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Abstract— Visual tracking is an important but challenging
problem in the computer vision field. In the real world, the
appearances of the target and its surroundings change continu-
ously over space and time, which provides effective information
to track the target robustly. However, enough attention has not
been paid to the spatio-temporal appearance information in
previous works. In this paper, a robust spatio-temporal context
model based tracker is presented to complete the tracking task
in unconstrained environments. The tracker is constructed with
temporal and spatial appearance context models. The temporal
appearance context model captures the historical appearance
of the target to prevent the tracker from drifting to the
background in a long-term tracking. The spatial appearance
context model integrates contributors to build a supporting field.
The contributors are the patches with the same size of the
target at the key-points automatically discovered around the
target. The constructed supporting field provides much more
information than the appearance of the target itself, and thus,
ensures the robustness of the tracker in complex environments.
Extensive experiments on various challenging databases validate
the superiority of our tracker over other state-of-the-art trackers.

Index Terms— Visual tracking, spatio-temporal context,
multiple subspaces learning, online boosting.

I. INTRODUCTION

V
ISUAL tracking has attracted much research due to

its importance to practical applications, e.g. human-

computer interaction, video surveillance, virtual reality, object

navigation, etc. Trackers are usually required to work in a

long period in unconstrained environments. Challenges arise

to the robustness of trackers under various factors, such as

pose changes, illumination variation, occlusion. To overcome

these difficulties, numerous complex models are designed, but

most of them focus on the variations of the target appearance
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only, e.g. by using generative strategy [1], [9], [17], [18],

[24], [26], [29], [32], discriminative strategy [2], [3], [5], [12],

[13], [23], and other strategies [8], [13], [19], [34], [39], [42],

while ignore the relationships between the target and its

surroundings.

A typical visual tracking system generally consists of three

parts: 1) appearance model, which evaluates the likelihood of

the target candidate state; 2) motion model, which is utilized

to predict the possible state of the target; and 3) search

strategy, which is exploited to find the optimal state of the

target. The appearance model, as the most crucial part in the

visual tracking system, attracts much more attentions from

the researchers. Some work has also been done on the search

strategy [22], [43]. In real applications, the motion of target

is hard to define, especially when the video is captured by a

moving camera, therefore just a few works pay attention to

the motion model [20], [28].

This paper focuses on improving the appearance model

to build a robust tracker, and doesn’t use any assumptions

about the targets and scenarios. It exploits the temporal and

spatial appearance context information of target to improve the

robustness. On the one hand the historical appearances usually

influence the subsequent appearances, the temporal context

is an important clue to predict the next state of the target.

Meanwhile, the appearance of the surrounding background

of the target changes gradually during the tracking, so that

the spatial context information between the target and the

background is also important to differentiate the target from

the background. Intuitively, combining these two constraints

can achieve better performance.

A. Related Works

In recent decades, numerous tracking methods have been

proposed in literatures. However, most of them just perform

well in some specific conditions and the performances can’t

appeal the demands of real applications. Please refer to the

survey [41] for more tracking strategies.

Some methods [1], [9], [17], [18], [24], [26], [29], [32]

model the appearance of a target in a generative way. In [26],

an Incremental Visual Tracker (IVT) is proposed, which adap-

tively updates its subspace-based appearance model with the

sequential appearance variations. Based on this fundamental

work, many improvements [17], [24], [29], [32] are proposed.

Although good tracking results are obtained in some specific

environments, their performance will drop in unconstrained

environments. Fragment-based tracker [1] describes the target
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Fig. 1. The use of temporal context constraint and spatial context constraint in the proposed tracking framework. The red solid rectangle represents the
target and green dashed rectangles represent the contributors. The magenta curve describes the temporal continuous property of the target while the red arrows
describe the spatial supports of the contributors.

with multiple local patch histograms, which integrates the

inner structure of the target and handles partial occlusion very

well. However, its template is not updated over time, making it

difficult to track objects with significant appearance variations.

Compared with the generative models, discriminative track-

ers [2], [3], [5], [12], [13], [23] regard tracking problem as a

classification task, which focuses on differentiating the target

from background. Avidan [2] integrates the Support Vector

Machine (SVM) classifier into the optical flow framework for

car tracking. Grabner et al. propose an efficient supervised

online boosting tracking method [12]. A semi-supervised

version [13] is proposed, in which the labeled data in the first

frame is used whereas subsequent training samples are left

unlabeled. Bakenko et al. [5] use Multiple Instance Learning

(MIL) to handle the unreliable labeled positive and negative

data obtained online to mitigate the drift problem. In all these

trackers, only the appearance of target is considered, but the

relationships between target and its background are not fully

exploited.

To improve the robustness of the appearance model,

Yu et al. [42] combine the generative and discriminative

model in a co-training way. Another popular way in surveil-

lance scenarios is introducing detection module into track-

ing process [13], [19], [34]. The appearance model can be

corrected by the detector over time and the target can be

recaptured even if it has moved out of view. However, these

detection based trackers are easily distracted by other objects

with similar appearance.

For long-term tracking tasks in unconstrained environments,

some spatial constraints have been introduced to improve

the robustness. Yang et al. construct Context-Aware Tracker

(CAT) [40] to prevent the drifting problem, in which the

context are some auxiliary objects that are easy to track and

have consistent motion correlations with the target. Similar

to CAT, Gu et al. [15] consider the spatial relations between

the similar objects and propose to track these similar objects

simultaneously. Saffari et al. [33] exploit the multi-class

LPBoost algorithm to model the variation of the background

to complete the tracking task. Grabner et al. [14] invent a

novel concept, supporter, to predict the state of the target.

Dinh et al. [10] expand the concept of supporter and develop

a new context framework based on distracters and supporters.

The distracters are the regions that have similar appearance to

the target and the supporters are the local key-points which

have motion correlation with the target in a short time span.

Li et al. [23] propose a SVM based tracker, by constructing

a kernel to effectively capture the contextual information of

the samples for better tracking performance. Although these

trackers make use of such information, the motion correlation

between the target and the context is hard to define. Differ-

ent from the aforementioned methods, our tracker integrates

the spatio-temporal information into appearance modeling to

achieve more stable and effective tracking.

B. Outline of Approach

In this paper, we incorporate both the spatial and temporal

information into the target appearance modeling and propose

a Spatio-Temporal context model based Tracker (STT). The

STT consists of the temporal and spatial context models.

For temporal context model, a novel online subspace learning

model is proposed to represent the target with low-dimensional

feature vectors. Several sequential positive samples are packed

into one subspace to update the model. In this way, the

temporal appearance information is efficiently extracted to

help predict the next state of the target (see Fig. 1). For the

spatial context model, we defined a notion Contributor, which

is viewed as the local contextual information, i.e. the patch of

the same size as the target at key points around the target. The

key points are generated by SURF [6]. Motivated by Fragment-

based tracker [1], we divide the target and the contributors into

several small blocks to construct the structure relation features.

Both the inter-structure relation features (between target blocks

and contributor blocks) and intra-structure relation features

(between blocks in target) are extracted (see Fig. 2). In

unconstrained environments, it is not easy to dig out the strong

contextual supports directly. On the other hand, numerous

weak contextual supports around the target can be combined to

form a strong supporting field. In this work, the representative

relational features are optimally selected by Boosting [5] from

the dynamically constructed structural relation feature pool,

and these features construct the strong supporting field.

Some preliminary results have been shown in our prior

work [38], in this paper, we extend the online subspace

learning method to multiple subspaces learning, and provide

more experiments and analysis to evaluate the effectiveness of

the proposed method. The main contributions of the work are

summarized as follows:

1) A novel spatio-temporal context model based tracker

is proposed, which integrates the spatio-temporal infor-

mation into the appearance modeling to improve the

discriminative ability of the tracker.
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2) A temporal context model is constructed by a novel

online subspace learning model, in which positive sam-

ples in consecutive frames are combined for the online

updating, with consideration on correlation between the

samples.

3) A spatial context model is constructed by considering

the relationships between the target and its surrounding

contributors. Instead of building complex motion models

to represent the correlation between the target and the

contributors, this work efficiently selects the most repre-

sentative weak relations to construct a strong supporting

field by boosting method.

4) Experiments about the proposed multiple subspaces

learning model indicate that the performance of the

subspace model is improved remarkably by the sample

combination step in updating, rather than the introduc-

tion of multiple subspaces.

5) Tracking experiments on various publicly available chal-

lenging videos demonstrate that the proposed tracker

outperforms other state-of-the-art trackers.

The remainder of the paper is organized as follows.

Section II gives the overview of our proposed STT. Section III

and section IV describe the temporal context model and spatial

context model in detail respectively. Experimental results and

discussions are presented in Section V. Finally, we conclude

this paper in Section VI.

II. SPATIO-TEMPORAL CONTEXT MODELING

We assume the target state in tracking task follows the

Markovian state transition process, where the current tar-

get state is determined by its previous states. Let O1:t =
{O1, . . . , Ot } be the observation data set at time t , and Zt =
(lt , πt ) be the target state, where lt is the target center position

and πt is the size of the target. Then the posterior probability

can be estimated using a recursive process:

P(Zt |O1:t ) ∝

P(Ot |Zt )

∫

P(Zt |Zt−1)P(Zt−1|O1:t−1)dZt−1, (1)

where P(Ot |Zt ) is the likelihood of the candidate state,

P(Zt |Zt−1) is the state transition probability for the first-order

model we are using, and P(Zt−1|O1:t−1) is the state estimation

probability given all observations at time t − 1. We define

the optimal solution of Equ. (1) as the Maximum-a-Posteriori

(MAP) estimation, that is

Z∗
t = arg max

Zt

P(Zt |O1:t ).

The above probability terms in Equ. (1) are modeled as

follows. Assuming the position and size of the target are

independent to each other, the state transition probability

P(Zt |Zt−1) is modeled as

P(Zt |Zt−1) = P(lt |lt−1)P(πt |πt−1).

The position transition term P(lt |lt−1) is specified as

P(lt |lt−1) ∝
{

1 ‖lt − lt−1‖2 < R

0 ‖lt − lt−1‖2 ≥ R
,

where R is the search radius. The size transition term

P(πt |πt−1) is similarly defined as [4], which is determined

by scaling up and down c scales of the target size πt−1 in the

previous frame.

The target surroundings are important to help determine the

target state. Intuitively, we exploit some contributors around

the target to construct the contributor state set f r (·) and use

an algorithm to select some useful relations between the target

and the contributors to describe the relationships between

the target and its surroundings. Let mc be the number of

contributors and f r (·) = {f r
1 (·), . . . , f r

mc
(·)}. The likelihood of

the target candidate state in Equ. (1) is defined as:

P(Ot |Zt ) ∝ (2)

exp
{

− (1 − κb)U(Zt |Ot ) − κb · U(Zt |f r (·), Ot )
}

,

where U(Zt |Ot ) is the energy function corresponding to the

temporal context model M(t), U(Zt |f r (·), Ot ) is the energy

function corresponding to the spatial context model M(s), and

κb ∈ (0, 1) is the balance parameter between the two energy

functions. To avoid unreliable updating, we set the energy

thresholds θ (t) and θ (s) to control whether the two models will

be updated. If both U(Z∗
t |Ot ) < θ (t) and U(Z∗

t |f r (·), Ot ) <

θ (s), M(t) and M(s) will be updated with the current optimal

target state Z∗
t ; otherwise, neither will be updated. In the

following two sections, we will discuss the global temporal

context model M(t) and the local spatial context model M(s)

in details.

III. GLOBAL TEMPORAL CONTEXT MODEL

Target tracking is a physically consecutive process and there

exist strong correlations between the target appearances in

consecutive frames. Therefore, it is reasonable to use the

correlation information to predict the states of the target.

Our global temporal context exploits historical appearance

changes as a source of global constraints to estimate the

state of the target. Here, we propose a novel online subspace

learning method to reduce the high dimensionality of the

feature space, so that more historical information will be stored

and exploited.

Subspace learning has been used for tracking. Li [25]

proposes an incremental algorithm for robust Principal

Component Analysis (PCA). Skocaj. et al. [35] exploit a

weighted incremental PCA algorithm for subspace learning.

Hall’s subspace learning method [16] updates the sample mean

sequentially. Lim et al. [26] extend Hall’s method by updating

the subspace with multiple samples at one time to improve

its efficiency. Yu et al. propose a Multiple Linear Subspaces

(MLS) model [42] by constructing multiple local subspaces

to describe the appearance of the target. However, they ignore

the energy dissipation in updating process. Nguyen et al. use

the Incremental Probabilistic Principal Component Analysis

(IPPCA) [30] method to represent the appearance of multiple

targets, which ignores the relationships between the target

appearances in consecutive frames. Please refer to the sur-

vey [27] for more multi-linear subspace learning methods.

Different from the existing online subspace learning meth-

ods mentioned above, the proposed method considers the
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Algorithm 1 Online Subspace Learning Algorithm

relationships between consecutive frames and the power dis-

sipation in updating process, to capture the subspace of target

appearance more accurately. The framework of the proposed

online subspace learning algorithm is detailed in Alg. 1. Let

� = (ψ, V ,�, σ 2, W, d∗, n) be the appearance model of the

target, where ψ , V , �, σ 2, W , d∗ and n are the sample mean

vector, eigenvectors, eigenvalues, power dissipation, sample

weights set, reduced dimension and number of samples used

to construct the subspace, respectively. The pixel values are

used as the features.

A. Temporal Context Energy

Let Ot be the observation, and It ∈ R
d be the reshaped

vector consist of the pixel values in the image patch corre-

sponding to the state Zt , where d is the feature dimension.

The temporal context energy U(Zt |Ot ) of the candidate state

Zt is calculated as:

U(Zt |Ot ) =
ε(Zt , Ot )

2

2σ 2
t

+ (d − d∗) log σt

+
d∗
∑

i=1

(Gi,t (Zt , Ot )
2

2λi,t
+ 1

2
log λi,t

)

, (3)

where d∗ is the reduced dimension of the subspace. σt is

the power dissipation in dimension reduction of the subspace.

λi,t is the i th eigenvalue of the subspace in descending order

at time t . The projection vector is defined as Gt (Zt , Ot ) =
(G1,t (Zt , Ot ), . . . , Gd∗,t (Zt , Ot )) = V T

t (It − ψ(t)), where Vt

represents the eigenvectors of the learned subspace at time t .

ε(Zt , Ot ) is the residual of the original samples projected to

the subspace, that is ε(Zt , Ot ) = ‖It − Vt V
T
t It‖2.

B. Online Subspace Learning

The temporal part in our tracker models the target appear-

ance as an online subspace model, the core of which is

the updating strategy. The updating process is presented as

follows.

1) Subspace Construction: The subspace construction can

be done by the standard Eigenvalue Decomposition (EVD)

algorithm and the power dissipation rate is employed to

determine the reduced dimension d∗ of the process, that is:

d∗ = arg min
k

{

k

∣

∣

∣

∑k
j=1 λ j

∑

i λi

≥ η

}

, (4)

where λ j is the j th eigenvalue of the constructed subspace in

descending order.

2) Subspace Merge: In our online subspace learning

method, the newly constructed subspace is used to update

the existing model. The core problem in updating process

is how to merge two subspaces into a new one. Unlike

Hall’s [16] and its variant [26], the proposed subspace

learning strategy updates the energy dissipation, which

achieves better description ability to recognize the target.

Given two subspaces �k = (ψ(k), V (k),�(k), σ 2
k , Wk , d∗

k , nk)

and �l = (ψ(l), V (l),�(l), σ 2
l , Wl , d∗

l , nl), we aim to get

the merged subspace �k+l = (ψ(k+l), V (k+l),�(k+l),

σ 2
k+l , Wk+l , d∗

k+l , nk+l ). We set the eigenvalue matrix �(k) =
diag(λ1,k, . . . , λd∗

k ,k) and �(l) = diag(λ1,l, . . . , λd∗
l ,l), and

the eigenvector matrix V (k) = [v1,k, . . . , vd∗
k ,k] and V (l) =

[v1,l, . . . , vd∗
l ,l ], where vi,k and vi,l are the i th eigenvectors of

the subspaces �k and �l respectively. Obviously, it is easy to

get the weight set of the merged subspace Wk+l = Wk

⋃

Wl

and the number samples nk+l = nk + nl . In the following,

we mainly discuss the way to get ψ(k+l) , V (k+l), �(k+l), σ 2
k+l

and d∗
k+l of the merged subspace. In updating, we weight the

samples to indicate the probability belonging to the positive

samples. Intuitively, large weights should be assigned to the

samples with less noise and small ones to the samples with

more noise. Taking the subspace �k as an example, the mean

value ψ(k), power dissipation σ 2
k , and covariance matrix S(k)

of the updating samples at time k are represented as:

ψ(k) =
1

∑

ωi ∈Wk
ωi

∑

ωi ∈Wk

ωiIi , (5)

σ 2
k = 1

d − d∗
k

d
∑

i=d∗
k +1

λi,k , (6)

S(k) = 1
∑

ωi ∈Wk
ω2

i

∑

ωi ∈Wk

ω2
i (Ii − ψ(k))(Ii − ψ(k))T , (7)

where Ii ∈ R
d is the i th updating sample, generated by

vectorizing the image patch corresponding to the optimal target

state Z∗
i at time i . ωi is the weight of the i th updating sample

and Wk is the weight set of the samples at time k. The mean

value ψ(l), power dissipation σ 2
l , and covariance matrix S(l)

of the subspace �l are similarly defined.

According to the mean value representation in Equ. (5), it

is easy to get the mean value ψ(k+l) of the merged subspace

�k+l , that is

ψ(k+l) = γψ(k) + (1 − γ )ψ(l), (8)

where γ =
∑

ωi ∈Wl
ωi

∑

ωi ∈Wk+l
ωi

.
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According to the covariance matrix representation in

Equ. (7), we have:

S(k+l) ≈ ρS(k) + (1 − ρ)S(l) + yyT , (9)

where

ρ =
∑

ωi∈Wk
ω2

i
∑

ωi ∈Wk+l
ω2

i

,

y =
(

ρ(1 − γ )2 + (1 − ρ)γ 2
) 1

2 (ψ(k) − ψ(l)).

Furthermore, based on the covariance matrix decomposition

in [30], the matrix S(k) can be represented as S(k) = σ 2
k I +

∑d∗
k

i=1(λi,k − σ 2
k )vi,kv

T
i,k , where d∗

k is the reduced dimension

corresponding to S(k). The covariance matrix S(l) is similarly

decomposed. Then, by plugging them into Equ. (9), we have:

S(k+l) ≈ (ρσ 2
k + (1 − ρ)σ 2

l )I +
d∗

k
∑

i=1

ρ(λi,k − σ 2
k )vi,kv

T
i,k

+
d∗

l
∑

i=1

(1 − ρ)(λi,l − σ 2
l )vi,lv

T
i,l + yyT ,

where vi,k , λi,k , σk are the i th eigenvector, i th eigenvalue, and

the power dissipation of the subspace �k , and vi,l , λi,l , σl are

the corresponding ones of the subspaces �l . By denoting

L = [
√

ρ(λ1,k − σ 2
k )v1,k, . . . ,

√

ρ(λd∗
k ,k − σ 2

k )vd∗
k ,k,

√

(1 − ρ)(λ1,l − σ 2
l )v1,l , . . . ,

√

(1 − ρ)(λd∗
l ,l − σ 2

l )vd∗
l ,l , y],

it is easy to get the following equation:

S(k+l) ≈
(

ρσ 2
k + (1 − ρ)σ 2

l

)

I + LLT .

In tracking application, the feature dimension d is always

considerably large, which makes it impossible to decompose

the matrix LLT directly due to the computational complexity.

Therefore, we decompose the matrix LT L instead of LLT to get

the equation LT L = UŴUT , where Ŵ = diag{ξ1, ξ2, . . . , ξq}
is the eigenvalue matrix sorted in descending order, q = d∗

k +
d∗

l + 1, and UT U = I . The corresponding eigenvectors of the

matrix LLT are represented as Vq = LUŴ− 1
2 . Obviously, the

eigenvectors of the covariance matrix S(k+l) are the same as

the matrix LLT . By setting Vq = [v1, . . . , vq ], the covariance

matrix is represented as:

S(k+l) =
(

ρσ 2
k + (1 − ρ)σ 2

l

)

I +
q

∑

i=1

ξiviv
T
i .

We get the reduction dimension of the merged subspace �k+l

according to the η-truncation condition

d∗
k+l = arg min

i

{

i

∣

∣

∣

∑i
j=1

(

ρσ 2
k + (1 − ρ)σ 2

l + ξ j

)

∑q
j=1 ξ j

≥ η

}

.

The eigenvalues of the merged subspace �k+l are calculated

as λi,k+l = ρσ 2
k + (1 − ρ)σ 2

l + ξi , i = 1, . . . , d∗
k+l , and the

eigenvectors V (k+l) of the merged subspace are obtained by

getting the first d∗
k+l vectors of the matrix Vq . Finally, the

power dissipation is updated

σ 2
k+l =

1

d − d∗
k+l

q
∑

i=d∗
k+l +1

ξi + (ρσ 2
k + (1 − ρ)σ 2

l ).

IV. LOCAL SPATIAL CONTEXT MODEL

Local context has been proved effective in visual tracking

task [10], [14], [23], [31], [36], [40]. Different from previous

works, our strategy focuses on the contributors and their weak

correlations to the target, and then combines them to construct

a strong classifier to locate the target. Multiple instance

boosting [5], [37] is used to build the strong supporting field

by selecting the most representative contributors, which is easy

to complete.

A. Spatial Context Energy

In multiple instance boosting, each selected weak classifier

corresponds to each weak correlation. The selected correla-

tions are combined together to evaluate the spatial context

energy (namely the spatial energy function in Equ. (2)) of a

candidate state. The spatial context energy is expressed as:

U(Zt |f r (·), Ot ) ∝ −
∑

j

gt
j (x

t ), (10)

where f r (·) is the contributor state set, Zt is the target

candidate state, Ot is the corresponding observation, gt
j (x

t )

is the j th selected weak classifier at time t and xt is the

corresponding relation feature of the candidate state. Without

ambiguity, we omit the time index t in the following. Please

refer to [5], [37] for more details about the multiple instance

boosting.

B. Contributor State Set f r (·)
As defined above, the patch at the key point is called

contributor. Here, the SURF descriptor [6] is employed as

the key points around the target, which is generated in the

rectangle (the green rectangle shown in Fig. 2) centered at

the target center with the width re · w and height re · h,

where re is the enlargement factor. We set the enlargement

factor re ∈ [0.5, 1.6] in our experiments. w and h are the

width and height of the target in the current frame. If the

extracted candidate key points are more than the required

ones, we randomly select some of them to be the final key

points and use them to generate the contributors; but if they

are inadequate, we randomly generate some other points in

the rectangle to supplement them.

C. Relation Feature Construction

To incorporate the structure information of the target, we

partition the regions of the target and contributors into a

predefined number of blocks. Let N = n1 × n2 be the

predefined number of partitioned blocks, where n1 and n2

are the partitioned numbers of blocks in the row and column

respectively. We set n1 = 5 and n2 = 5 in our experiments.
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Fig. 2. The illustration of feature construction in the spatial context model
of our tracker. The red rectangle represents the target area and the blue
rectangles represent the contributors. The purple crosses represent the center
of the contributors, which are generated in the green rectangle. The width
and height of the green rectangle are re · w and re · h respectively. The small
yellow rectangles represent the target blocks and the purple ones represent
the background blocks.

The structure information is integrated by modeling the rela-

tionships between blocks. Let I(x, y) be the pixel value of the

image at position (x, y), bi (Z) be the i th block of the target

corresponding to target state Z , and bi (f
r
k (Z)) be the i th block

of the kth contributor corresponding to the contributor state

f r
k (Z). The weak relation function d f

(

bp(·), bq(·)
)

between

two blocks is defined as:

d f

(

bp(·), bq(·)
)

=
∑

(i, j )∈bp(·)
I(i, j) −

∑

(i, j )∈bq(·)
I(i, j).

Next, we collect all of these weak relations to construct a

relation feature pool F .

The structure information comes from two parts: one is the

mutual-pairwise features between the corresponding blocks

of the target and the contributors, and the other one is the

self-pairwise features between the inner blocks of the target

itself. Let Fs be the self-pairwise feature pool and Fm be the

mutual-pairwise feature pool. We get the relation feature pool

F = Fs ∪ Fm . Specifically, the self-pairwise and mutual-

pairwise feature pools are constructed as

Fs =
{

d f

(

bi(Z), b j (Z)
)∣

∣

i, j=1,...,N

i 	= j

}

,

Fm =
{

d f

(

bi(Z), b j (f
r
k (Z))

)∣

∣

i, j=1,...,N

k=1,...,mc

}

.

Fig. 2 shows the feature construction process of our tracker.

D. Weak Classifier

We use the online updating Gaussian Mixture Model

(GMM) to estimate the posterior probability of the weak

classifier, that is

P(x j |y) =
K

∑

i=1

ωi j (y)η(x j , µi j (y), σi j (y)),

where K is the number of Gaussian models, ωi j (y), µi j (y),

and σi j (y) are the weight, mean and variance of the i th

Gaussian model of the sample with label y (positive or nega-

tive), respectively. x is the constructed feature with dimension

(m + 1) × N2 described in Sec. IV-C. x j is the j th dimension

of x and y is the label of x. Obviously, we have the relation
∑K

i=1 ωi j = 1. Furthermore, η(x, µ, σ ) is the probability

density function of the Gaussian distribution, that is

η(x, µ, σ ) = 1
√

2πσ
exp

(

− (x − µ)2

2σ 2

)

.

Assuming that the positive and negative samples have equal

prior probability in the task, i.e. P(y = +1) = P(y = −1), it

is easy to get the continuous Bayesian weak classifier based

on the GMM, that is

g j (x) = log
P(x j |y = +1)

P(x j |y = −1)
.

When the weak classifier receives the samples
{

(u(1), y(1)), (u(2), y(2)), . . . , (u(n), y(n))
}

, the GMM of

both the positive and negative samples will be updated by the

following steps. Firstly, we calculate the similarity between

the j th dimension of the received positive samples and the

kth Gaussian models to get the matching measure criterion

Hkj , that is:

Hkj = ωkj (+1)
(

∏

i|y(i)=1

η(u
(i)
j , µkj (+1), σkj (+1))

) 1
n
,

where u
(i)
j is the j th dimension of u(i). Let Mkj be the symbol

indicating whether the kth Gaussian model matches the j th

dimension of the feature. Mkj is defined as

Mkj =
{

1 Hkj > Hl j ; l = 1, . . . , K ; l 	= k

0 Otherwise
,

where k = 1, . . . , K . Then, if Mkj = 1, which means

successful match, the mean and variance of the matched

Gaussian model will be updated as follows:

µkj (+1) = (1 − λ̃)µkj (+1) + λ̃
1

n

∑

i|y(i)=1

u
(i)
j ,

σ 2
kj (+1) = (1 − λ̃)σ 2

kj (+1)

+λ̃
(1

n

∑

i|y(i)=1

(x
(i)
j − µkj (+1))2

) 1
2
,

where λ̃ is the updating step. Otherwise, the mean and variance

of the unmatched ones will not be updated. Finally, all the

weights are updated as ωkj (+1) = (1 − λ̃)ωkj (+1) + λ̃Mkj ,

where k = 1, 2 · · · , K . Meanwhile, the updating rule of the

negative samples is similarly defined. The updating step λ̃ is

set to 0.4 in our experiments.

V. EXPERIMENTS

This section consists of two parts. In the first part, we

analyze the influence of the parameters in the proposed online

subspace learning strategy and present its superiority over

other state-of-the-art methods. In the seconde part, we evaluate

the effectiveness of the proposed spatio-temporary context

model based tracker.
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Fig. 3. The comparison curves of the subspace experiments. (a) and (e) are the comparison of our methods with other state-of-the-art methods. (b) and (f)
are the mean reconstruction error curves with fixed ζ and τ . (c) and (g) are the mean reconstruction error curves with fixed φ and τ . (d) and (h) are the mean
reconstruction error curves with fixed φ and ζ .

A. Evaluation of Online Subspace Learning

The subspace learning method presented in Sec. III can

be naturally extended to the multiple subspaces learning

method. We can use several subspaces to describe the target

appearance. In multiple subspaces learning, the similarity

between two local subspaces is estimated as the weighted

combination of the angle measure Simα(�p,�q) and the

compactness measure Simc(�p,�q), i.e. Sim(�p,�q) =
κs Simα(�p,�q)+(1−κs)Simc(�p,�q). In our experiments,

the balance parameter is set κs = 0.15. Please refer to [7], [42]

for more details about the similarity calculation. The multiple

subspaces learning algorithm is detailed in Appendix. The

temporal context energy of a candidate state given out by the

multiple subspaces model is defined as

U(Zt |Ot ) = max
ℓ∈L

Uℓ(Zt |Ot ),

where L = {ℓ1, . . . , ℓζ } is the index set of the ζ subspaces,

which have the smallest mean value distance with the candi-

date sample. Obviously, ζ ∈ {1, . . . , φ}, where φ is the total

number of subspaces. Uℓ(Zt |Ot ) is the energy given out by

the ℓth subspace, which is calculated in Equ. (3).

To evaluate the performance of the proposed subspace learn-

ing method (Incremental Multiple Instance Multiple Subspace

Learning, abbreviated as IMIMSL), we use the manually

labeled target samples from two tracking videos (Sylvester and

Minghsuan [26]) to train the model sequentially and evaluate it

on-the-fly. The publicly available sequences Sylvester contains

severe pose changes while Minghsuan presents a challenging

lighting condition. The ℓ2-norm of the sample reconstruc-

tion error is exploited to evaluate the model. As mentioned

above, the core parameters in our proposed model include:

the total number of subspaces φ, the candidate number of

nearest subspaces to give out the energy of candidate states

ζ and the number of combined samples τ . For simplicity,

we use the symbol φ-ζ -τ to represent model with these

parameters.

1) Influence of the Model Parameters: We choose different

parameters for the model, and calculate the mean reconstruc-

tion error of these two sequences.

Parameter φ To exclude the influence of the parameters

τ and ζ , we carry out multiple experiments with different

values of the parameters (τ ∈ {1, 5, 9}, ζ = φ). For each

experiment, we fix τ and ζ and change φ to evaluate the mean

reconstruction error in both sequences. According to the results

in Fig. 3(b) and (f), we have the following conclusions:

• when τ = 1, the performance of the model will be

improved as φ increases;

• when τ > 1, the performance of the model will not be

improved as φ increases, but is comparable with φ = 1;

• The mean reconstruction error of τ > 1 is remarkably

lower than τ = 1.

Therefore, it is easy to see that the performance of the model is

improved remarkably by the sample combination in updating,

rather than the introduction of multiple subspaces, which has

not been pointed out in previous literatures.

Parameter ζ As shown in Fig. 3(c) and (g), we fix φ = 10,

and every τ = 5 samples are combined together for updating.

The number of candidate subspaces ζ is set in the interval

[1, 10], i.e. ζ ∈ [1, 10], to give out the reconstruction error of

the samples. It is clear that the reconstruction error of the

samples decreases as ζ increases. The result indicates that

when the number of candidate subspaces increases, the per-

formance of the model will be improved. Obviously, the more

subspaces are exploited to represent the sample, the smaller

reconstruction error will be achieved, but the computational

complexity will be increased simultaneously.

Parameter τ To indicate the influence of τ , we fix φ = 5

and ζ = 3, and change τ . The mean reconstruction error

curves for both sequences are shown in Fig. 3(d) and (h).

The results indicate that the combined samples for updating

can greatly enhance the performance of the subspace model.

Meanwhile, the proper selection of τ is very important and the

optimal value of τ is determined by the data distribution. If

τ is too small, the computational complexity will be high and

it will not improve the performance remarkably. Meanwhile,

if τ is too large, the local property of the subspaces will

be destroyed, and the noise contained in them will not be

eliminated effectively, which will decrease the performance of

the model.
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Fig. 4. Target tracking results of our tracker, FragTrack [1], SemiBoost [13], CoGD [42], MIL [5], PROST [34], TLD [19], VTD [21] and ContextT [10].
The results of five trackers with relatively better results in each sequence are displayed.

2) Comparison With Other Learning Methods: In addition,

we compare our proposed online subspace learning method

with some other state-of-the-art learning methods. Each model

is initialized by 5 samples. The remaining samples are used to

evaluate the model at first, and then used to update the model

online. All the sample weights are set to be 1 because these

samples are manually labeled as positive. In our model, we

set φ = 1, ζ = 1 and τ = 5. The comparison is conducted

with other four state-of-the-art learning strategies: Hall’s [16],

IVT [26], MLS [42] and IPPCA [30]. The parameters of our

model are fixed in both evaluation sequences. The parameters

of Hall’s, IVT, MLS and IPPCA are set as the default ones

in their papers or codes. The comparison curves are shown in

Fig. 3(a) and (e). In both sequences, IVT and IPPCA, which

only construct a single subspace updated with a single sample,

have the worst performances. With the introduction of multiple

subspaces updated with multiple samples, MLS outperforms

IVT and IPPCA. However, its results are not as accurate as

ours since our IMIMSL considers the energy dissipation of

dimension reduction during the updating. Although Hall’s and

MLS combine multiple samples for updating, the ignorance of

the energy dissipation causes its unsatisfactory performance in

both sequences.

B. Evaluation of Target Tracking

1) Experiment Setup: 12 sequences are used to evaluate

the performance of STT. STT is implemented in C++ code

and runs on a Intel 2.4GHz PC platform about 0.5 to 4 fps.

These 12 sequences contain different challenging conditions,

11 of which are publicly available, and the other one is

collected by ourselves. Our tracker is initialized with the

first frame and outputs the trajectory of the target. The

quantitative comparison results of IVT [26], FragTrack [1],

SemiBoost [13], CoGD [42], MIL [5], PROST [34], VTD [21],

TLD [19], ContextT [10] and STT are shown in Fig. 4, Table II

and III, respectively. Some visual results are shown in Fig. 6.

The codes and data used in this paper can be found on

TABLE I

VALIDATION EXPERIMENTS OF THE PROPOSED TRACKING METHOD

our website.1 Table II is the comparison results of Average

Center Error in Pixels (ACEP)(↓) criteria and Table III is the

comparison results of Successful Frame criteria based on the

evaluation metric of PASCAL VOC (↑) object detection [11],

in which the overlap ratio between the tracked bounding box

and the ground truth bounding box larger than 50% is regarded

as the successfully tracked. ↑ means higher scores indicate

better performance, and ↓ means lower scores indicate better

performance.

2) Parameters: The search radius R of the tracker is set in

the interval [20], [50], the search scale c is set to 2 and the

balance parameter κb in Equ. (2) is set to 0.3. For the global

temporal context model, only one subspace is used to represent

the target for the consideration of computational complexity.

Meanwhile, every 5 frames are combined together to update

the linear subspace model, i.e. τ = 5, and η is set to 0.99 in

subspace construction (Equ. (4)). We resize the image patches

of the target corresponding to the optimal state in each frame

into the standard size 20 × 20 and vectorize them to get the

updating samples with the feature dimension d = 400. For the

local spatial context model, 12 contributors are generated to

construct the supporting field around the target, i.e. mc = 12,

and each of them is partitioned into 5 × 5 blocks. 3 Gaussian

components are used for positive and negative samples, that is

K = 3. 350 weak relations are combined together to construct

the supporting field. For the positive bags, 45 samples are

collected from the circle region with the radius 8. For the

1http://www.cbsr.ia.ac.cn/users/lywen/



WEN et al.: ROBUST ONLINE LEARNED SPATIO-TEMPORAL CONTEXT MODEL 793

TABLE II

COMPARISON RESULTS OF ACEP CRITERIA

negative bags, 50 samples are collected from the ring region

with the inner radius 12 and outer radius 40. The energy

thresholds in our experiments are set as θs ∈ [−20,−10] and

θt ∈ [10, 20]. For the other trackers cited here, we use the

default parameters provided in the public available codes, and

choose the best one in 5 runs, or take the results directly from

the published papers. Specifically, we reproduce the CoGD

tracker in C++ code and adopt the parameters as described

in [42].

3) Efficiency Validation: In this part, we evaluate the effec-

tiveness of the temporal and spatial parts in our tracker.

We construct three trackers: the temporal part of our tracker,

denoted as Temporal Context Tracker (TCT); the spatial part

of our tracker, denoted as Spatial Context Tracker (SCT);

and the Online subspaces learning combined with Multiple

instance learning Tracker (OMT). The OMT is constructed by

replacing the spatial part of our tracker with the Haar feature

based online learning classifier [5] and the other parts remain

the same. The same parts between these three trackers and

our STT adopt the same parameters. We test them in four

sequences with both the ACEP criteria and the Successful

Frame criteria. The performance comparison is shown in

Table I. The results indicate that the combination of spatial

and temporal parts can greatly enhance the performance of the

tracker. These two parts help each other to estimate the precise

state of the target and acquire the accurate updating samples

for more robust performance. We notice that OMT works

better than SCT and TCT because it considers both the target

appearance variation and the background information. STT

outperforms OMT in all those four sequences, which indicates

the effectiveness of considering the relationships between the

target and its surroundings.

4) Comparison With Other Trackers: In this part, we com-

pare and analyze the tracking performance of STT and other

state-of-the-art trackers in different challenging situations.

Heavy Occlusion In sequences car and faceocc2, long-

term heavy occlusion occurs several times. IVT, which uses

holistic appearances without spatial context information, fails

to track the target in this case. Comparatively, TLD and

ContextT perform well in these two sequences, because the

detection based trackers are able to re-locate the target after

the occlusion. With spatio-temporal appearance contextual

information, STT also has good performance which indicates

the robustness of STT to heavy occlusion. In sequence girl,

TABLE III

COMPARISON RESULTS OF SUCCESSFUL FRAME CRITERIA

Fig. 5. The red pentagram represents the true target position, the blue
triangle represents the false positive in the background and the magenta circle
represents other surrounding patches. The dashed line represents the weak
correlation between the target and its surroundings. The relation between the
target and its surroundings can greatly enhance the discriminability of the
tracker.

a similar object occludes the target, as shown in the frame 463

of Fig. 6. In this case, TLD and MIL drift away for the full

occlusion of the man’s face. For STT, because of the contextual

information around the target and the temporal constraint, it

exhibits strong discriminative ability and is able to track the

target correctly.

Abrupt Motion and Motion Blur In sequence pedestrian,

there is abrupt motion because of the hand-held camera.

In sequence bird, the bird changes its moving direction

abruptly in the frame 48. Many trackers including IVT, VTD,

TLD, fail to track the target in these two cases. When the

abrupt motion happens, the temporal information becomes

unreliable while the spatial information is still discriminative.

Therefore, STT, which combines the temporal and spatial

information, is able to predict the position of the target accu-

rately. In sequences animal and lemming, there exist motion

blur, which loses important texture information. Trackers like

FragTrack, SemiBoost and TLD fail to track the targets in this

case. The proposed STT, with the help of low dimensional

’gist’ in temporal model and the contextual information in

spatial model, achieves the best performance in these two

sequences.

Cluttered Background The cluttered background in

sequences animal, football and ballet actually confuses the

tracker substantially, as shown in Fig. 6. MIL is easily

hijacked by other objects that have similar appearance with

the target. Although TLD considers positive and negative

constraints and ContextT incorporates semantic context, they
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Fig. 6. Tracking results of different trackers. Only the trackers with relatively better performance are displayed.

still frequently skip to other objects because they depend too

much on detectors. The complex background in sequences

board and lemming significantly increases the difficulty in

tracking task. Many trackers including FragTrack, IVT and

VTD, which ignore background information, perform badly

in these sequences. Although CoGD, MIL, and PROST take

the background into account, their performances are not as

accurate as STT. Particularly, we notice that STT is very good

at dealing with the distraction by other similar appearance

objects due to the consideration of both spatial and temporal

appearance constraints. As shown in Fig. 5, when there exists a

spatially close object with similar appearance of the target, the

surroundings of these two objects are totally different. Once

we incorporate the surrounding information around the target

to build the supporting field, it is easy to differentiate the target

from the the spatially close object with similar appearance.

The mutual supervision of spatio-temporal appearance context

ensures the stability of STT.

Large Variation of Pose and Scale Some trackers such

as FragTrack do not update their model effectively and are

easy to lose the target when 3D pose of the target changes

dramatically, as seen in sequences girl, board, lemming, bird,

ballet, panda, basketball and bird. IVT, CoGD, and MIL adopt

online updating mechanism to learn different appearances of

the target, but they may drift away due to the large pose

variation and can never recover. TLD and ContextT are good

at long term surveillance sequence, but they cannot track the

target precisely once large pose variation happens. Since VTD

combines multiple basic models with different features of

the target, it performs well in the two sequences panda and

basketball. Nevertheless, its tracking performances according

to the two evaluation protocols are not as satisfactory as STT,

especially in sequence bird, as described in Table II and III.

VI. CONCLUSION

In this paper, a spatio-temporal context model based tracker

is proposed. The appearance of the target is described by the

global temporal appearance contextual information and the

local spatial appearance contextual information. The structured

spatial appearance context model discovers the contributors
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around the target, and incorporates them to build a supporting

field. To prevent the tracker from being drifted away by the

surroundings, a strong temporal appearance context model

is included, which describes the target with low dimension-

ality feature vectors. Experimental comparison demonstrates

the proposed tracker outperforms the state-of-the-art tracking

strategies.

APPENDIX

ONLINE MULTIPLE SUBSPACES LEARNING ALGORITHM

In this section, we present the online multiple subspaces

learning algorithm in details, described in Algorithm 2.

Algorithm 2 Online Multiple Subspaces Learning Algorithm
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