel, Oracle/Sun and by
Award KUS-C1-016-04, made by King Abdullah University of Science
and Technology (KAUST). J. Denny supported in part by an NSF Graduate
Research Fellowship.

(a)

Back-door of

407 region

Front-door of
407 region

(b)

Fig. 1. (a) A picture of robot (iRobot Create) in the operating environment.
Landmarks can be seen on the walls. (b) Floorplan of the environment, in
which experiments are conducted.

in the robot’s location calls for online planning in uncertain,

partially observable environments. However, when dealing

with real-world physical systems, POMDP-based methods,

including FIRM, encounter another important challenge:

discrepancy between real models with the models used for

computation. Such discrepancies can lead to deviations from

the desired plan. Moreover, changes in the environment and

large disturbances are other important challenges that needs

to be handled. One strategy to address this problem is an

ability to dynamically replan in belief space. In this paper,

we propose a principled rollout-based extension of FIRM

planning to facilitate its application to real-time stochastic

(re)planning problems, and deal with changes in the envi-

ronment and large disturbances in the robot’s state.

In the main body of POMDP literature, in particular

sampling-based methods, the computed solution depends on

the initial belief [4], [7], [9], [14], [21], [28] (sometimes

referred to as single-query solvers). Therefore, in replanning

(planning from a new initial belief) almost all the compu-

tations need to be done again, which prohibits their usage

in cases where real-time dynamic replanning schemes, such

as Receding Horizon Control (RHC), are needed. However,

multi-query methods such as FIRM [2], [3] provide a con-

struction mechanism independent of the initial belief of the

system. As a result, they are suitable methods to be used for

dynamic replanning purposes.

Trajectory optimization-based methods can also be used

for replanning in an RHC scheme. The RHC framework was

originally designed for deterministic systems. The most com-

mon approach is to approximate the stochastic system with a

deterministic one by replacing the uncertain quantities with

their mean (or maximum likelihood) values [5]. Methods

such as [8], [10], [12], [20], [27] fall into this category and

can be used in the RHC setting; they replace future random

observations with their deterministic maximum likelihood

value. However, in this form of RHC, the optimization is

carried out only within a limited horizon. Also, removing

the system’s stochasticity may lead to unreliable plans.

The main contributions of this paper are threefold.

• We propose a principled method for real-time replan-

ning in belief space by extending the idea of the rollout

policy [5] to belief space using FIRM. This method

considers all possible future observations.

• We propose techniques such as a “lazy feedback evalu-

ation” algorithm to react to changes in the environment

as well as large disturbances.

• We implement the proposed belief space planning

scheme on a physical robotic system as an application

of the FIRM framework. We demonstrate the robustness

of the method to changes in the environment, failures

in the sensory system, and large deviations.

These results lay the groundwork for further application of

the theoretical POMDP framework to practical applications,

thus moving toward long-term autonomy in robotic systems.

II. PROBLEM STATEMENT AND TARGET APPLICATION

We aim to design a belief space planner that can han-

dle uncertainties associated with a typical low-cost robot.

Moreover, the planner needs to be able to replan in real-

time so that it can cope with changes in the environment as

well as deviations resulting from model discrepancies, large

disturbances, and sensor failures.

To formally define the problem, we start by defining the

concept of belief and policy. Consider a system whose state,

control, and motion noise are denoted by xk, uk, and wk,

respectively, at the k-th time step. Let us denote the state

evolution model by xk+1 = f(xk, uk, wk). In a partially

observable environment, the exact value of system state xk

is not known. However, we can get the measurement (or

observation) vector zk at the k-th time step through sensors.

Let us denote the measurement model by zk = h(xk, vk),
where vk denotes sensing noise. Therefore, the only available

data for decision making at the k-th time step are the

observations we have received and the controls we have

applied up to that time step, i.e., Hk = {z0:k, u0:k−1} =
{z0, z1, · · · , zk, u0, · · · , uk−1}. A filtering module can en-

code this data into a probability distribution over all possible

system states bk = p(xk|Hk), which is referred to as the

belief or information-state. Therefore, the action uk can be

taken based on the belief bk using a policy (planner) πk, i.e.,

uk = πk(bk). In Bayesian filtering, belief can be computed

recursively based on the last action and current observation,

bk+1 = τ(bk, uk, zk+1) [5], [26].

To find the policy πk, we need to define the objective of

planning. Although the objective function can be general,

the cost function we will use in our experiments includes

the localization uncertainty, control effort, and elapsed time.

c(bk, uk) = ζptr(Pk) + ζu‖uk‖+ ζT , (1)

where tr(Pk) is the trace of estimation covariance. The norm

of the control signal ‖uk‖ denotes the control effort, and ζT
is present in the cost to penalize each time lapse. Coefficients

ζp, ζu, and ζT are user-defined task-dependent scalars that

combine these costs to achieve a desirable behaviour. In the

presence of a constraint set F (e.g., obstacles), we assume

that the task fails if the robot violates these constraints (e.g.,

collides with obstacles). Therefore, in case of failure, the

running-sum of costs (cost-to-go), i.e., J(F) =
∑∞

t′ c(b, u)
is set to a suitably high cost-to-go.

Planning under uncertainty is defined as finding a sequence

of policies π0:∞(·)={π1(·), π2(·), π3(·), · · · }. Therefore, the

original problem of stochastic control with imperfect state

information is defined as follows:

Problem 1. (POMDP) The problem of stochastic control

with imperfect state information, or the Partially-Observable

Markov Decision Process (POMDP) problem, is defined as

the following optimization over the policy space:

π0:∞(·) = arg min
Π0:∞

∞∑

k=0

E [c(bk, πk(bk))] (2)

s.t. bk+1 = τ(bk, πk(bk), zk), zk ∼ p(zk|xk)

xk+1 = f(xk, πk(bk), wk), wk ∼ p(wk|xk, πk(bk))

where, Πk is the space of all possible policies at time step

k, i.e., πk ∈ Πk.

In the infinite horizon case, the solution is a stationary

policy πs, i.e., π1 = π2 = · · · = πs. However, Problem 1 is

written in a more general setting to emphasize the connection

with rollout policy, discussed further below. Solving the

POMDP problem is computationally intractable over con-

tinuous state, action, and observation spaces. However, the

main problem that this paper aims to solve is the following:

Problem 2. (Re-Solving POMDPs in real-time) In case of a

change in the failure set F (e.g. obstacles) or large deviation

in the system’s belief, re-solve Problem 1 in real-time.

This paper aims at solving Problem 2 by exploiting FIRM,

which re-use the computations performed for solving the

POMDP problem a priori and hence can deal with such

changes online.

A. Sample Application Scenario

We exercise the proposed planner in an office-like environ-

ment, where we use a low-cost iRobot Create platform (Fig-

ure 1(a)), on which a Dell Latitude laptop with an on-board

camera is mounted. The robot obtains noisy measurements

(relative range and bearing) from unique landmarks that are

installed in the environment. The desired behaviour for the

planner is to guide the robot to a goal through those regions

of the environment where the robot can better localize itself

and hence better avoid collisions. Most importantly, the

planner needs to be able to replan online so that it can handle

changes in the environment and deviations resulting from

model discrepancies, large disturbances, and sensor failures.

We briefly discuss the environment, robot model, and sensory

system. More detailed descriptions can be found in [1].

Environment: The specific environment for conducting

experiments is the fourth floor of the Bright building at

Texas A&M University. A floorplan is shown in Fig. 1(b).

The hallway (yellow) and the experiment region (blue) are

highlighted. The blue region contains a large cluttered office

(room 407) with several doors.

System model (robot and sensors): We use an iRobot

Create (Fig. 1(a)), whose state xk = (xk, yk, θk)
T encodes

its 2D position and heading angle at the k-th time step.

The state evolution model xk+1 = f(xk, uk, wk) is the

unicycle model, where the control command uk consists of

the linear and angular velocities uk = (Vk, ωk)
T . Motion

noise wk ∼ N (0,Qk) gets added to the control signal (see

[1] for details). For sensing purposes, we use the laptop’s

on-board camera to detect landmarks (with unique black and

white patterns) that are placed at known locations on walls

(Fig. 1(a)). Denoting the j-th landmark position as jL, the

obtained measurement is the relative range and bearing to

the landmark:
jzk = [‖jdk‖, atan2(jd2k ,

jd1k)− θ]T + jv, jv ∼ N (0, jR),

where jdk = [jd1k ,
jd2k]

T := [xk, yk]
T − Lj . Experimen-

tally, we have found that the intensity of measurement noise
jv increases with the distance from the j-th landmark and

the incidence angle. The incidence angle refers to the angle

between the line connecting the camera to a landmark and

a surface normal to the wall on which the landmark is

mounted. Denoting the incident angle by φ ∈ [−π/2, π/2],
we model the sensing noise associated with the j-th landmark

as a zero mean Gaussian whose covariance is
jRk = diag

(
(ηrd‖

jdk‖+ ηrφ |φk|+ σr
b)

2,

(ηθd‖
jdk‖+ ηθφ |φk|+ σθ

b)
2
)

(3)

In our implementation, we use ηrd = 0.1, ηrφ = 0.01,

σr
b = 0.05m, ηθd = 0.001, ηθφ = 0.01, and σθ

b = 2.0deg.

The full vector of measurements z is the concatenation of

measurements from visible landmarks.

III. OVERVIEW OF FIRM

In this section, we briefly review the Feedback-based

Information RoadMap (FIRM) framework [2], [3]. However,

the concrete realization of FIRM constructed for conducting

the experiments is detailed in [1]. An Information RoadMap

(IRM) is a “multi-query” graph in belief space constructed

independent of the initial belief space. Therefore, the in-

tractable belief MDP problem can be reduced to a tractable

MDP problem on this graph. Each node in an IRM is a

small region B = {b : ‖b− b̀‖ ≤ ǫ} around a sampled belief

b̀. We denote the i-th node by Bi and the set of nodes by

V = {Bi}. Each edge in an IRM is a local controller. In

FIRM, each edge (local controller) is a feedback controller

whose goal is to drive the belief into the target node of the

edge. We denote the edge (controller) between nodes i and

j by µij and the set of edges by M = {µij}. A policy πg

on the graph is a mapping from graph nodes to edges; i.e.,

πg : V→M. Denote the set of all possible policies as Πg .

Having such a graph in belief space, we can form the

POMDP on the FIRM graph (so-called FIRM MDP):

πg = argmin
Πg

E

∞∑

n=0

Cg(Bn, π
g(Bn)) (4)

where, Bn is the n-th visited node, and µn is the edge taken

at Bn. Cg(B,µ) :=
∑T

k=0
c(bk, µ(bk)) is the generalized

cost of taking local controller µ at node B centered at b0.

We incorporate the failure set in planning by adding a

hypothetical FIRM node B0 = F to the list of FIRM nodes.

As the FIRM MDP in Eq.(4) is defined over the finite set

of nodes, we can solve it by computing the graph cost-to-go

through solving the following dynamic programming:

Jg(Bi)=min
µ
{Cg(Bi, µ) +

N∑

γ=0

P
g(Bγ |Bi, µ)Jg(Bγ)} (5)

where P
g(Bγ |Bi, µ) is the probability of reaching Bγ from

Bi under µ. The failure and goal cost-to-go’s (i.e., Jg(B0)
and Jg(Bgoal)) are set to a suitably high positive value and

zero, respectively. Accordingly, the replanning algorithms,

when start or goal changes, are presented in Algorithms 1

and 2. For a more detailed description of FIRM, see [1].

Algorithm 1: (Re)plan from

1 input : Start belief b0, cost-to-go Jg(·), nodes V={Bi}
2 output : Next Local Controller µ∗

3 Find r neighboring nodes N = {Bi}ri=1 to b0;

4 Set J∗(B) =∞;

5 for B ∈ N do

6 Construct local planner µ from b0 to B;

7 Compute transition cost C(b0, µ) and probability

P(B|b0, µ);

8 if C(b0, µ) +
N∑

γ=0

P(Bγ |b0, µ)J
g(Bγ) < J∗(B) then

9 J∗(B) = C(b0, µ) +
∑N

γ=0
P(Bγ |b0, µ)J

g(Bγ);

10 µ∗ = µ;

11 return µ∗;

Algorithm 2: (Re)plan to

1 input : Goal node Bgoal, FIRM Graph G = {V,M}
2 output : FIRM feedback πg

3 Add Bgoal to the graph; update V and M accordingly;

4 Compute the cost-to-go Jg and feedback πg over the

FIRM nodes by solving the MDP in Eq. (5);

5 return πg;

IV. DYNAMIC REPLANNING IN BELIEF SPACE

In this section, we first discuss the extension of the

Receding Horizon Control (RHC) and Rollout Policy (ROP)

[5] to belief space. Then we propose an ROP based on FIRM

that can cope with changes in the environment as well as

large deviations.

RHC in belief space: Receding horizon control (often

referred to as rolling-horizon or model-predictive control)

was originally designed for deterministic systems (to cope

with model discrepancy). For stochastic systems, where the

closed-loop (feedback) control law is needed, the best for-

mulation of the RHC scheme is a subject of current research

[8], [16], [22]. In the most common form of RHC [5],

the stochastic system is approximated with a deterministic

system by replacing the uncertain quantities with their typical

values (e.g., maximum likelihood value). In belief space

planning, the quantities that inject randomness into belief

dynamics are unknown future observations. Thus, one can re-

place random observations zk with their deterministic maxi-

mum likelihood value zml
k , where zml

k := argmaxz p(zk|x
d
k)

in which xd is the nominal deterministic value for the state

that results from replacing the motion noise w by zero;

i.e., xd
k+1

= f(xd
k, πk(b

d
k), 0). The deterministic belief bd

is then used for planning in the receding horizon window.

At every time step, the RHC scheme performs a two-stage

computation. To describe these stages, let us assume we are

at step n and the belief is bn. At the first stage, the RHC

scheme for deterministic systems solves an open-loop control

problem (i.e., returns a sequence of actions u0:T) over a

fixed finite horizon T by solving the following optimization

problem:

u0:T = argmin
U0:T

T∑

k=0

c(bdk, uk)

s.t. bdk+1 = τ(bdk, uk, z
ml
k+1), bd0 = bn

zml
k+1 = argmax

z
p(z|xd

k+1)

xd
k+1 = f(xd

k, uk, 0), (6)

In the second stage, it executes only the first action u0

and discards the remaining actions in the sequence u0:T .

However, since the actual observation is noisy and is not

equal to the zml, belief bn+1 will be different than bd1.

Subsequently, RHC performs these two computations from

the new belief bn+1. In other words, RHC computes an

open loop sequence u0:T from this new belief. This process

continues until the belief reaches a desired belief location.

Algorithm 3 recaps this procedure.

Algorithm 3: RHC for Partially-observable stochastic

systems

1 input : Initial belief bcurrent ∈ X, Bgoal ⊂ B

2 while bcurrent /∈ Bgoal do

3 u0:T = Solve the optimization in Eq.(6) starting

from bd0 = bcurrent;
4 Apply the action u0 to the system;

5 Observe the actual z;

6 Compute the belief bcurrent ← τ(bcurrent, u0, z);

State-of-the-art methods such as [27] and [19] utilize this

form of RHC in belief space. This framework is also called

Partially-Closed Loop RHC (PCLRHC) [27] since it partially

exploits some information about the future observations (i.e.,

zml) and does not fully ignore them.

Issues with RHC: There are some issues regarding the

presented form of the RHC framework: First, due to the lim-

ited horizon and ignoring the cost-to-go beyond the horizon,

the method may get stuck into pitfalls by choosing actions

that guide the robot toward “favorable” states (with low cost)

in the near future followed by a set of “unfavorable” states

(with a high cost) in the long run. Second, the presented form

of RHC ignores the stochasticity of the system within the

horizon, which may lead to inaccurate approximations of the

cost and unreliable control actions. To overcome these issues,

researchers have proposed variants of RHC and different

frameworks based on the idea of repeated planning [5]. Here,

we discuss such a framework called “rollout policy” [5] and

aim to realize it in belief space using the FIRM framework.

Rollout policy in belief space: A class of methods that

aims to reduce the complexity of the stochastic planning

problem in Eq.2 is the class of Rollout Policies (ROP) [5],

which are more powerful than the described version of RHC

in the following sense: First, they search for a sequence of

policies (instead of open-loop controls) within the horizon,

and do not approximate the system with a deterministic

one. Second, they use a suboptimal policy, called the “base

policy,” to compute a cost-to-go function J̃ that approximates

the true cost-to-go beyond the horizon. In other words, at

each step of the rollout policy scheme, the following closed-

loop optimization is solved:

π0:T (·) = argmin
Π0:T

E

[
T∑

k=0

c(bk, πk(bk)) + J̃(bT+1)

]
(7)

s.t. bk+1 = τ(bk, πk(bk), zk), zk ∼ p(zk|xk)

xk+1 = f(xk, πk(bk), wk), wk ∼ p(wk|xk, πk(bk))

Then, only the first control law π0 is used to generate the

control signal u0 and the rest of the policies are discarded.

Similar to RHC, after applying the first control, a new

sequence of policies is computed from the new point. The

rollout algorithm is shown in Algorithm 4.

Algorithm 4: Rollout algorithm in Belief Space:

1 input : Initial belief bcurrent ∈ B, Bgoal ⊂ B

2 while bcurrent /∈ Bgoal do

3 π0:T = Solve optimization in Eq.(7) starting from

b0 = bcurrent;
4 Apply the action u0 = π(b0) to the system;

5 Observe the actual z;

6 Compute the belief bcurrent ← τ(bcurrent, u0, z);

Although the rollout policy in the belief space efficiently

reduces the computational cost compared to the original

POMDP problem, it is still formidable to solve, since the

optimization is carried out over the policy space. Moreover,

there should be a base policy that provides a reasonable cost-

to-go J̃ . We propose a rollout policy in the belief space based

on the FIRM-based cost-to-go.

FIRM-based Rollout Policy: In the FIRM-based rollout

policy, we adopt the FIRM policy as the base policy of the

rollout algorithm. Accordingly, the cost-to-go of the FIRM

policy will be used as the cost-to-go beyond the horizon.

Now, if we have a dense FIRM graph such that FIRM nodes

partition the belief space (i.e., ∪iB
i = B), then at the end

of the horizon, the belief bT+1 belongs to a FIRM node

B from which the FIRM cost-to-go is available. However,

in practice, when the FIRM nodes cannot cover the entire

belief space, we need to make sure that a truncated policy

can drive the belief into a FIRM node at the end of horizon.

Nevertheless, since the belief evolution is random, we may

not be able to guarantee that the belief reaches a FIRM node

at the end of a deterministic horizon T . Therefore, instead

of truncating the policy over a fixed time, we truncate the

policy once the belief reaches a pre-specified stopping region

(which happens in a random time denoted by T) as follows:

π0:∞(·) = arg min
Π0:∞

E

[
T∑

k=0

c(bk, πk(bk)) + J̃(bT +1)

]

s.t. bk+1 = τ(bk, πk(bk), zk), zk ∼ p(zk|xk)

xk+1 = f(xk, πk(bk), wk), wk ∼ p(wk|xk, πk(bk))

bT +1 ∈ ∪jB
j , (8)

where for bT +1 ∈ Bj we have

J̃(bT +1) = Jg(Bj) (9)

The last condition in Eq.8 can be written more rigorously as

P(bT +1∈∪jB
j |π)=1 for a finite T . Also, as noted in Eq.(9),

it is worth noting that the FIRM-based cost-to-go Jg(·) plays

the role of the cost-to-go beyond the horizon J̃(·).
Therefore, in solving the FIRM-based rollout policy prob-

lem, we aim to find a sequence of policies that ends up in

a FIRM node and minimizes the cost in Eq.8. To find this

optimal policy, we parametrize the policy space and perform

minimization over the parameter space.

In our implementation, we adopt a variant of the Open-

Loop Feedback Control (OLFC) scheme [5] along with a

Kalman Filter as the belief controller. In this variant of

OLFC, for a given v, we compute an open-loop control

sequence starting from the current estimation mean and

ending at v. Then, we apply a truncated sequence of the

first l controls (l = 5 in our experiments). This process

repeats every l steps until we reach the graph node. More

details can be found in [1]. Therefore, the policy can be

characterized by the next node; i.e., π(·;v). Thus, to solve

the optimization in Eq.7 we search for the FIRM node b̀j =
(vj , P j) whose mean, i.e., vj , leads to the best local policy

π(·;vj). Accordingly, we implement the rollout technique in

Algorithm 4.

V. REPLANNING IN CHANGING ENVIRONMENTS AND

PRESENCE OF LARGE DEVIATIONS

In this section, we discuss how we handle changes in

the obstacle map and large deviations in the robot’s belief.

In general, handling these cases in belief space is a big

challenge as they require online updating of the planning

structure in belief space. It is important to note that it is

the graph structure of FIRM that makes such an update and

replanning feasible in real-time. The graph structure of FIRM

allows us to locally change collision probabilities without

affecting the rest of the graph (i.e., properties of different

edges on the graph are independent of each other). It is

important to note that such a property is not present in other

state-of-the-art belief space planners, including SARSOP

[15], BRM (Belief Roadmap Method) [21], or LQG-MP [28].

In those methods, collision probabilities and costs on all

edges (number of possible edges is exponential in the size

of underlying PRM) need to be re-computed.

A. Lazy Feedback Evaluation in Changing Environments

To adapt the proposed framework to handle changing

environments, we rely on lazy evaluation methods. Inspired

by the lazy evaluation methods for PRM frameworks [6],

we propose a variant of the lazy evaluation methods for

evaluating the generated feedback law. The basic idea is that

at every node the robot re-evaluates only the next edge that it

needs to take or a limited set of edges in the vicinity of the

robot. By re-evaluation, we mean it re-computes collision

probabilities along those edges. If there is a significant

change in the local collision probabilities, then the dynamic

programming problem is re-solved and a new feedback tree is

computed. Otherwise, the feedback tree remains unchanged

and the robot keeps following it. This lazy evaluation scheme

can be performed in real-time. The method is outlined in

Algorithm 5.

Algorithm 5: Lazy Feedback Re-Evaluation

1 input : Feedback πg , current belief bcurrent
2 output : Updated feedback πg

3 Update the obstacles map;

4 if there is a change in map then

5 W ← Retrieve the sequence of nominal edges

returned by feedback up to horizon l;
6 forall the edges µ ∈ W do

7 Re-compute the collision probabilities

Pnew(B,µ) from the start node B of edge;

8 if exists µ ∈ W such that

|Pnew(B,µ)− P(B,µ)| > α then

9 P(B,µ)← Pnew(B,µ);
10 πg ← Replan(bcurrent);

11 return πg;

B. Handling Large Disturbances (kidnapped robot problem)

In robotics, the kidnapped robot problem commonly refers

to a situation where an autonomous robot in operation is

carried to an arbitrary location. This problem introduces

different challenges such as (i) how to detect kidnapping,

(ii) how to localize the robot, and (iii) how to control the

robot to recover from this situation and accomplish its goal.

The third part of this problem calls for online replanning in

belief space.

Detecting a kidnapped situation: To detect the kidnapped

situation, we constantly monitor the innovation signal z̃k =
zk−z

−

k (the difference between actual and predicted observa-

tions). Recall that in our setting the observation at time step

k from the j-th landmark is the relative range and bearing

of the robot to the j-th landmark, i.e., jzk = (jrk,
jθk).

The predicted version of this measurement is shown by
jz−k = (jr−k ,

jθ−k). We monitor the following measures of

the innovation signal:

r̃k = max
j

(|jrk −
jr−k |), θ̃k = max

j
(dθ(jθk,

jθ−k)), (10)

where dθ(θ, θ′) returns the absolute value of the smallest

angle that maps θ onto θ′. Passing these signals through a

low-pass filter, we filter out the outliers (temporary failures in

the sensory reading). Denoting the filtered signals by rk and

θk, we monitor the conditions rk < rmax and θk < θmax. If

both of them are satisfied, we follow the FIRM feedback (i.e.,

we are in the Feedback Following Mode (FFM)). However,

violation of either of these conditions means that the robot

is constantly observing high innovations, and thus it is not in

the location that it was supposed to be (i.e., it is kidnapped).

In Section VI, we show the innovation signal for a sample

run on a physical robot. In our implementation, we consider

rmax = 1 (meters) and θmax = 50 (degrees).

Information Gathering Mode (IGM): Once the robot de-

tects it has been kidnapped, the estimation covariance is

replaced with a large covariance to get an approximately

uniform distribution over the state space. Then, we enter

the Information Gathering Mode (IGM), where we take

small and conservative steps (e.g., turning in place or tak-

ing random actions with small velocities) to obtain more

measurements. Once the robot gets these measurements, the

localization module corrects the estimation value and the

innovation signal reduces. When conditions rk < rmax and

θk < θmax are satisfied again, we exit the information

gathering mode.

Post-IGM replanning: After recovering from being kid-

napped, controlling the robot in belief space remains a

significant challenge because the system can be far from

where it was expected to be. However, using the proposed

method and assuming the FIRM graph has enough nodes

distributed well in the space, the robot needs to go only to

a neighboring node from this new point. Therefore, there is

no need for a costly replanning procedure. Indeed, the only

required computation is to evaluate the cost of edges that

connect the new start point to the neighboring FIRM nodes

based on Algorithm 1.

VI. EXPERIMENTAL RESULTS

In this section, we first discuss the results of PRM and

FIRM-based motion planning and show how belief space

planning can improve the performance. Then, we distinguish

our method from the state-of-the-art by examining and

discussing the robustness properties of the proposed method

to changes in the obstacle map, and to large deviations in

the robot’s location and the goal location. The experiments

are conducted on a low-cost iRobot Create equipped with a

laptop and an integrated monocular web-camera (Fig. 1(a)).

A. Planning with PRM and FIRM

The goal of this section is to compare the performance of

FIRM with deterministic planners such as Medial Axis PRM

(MAPRM) [29]. The solution of the dynamic programming

problem, i.e., πg , is visualized with a feedback tree (FT).

For each node, FT contains only one outgoing edge (µ =
πg(Bi)). FT is rooted at the goal node.

MAPRM-based planning: As one of the best variants of

PRM when it comes to collision avoidance, we construct

an MAPRM [29] in the environment (Fig. 2(a)). As is seen

in Fig. 2(a), the path with maximum obstacle clearance

(and the shortest path) is the one through the front door of

room 407 (see Fig. 1(b)). Therefore, based on the obstacle

clearance, MAPRM leads to the feedback tree shown in

Fig. 2(b) that guides the robot through the front door. To

execute the MAPRM plan we design LQG controllers to

track the computed path. However, due to the lack of enough

information along the solution path, the success rate of this

plan is 27% (27 runs out of 100 Monte Carlo runs were

successful) and the robot frequently collides with obstacles.

FIRM-based planning: In planning with FIRM, the in-

formation distribution in the environment is encoded in the

planning via a framework which leads to a better judgement

of the narrowness of passages in the belief space. Although

in this environment the path through the front door is shorter,

the success probability of traversing through the back door is

more due to the presence of more information sources. Such

knowledge about the environment is reflected in the FIRM

cost-to-go and success probability. As a result, it generates

a policy that suits the application, taking into account the

uncertainty, and available information in the environment.

Solving DP on the FIRM graph gives the feedback shown in

Fig. 2(c), which results in an 88% success probability.

B. Robustness to Changes in the obstacle map

In this section, we investigate the robustness of the

proposed algorithm to changes in obstacles for a physical

system. In our experiments, we consider two types of obsta-

cles. The first set of obstacles (most of the map) are static

obstacles such as walls. The second class of obstacles include

those that discretely change their state such as doors (state

changes between “open” or “closed”) in the environment.

As discussed earlier, handling such changes is a challenge in

state-of-the-art belief space planners since the planner cannot

be updated locally and all computation for constructing the

planner needs to be reproduced, which is not a feasible

operation in real-time. The main focus of the following

experiments is to demonstrate how our method can replan

in real-time when faced with changes in the obstacle map.

We consider the environment shown in Fig. 1(b). The start

and goal locations are shown in Fig. 3(a). We construct a

PRM in the environment ignoring the changing obstacles

(e.g., assuming all doors are open). Leveraging PRM to

construct a FIRM and solving the dynamic programming

problem on it, we get the feedback tree shown in Fig. 3(a)

Starting

point

goal

point

Back-door

is half open

Shortest path

Safest path

(a) (b) (c)

Fig. 2. (a) The environment including obstacles (blue), free space (black), and landmarks (white diamonds) on the walls are shown. An MAPRM graph
approximating the connectivity of free space, starting point, and goal point are shown. (b) The feedback tree generated by solving DP on MAPRM is
shown in yellow. From each node there is only one outgoing edge (in yellow), computed by DP, guiding the robot toward the goal. Arrows in pink coarsely
represent the direction on which the feedback guides the robot. (c) The feedback tree generated by solving DP on FIRM; As is seen, the computed feedback
guides robots through more informative regions that leads to more accurate localization and less collision probabilities.

that guides the robot toward the goal through the back-door

of room 407. However, the challenge is that the door may

be closed when the robot reaches it, and there may be new

obstacles in the environment. The robot needs to replan in

real-time once it encounters such changes in the environment.

For details on the obstacle detection mechanism see [1].

Figure 3(b) shows a snapshot of our run when the robot

detects the door is in a different situation than expected. As

a result, the robot updates the obstacle map as can be seen

in Fig. 3(b), in which the door is closed. Accordingly, the

robot replans in belief space based on Algorithm 5. Figure

3(b) shows the feedback tree resulting from replanning. As

seen, the new feedback guides the robot through the front

door, since it detects the back door is closed. The video of

a long run (see Section VI-D) provides more detail on this

procedure. Moreover, this video shows the robustness of the

method to temporary failures in the perception system (e.g.,

missing landmarks due to blockages, blur, etc.), which is

discussed more in [1].

C. Robustness to large deviations

In this section, we investigate the robustness of the pro-

posed framework in dealing with large deviations in the

robot’s position. As a more general form of this problem,

we consider the kidnapped robot problem as discussed in

the previous section. The need for online replanning in belief

space makes this problem challenging.

Figure 4(a) shows a snapshot of a run that involves two

kidnappings and illustrates the robustness of the planning

algorithm to the kidnapping situation. The start and goal

positions are shown in Fig. 4(a). The feedback tree (shown

in yellow) guides the robot toward the goal through the

front door. However, before reaching the goal point the

robot gets kidnapped in the hallway (cf. Fig. 4(a)) and

placed in an unknown location within room 407 (cf. Fig.

4(a)). The first jump in 4(b) shows this deviation. Once

the robot recovers from being kidnapped (i.e., when both

innovation signals in Fig. 4(b) fall below their corresponding

thresholds), replanning from the new point is performed.

Feedback guides the robot toward the goal point from within

room 407. However, again, before robot reaches the goal

point, it is kidnapped and placed in an unknown location (see

Fig. 4(a)). The second jump in the innovation signals in Fig.

4(b) corresponds to this kidnapping. Again, replanning from

Robot’s view

(Back door is open)

External view

Goal point

Feedback goes

through the back door

Robot’s location

(a)

Goal point

An obstacle is added to

the doorway

Robot’s location

Replanning leads to a feedback

that goes through the front door

Back-door is closed

(b)

Fig. 3. (a) The back door is open at this snapshot. The feedback guides the
robot toward goal through the back door. (b) The back door is closed at this
snapshot. Robot detects the door is closed and updates the obstacle map
(adds door). Accordingly robot replans and computes the new feedback.
The new feedback guides the robot through the front door.

the new point, the robot follows the feedback and reaches

the goal point.

D. A Longer and more complex experiment

We next demonstrate the ability of the system to perform

long-term tasks in a complex scenario that consists of visiting

several goals (each time therobot reaches a goal, a user

submits a new goal). The replanning ability allows the robot

to change the plan online in belief space as the goal location

changes. Moreover, the robot frequently encounters changes

in the obstacle map (open/closed doors and new obstacles

in the environment) as well as missing information sources

and kidnapped robot situations. Thus, the robot frequently

needs to perform a replanning operation in belief space to

deal with such frequent changes. A 25 minute video of this

run is recorded and available in [17] (a shorter version has

been submitted along with the paper) that shows the robot’s

performance in this complex scenario. In this video, the

robot faces three changes in the goal location, three changes

in the door’s state (open/closed), several new obstacles in

First kidnap point

F
ir
s
t

p
la

c
e

m
e

n
t

p
o

in
t

Second

kidnap point

Second

placement pointGoal point

Starting point

(a)

0 200 400 600 800 1000 1200 1400 1600 1800
0

2

4

6

8

10

12

step number

m
a

x
.

ra
n

g
e
 i
n
n

o
v
a

ti
o

n
 (

m
e
te

rs
)

0 200 400 600 800 1000 1200 1400 1600 1800
0

50

100

150

200

step number

m
a
x
.

b
e
a
ri
n
g
 i
n
n
o
v
a
ti
o
n
 (

d
e
g
re

e
s
)

(b)

Fig. 4. (a) The set up for the experiment containing two kidnapping. (b) Innovation signals r̂k and θ̂k during this run. When both of the signals are below
specified thresholds rmax and θmax (dashed red lines), robot follows the FIRM feedback. Otherwise, the system enters the information gathering mode.

the environment, three kidnapping situations, and numerous

failures of the sensory systems due to missing landmarks,

blur in image, and etc.

VII. CONCLUSION

In this paper, we present an application of the FIRM

motion planning method to a physical robotic system. This

paper proposes a robust method for belief space planning

based on efficient online replanning. Such replanning is a key

ability in handling discrepancies between real world mod-

els and computational models, changes in the environment

and obstacles, large deviations, and changes in information

sources. We implemented this belief space planner on a

physical system and demonstrate the robustness to such

discrepancies that occur in practice. We believe this work

provides an important step toward making POMDP methods

applicable to real world robotic systems.
REFERENCES

[1] Aliakbar Agha-mohammadi, Saurav Agarwal, Aditya Mahadeval,
Daniel Tomkins, Jory Denny, Suman Chakravorty, and Nancy M.
Amato. Dynamic real-time replanning in belief space: An experimental
study on physical mobile robots. Technical Report: TR13-007, Parasol

Lab., CSE Dept., Texas A&M University, 2013.
[2] Aliakbar Agha-mohammadi, Suman Chakravorty, and Nancy Am-

ato. FIRM: Feedback controller-based Information-state RoadMap -a
framework for motion planning under uncertainty-. In International

Conference on Intelligent Robots and Systems (IROS), 2011.
[3] Aliakbar Agha-mohammadi, Suman Chakravorty, and Nancy Amato.

FIRM: Sampling-based feedback motion planning under motion uncer-
tainty and imperfect measurements. International Journal of Robotics

Research, 33(2):268–304, Feb. 2014.
[4] Haoyu Bai, David Hsu, Wee Sun Lee, and Vien A. Ngo. Monte carlo

value iteration for continuous-state pomdps. In WAFR, volume 68 of
Springer Tracts in Advanced Robotics, pages 175–191. Springer, 2010.

[5] Dimitri Bertsekas. Dynamic Programming and Optimal Control: 3rd

Ed. Athena Scientific, 2007.
[6] Robert Bohlin and Lydia E Kavraki. Path planning using lazy

prm. In IEEE International Conference on Robotics and Automation,
volume 1, pages 521–528. IEEE, 2000.

[7] Adam Bry and Nicholas Roy. Rapidly-exploring random belief trees
for motion planning under uncertainty. In ICRA, pages 723–730, 2011.

[8] S. Chakravorty and R. Scott Erwin. Information space receding hori-
zon control. In IEEE Symposium on Adaptive Dynamic Programming

And Reinforcement Learning (ADPRL), April 2011.
[9] Pratik Chaudhari, Sertac Karaman, David Hsu, and Emilio Frazzoli.

Sampling-based algorithms for continuous-time pomdps. In the

American Control Conference (ACC), Washington DC, 2013.
[10] Tom Erez and William D Smart. A scalable method for solving

high-dimensional continuous pomdps using local approximation. In
the International Conference on Uncertainty in Artificial Intelligence,
2010.

[11] Devin Grady, Mark Moll, and Lydia E. Kavraki. Automated model
approximation for robotic navigation with POMDPs. In ICRA, 2013.

[12] R. He, E. Brunskill, and N. Roy. Efficient planning under uncer-
tainty with macro-actions. Journal of Artificial Intelligence Research,
40:523–570, February 2011.

[13] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning
and acting in partially observable stochastic domains. Artificial

Intelligence, 101:99–134, 1998.
[14] H. Kurniawati, T. Bandyopadhyay, and N.M. Patrikalakis. Global

motion planning under uncertain motion, sensing, and environment
map. Autonomous Robots, pages 1–18, 2012.

[15] H. Kurniawati, D. Hsu, and W.S. Lee. SARSOP: Efficient point-based
pomdp planning by approximating optimally reachable belief spaces.
In Proceedings of Robotics: Science and Systems, 2008.

[16] Duan Li, Fucai Qian, and Peilin Fu. Variance minimization approach
for a class of dual control problems. IEEE Trans. Aut. Control,
47(12):2010–2020, 2002.

[17] Video on Parasol Lab. webpage. http://youtu.be/m3t3udm0ftu.
[18] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An

anytime algorithm for POMDPs. In International Joint Conference on

Artificial Intelligence, pages 1025–1032, 2003.
[19] R. Platt. Convex receding horizon control in non-gaussian belief space.

In Workshop on the Algorithmic Foundations of Robotics (WAFR),
2012.

[20] Robert Platt, Russ Tedrake, Leslie Kaelbling, and Tomas Lozano-
Perez. Belief space planning assuming maximum likelihood obser-
vatoins. In Proceedings of Robotics: Science and Systems (RSS), June
2010.

[21] Sam Prentice and Nicholas Roy. The belief roadmap: Efficient
planning in belief space by factoring the covariance. International

Journal of Robotics Research, 28(11-12), October 2009.
[22] Shridhar K. Shah, Chetan D. Pahlajani, Nicholaus A. Lacock, and

Herbert G. Tanner. Stochastic receding horizon control for robots
with probabilistic state constraints. In IEEE International Conference

on Robotics and Automation (ICRA), 2012.
[23] R. D. Smallwood and E. J. Sondik. The optimal control of partially

observable markov processes over a finite horizon. Operations

Research, 21(5):1071–1088, 1973.
[24] T. Smith and R. Simmons. Point-based pomdp algorithms: Improved

analysis and implementation. In Proceedings of Uncertainty in

Artificial Intelligence, 2005.
[25] M. Spaan and N. Vlassis. Perseus: Randomized point-based vallue

iteration for pomdps. Journal of Artificial Intelligence Research,
24:195–220, 2005.

[26] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic

Robotics. MIT Press, 2005.
[27] Noel Du Toit and Joel W. Burdick. Robotic motion planning in

dynamic, cluttered, uncertain environments. In ICRA, May 2010.
[28] Jur van den Berg, Pieter Abbeel, and Ken Goldberg. LQG-MP:

Optimized path planning for robots with motion uncertainty and im-
perfect state information. International Journal of Robotics Research,
30(7):895–913, 2011.

[29] Steven A Wilmarth, Nancy M Amato, and Peter F Stiller. MAPRM:
A probabilistic roadmap planner with sampling on the medial axis of
the free space. In IEEE International Conference on Robotics and

Automation, volume 2, pages 1024–1031, 1999.

	Introduction
	Problem Statement and Target Application
	Sample Application Scenario

	Overview of FIRM
	Dynamic Replanning in Belief Space
	Replanning in Changing Environments and Presence of Large Deviations
	Lazy Feedback Evaluation in Changing Environments
	Handling Large Disturbances (kidnapped robot problem)

	Experimental Results
	Planning with PRM and FIRM
	Robustness to Changes in the obstacle map
	Robustness to large deviations
	A Longer and more complex experiment

	Conclusion
	References

