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Abstract. This paper formulates the optic flow problem as a set of over-determined simultaneous linear equations.
It then introduces and studies two new robust optic flow methods. The first technique is based on using the Least
Median of Squares (LMedS) to detect the outliers. Then, the inlier group is solved using the least square technique.
The second method employs a new robust statistical method named the Least Median of Squares Orthogonal
Distances (LMSOD) to identify the outliers and then uses total least squares to solve the optic flow problem. The
performance of both methods are studied by experiments on synthetic and real image sequences. These methods
outperform other published methods both in accuracy and robustness.

1. Introduction

Despite at least two decades of research, the best meth-
ods for the extraction of optical flow are relatively inac-
curate and non-robust. By non-robust, we mean that the
accuracy, in particular parts of the image, is often con-
siderably worse than the general accuracy attainable
over much of the rest of the image. The degradation in
accuracy is due to a number of factors such as larger
noise in that region and/or failure of the underlying
image motion model.

This paper describes and compares two robust meth-
ods (methods which are not sensitive to minor pertur-
bation of data) for computing optic flow.

For the first method, a highly robust estimator known
as Least Median of Squares (LMedS) is modified and
used to find an initial estimate. This initial estimate is
then used to classify each equation into two groups: “in-
liers” and “outliers”. Finally, the inlier group is solved
using the least square (LS) technique. The resulting
technique is known as Weighted Least Squares (WLS).

For the second method, a novel and effective solution
is presented for the problem of finding a robust solution

to a system of over-determined linear equations with
all the data matrices containing both noise and outliers.
This technique is called Weighted Total Least Squares
(WTLS). The weights for this method are computed
using a new robust statistical method named the Least
Median of Squares Orthogonal Distances (LMSOD).

Unlike the total least squares (TLS) approach which
is only robust to noise, the WTLS method is robust
to both noise and outliers and can tolerate outlier con-
tamination in up to 50% of equations in the system.
The proposed weighting method is fast and the total
computation remains inexpensive.

A major feature of both approaches is that we intro-
duce a finalvalidation procedure to detect remaining
unreliable estimates.

To demonstrate the performance of the proposed al-
gorithms, the well-known optic flow problem is solved
and the results show that the proposed methods, despite
being very simple and straightforward, are likely to out-
perform any other method appearing in the literature.
It will also be shown how our validation procedure can
detect regions where the flow cannot be reliably esti-
mated (e.g., motion model failure).
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The outline of the rest of this paper is as follows.
In Section 2 a brief introduction to motion estimation
methods is presented. Some of the methods of oth-
ers, which aim to improve the robustness of optic flow
calculation, are also reviewed in this section. The pur-
pose is not to give a comprehensive survey (that is,
beyond the scope of this paper) but to contrast the ap-
proaches developed here with that of the major compet-
ing methods. The motivation for our methods comes
from comparing the relative advantages and disadvan-
tages of some standard formulations for solving a set of
over-determined linear equations. In particular, we de-
rive the basis for our approaches by comparing ordinary
and total least squares approaches with closest point
and LMedS reformulations of the problem. Section 3
describes our new method: we adapt some methods for
fast (approximate) LMedS in Linear Regression prob-
lems, so as to be able to perform outlier detection for
WLS and WTLS problems. Section 4 presents results
of experiments that verify the effectiveness of our pro-
posed approach. Section 5 concludes the paper.

Since the key to our approach, is to solve an over-
determined system of linear equations in a robust
manner, we expect the approach will be more widely
applicable to other areas (to other problems in computer
vision and to other problems in unrelated areas that
also reduce to the solution of an over-determined lin-
ear system). Thus, the present paper should be consid-
ered as the first demonstration of a basic robust scheme
for solving linear equations, where we have chosen to
apply the method to optic flow calculation. It is not
claimed that the current implementation is the best one
can do with our basic method. Some suggestions for
improving the implementation, for optic flow calcula-
tions; as well as suggestion of other areas of application
of our techniques, are contained in the conclusion to
the paper (Section 5).

2. Optic Flow and Robustness

Differential optic flow techniques try to relate local
changes in image intensity (expressed as spatial and
temporal derivatives of the image brightness function)
to the optic flow (Horn, 1986). Differential techniques
usually perform faster than image matching or phase-
based techniques and lead to a simple set of linear
equations. We base our robust approach in this class
of approaches and therefore, the basic idea behind this
class of methods needs to be explained before it will
be expanded upon.

2.1. Differential Based Optic Flow Methods

The fundamental assumption behind all the optic flow
techniques is the fact that the brightness intensity func-
tion of a moving object remains approximately constant
at least for short duration of time (Horn and Schunck,
1981). The differential technique for calculating the
velocity in TV and video signals was formulated by
Horn and Schunck (1981) based on the earlier works of
Limb and Murphy (1975), Cafforio and Rocca (1976),
and Fennema and Thompson (1979). They derived a
linear constraint, in the space spanned by horizontal
and vertical components of the velocity vectors, known
as the Optic Flow Constraint (OFC):

∂ I

∂x
ux + ∂ I

∂y
uy + ∂ I

∂t
= 0. (2.1)

This constraint relates the spatial(∂ I /∂x and∂ I /∂y)

and temporal(∂ I /∂t) derivatives of the image bright-
ness function at each point, to the optic flow(ux

and uy), at that point. Since there is only one equa-
tion in two unknowns, this equation cannot be solved
for both horizontal and vertical components of the op-
tic flow without additional assumptions or information
(the well-known aperture problem).

Put pictorially, (and in a way that we will make use of
later), a single equation produced by the OFC only con-
strains the optic flow(ux, uy) to lie on a constraint line
in 2Dux −uy space: we need at least one other nonpar-
allel constraint line to uniquely determine the flow. In
other words, using just the information we have so far,
the problem is ill-posed. Various alternative strategies
to make the problem well-posed (regularise the prob-
lem) have been suggested. These include: minimise
a functional derived from the OFC and a smoothness
penalty term (Horn and Schunck, 1981), assume con-
stant or affine variation in the optic flow (e.g., Burt
et al., 1989, Bergen et al., 1991, 1992), and differen-
tiate the OFC to obtain more than one constraint (e.g.,
Nagel, 1987).

Regardless of the strategy for overcoming the aper-
ture problem, one usually arrives at a set of linear equa-
tions to solve for the optic flow at each point:

Av = d, (2.2)

wherev is a two-component vector,v = (ux, uy), (the
optic flow we wish to derive),A is an p × 2 matrix
(whose coefficients are the spatial derivatives of the
image brightness function) andd is a p-component
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vector (temporal derivatives of the image brightness
function). The rank ofA should be greater than 2 (oth-
erwise, we still cannot solve for the two components of
the flow). Note, although only two independent equa-
tions are needed to estimate the flow, it has to be recog-
nised that the derivatives can only be approximated,
thus any two independent equations will not necessar-
ily give the best estimate of the true optic flow. So
we must, in general, use more equations than we have
unknowns. In other words, we inevitably arrive at a set
of over-determined linear equations.

2.2. Robust Optic Flow Methods

“Robustness” implies that the method is less sensitive
(compared with non-robust methods) to the influence
of outliers in input data. Roughly speaking, a robust
approach should not produce estimates that are wildly
wrong. Nor should a robust approach avoid making
erroneous estimates simply through discarding poten-
tially useful information, just to avoid the possibility
of the result being erroneous: that is, a method that is
overly conservative and produces no estimate almost
anywhere in an image, is not a robust method.

2.2.1. Rationale for Robust Methods.Although we
concentrate on optic flow methods based upon the dif-
ferential optic flow constraints, much of what we say
about the need for robust approaches still applies to the
other classes of methods. In particular, in some form or
other, all methods require some form of the following
two basic assumptions:

• Intensity Coherence. The image brightness of a
point imaged in two successive images is (strictest
assumption) constant or (weaker assumption) nearly
constant.

• Motion Coherence.The motion of points nearby in
an image is the same (strictest assumption) or slowly
varying (weaker assumption).

One common form of the last assumption is to allow the
image velocity to locally vary in some linear or affine
fashion.

There are a number of reasons why particular meth-
ods of optic flow produce erroneous or inaccurate re-
sults. It is useful to categorise these sources according
to:

• failure of the image/motion model

— failure of the brightness consistency (weak or
strong forms)

— failure of the motion consistency (weak or strong
forms)

• noise (e.g., sensor noise, poor approximation of
derivatives in a differential based scheme).

We argue that this classification is useful because fail-
ure of the image model, as we define it, has some
important practical distinguishing features. Firstly, it
usually occurs in particular regions that are associated
with geometric or physical properties of the scene. For
example, a moving specular surface may destroy the
accuracy of the brightness constraint, the boundary be-
tween two regions moving with different motion will
destroy the motion consistency assumption. Secondly,
this class of errors tends to lead to more severe errors,
and, in some sense, errors that are less random than
the errors from the other sources that we have lumped
together as “noise”. For this reason, we argue that the
first class of errors can be detected by robust statistical
methods to detect outliers. The second class of errors, if
also severe can be similarly detected as outliers. On the
other hand, if errors from this class are less severe, and
cannot be considered to be outliers, they can perhaps
be reduced in effect by simple processes such as least
squares solution. In this way we can take maximum
advantage of the particular features of some standard
robust and non-robust reformulations of the optic flow
problem, see Section 3.1.

Thus, the essential point is that, we see robust meth-
ods as ones that can avoid producing wildly wrong esti-
mates for the optic flow,particularly where the source
of the likely breakdown in performance is a failure
of the image motion consistency or image brightness
consistency assumptions. Such breakdowns commonly
occur, with non-robust methods, around the edges be-
tween differently moving objects. An extreme case of
the latter is the situation where we have “motion trans-
parency” (for example, a reflection on a transparent
surface moving differently to the material beyond that
surface; or, where there are two populations of move-
ment interspersed, such as a flock of birds against a
background of clouds)—an example of which is shown
in the next section.

2.2.2. An Example of Motion Transparency and
Outliers. To demonstrate the effects of noise and of
breakdowns in the underlying motion model, we take
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Figure 1. Snapshot from Hamburg Taxi sequence with selected
region.

Figure 2. OFC lines for the Hamburg Taxi sequence (selected re-
gion). There are 169 lines, one for each pixel in the rectangle. The
lower axis represents the horizontal velocity,ux and the left-hand
axis represents the vertical velocity,uy.

a real image sequence: the famous Hamburg Taxi se-
quence (see Fig. 1). A van in the lower right corner is
moving to the left at approximately 3 pixels/frame. We
selected a small window, centred on this van (13 pixels
square and centred at the point (220, 130)). For each
pixel, we calculated the spatial and temporal deriva-
tives of the image brightness to yield a single OFC for
each pixel. We then plotted the OFC lines (see Fig. 2).
If, in this small rectangle, we had a single underlying
translational motion, and the data were noiseless, we
would expect all constraint lines to pass through the
point representing that motion,(−3, 0) in this exam-
ple. However, even though there is some tendency for
many of the lines (shown solid) to cluster about this
point, there are many lines (shown dashed) that nearly
intersect at the point (0, 0). This is mainly due to the
branches of the tree that intersect the rectangle from
which we have drawn our pixels (the pixels in this rect-
angle, therefore, are a mixture of those belonging to

the van, and those belonging to the tree: the former
have approximately uniform motion to the left and the
latter are stationary). This is a phenomenon sometimes
referred to as “transparent motion” since it is similar to
the situation where a reflection, in a pane of glass, for
example, has different motion to other objects behind
the glass. In addition to the breakdown in the motion
consistency or coherence assumption (i.e., the motion
model) we have other noise effects, due to a variety of
other sources, that cause a spread in the intersections
of these two populations.

The point we wish to make, with this example, is
that a non-robust method that tries to treat all of the
constraint lines as being valid data (for a single un-
derlying motion), will produce poor estimates of the
velocity. We wish to have a robust method that will
reject the influence of any data that either belongs to
another population (two or more independently mov-
ing object in a window), or is so badly corrupted by
noise as to be unreliable. After briefly surveying other
attempts to achieve this end (next section), we devise
such robust methods (Section 3).

2.2.3. Previous Robust Approaches.The explicit use
of robust statistics for recovering the visual motion
dates back to early this decade. Darrel and Pentland
(1991) considered using M-Estimators for 3D transla-
tions with constant depth. For 2D optic flow, Black
and Anandan (1991, 1993, 1996) and Odobez and
Bouthemy (1995) developed methods using M-Esti-
mators for a correlation and differential formulations of
the optic flow problem. The main difference between
these two approaches is the use of different minimi-
sation techniques. However, M-estimators have very
low “breakdown points” (Hample et al., 1986)—the
percentage of contaminated data that can cause the
estimator to give an estimate far from the true esti-
mate. In fact, the breakdown point of the proposed
M-estimators is at most 1/(1+ p) wherep is the num-
ber of estimated parameters (Rousseeuw and Leroy,
1987). This shows that for an affine model used in
(Odobez and Bouthemy, 1995), with 6 parameters, the
breakdown point is only 14%. The first work was
further modified by adding an Incremental Graduated
Non-Convexity (Black, 1994) minimisation to the ro-
bust framework of Black and Anandan (1993). This
technique can improve the motion estimates over time
and adapts to scene changes. The most recent robust
method for calculating the optic flow is presented by Ju
et al. (1996). This method (known as Skin and Bones)
can also be regarded as a modification to the robust
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framework of Black and Anandan (1993). Although
the performance of this method is exceptionally good
for some cases (like the Yosemite image sequence),
it still suffers from the limitations of M-estimators as
mentioned earlier (see Stewart (1996) for detail discus-
sion on the use of M-estimators for computer vision
problems).

A similar approach for estimating the flow field, us-
ing the Horn and Schunck (1981) type regularisation
technique has also been proposed by Iu (1995). In this
method, the motion is estimated by minimising the en-
ergy function of a globally smooth motion model. A
rank ordering technique is used to reject the local out-
liers of the globally smooth model and the resulting
minimisation problem is solved using a stochastical
optimisation technique (simulated annealing). Aside
from computational burden of such a minimisation
technique, the proposed kind of outlier rejection is
likely to become very unstable for centrally located
data. Since there is no measure on quantitative per-
formance presented, it is difficult to assess the perfor-
mance of this method.

In order to cope specifically with motion boundaries,
Fennema and Thompson (1979) proposed a clustering
method using the Hough transform. This method is
computationally very expensive. Schunck (1989) mod-
ified this method, to reduce the computational cost, by
clustering constraint lines along the OFC produced by
the central pixel in a patch. However, such a method
is sensitive to perturbations in the data that determined
the central constraint line.

To overcome the problem rising from sensitivity to
the perturbations in the central OFC, Nesi et al. (1995)
proposed a clustering method based on the Combina-
torial Hough Transform. This approach, however, still
remains expensive. Moreover, the clustering methods
just discussed, solve the problem as a version of the
Closest Point Problem which unnecessarily discards a
natural and useful weighting of the data (see Section 3.2
and Bab-Hadiashar, 1996).

Another similar approach is the method presented
by Jepson and Black (1993, 1995). This method relies
on using probabilistic mixture model to represent mul-
tiple motions. The EM-algorithm is used to retrieve
the parameters of the various motions that exist in the
scene. The advantage of this method over the cluster-
ing technique (Schunck, 1989) is that the later method
models multiple motion and thus can retrieve several
motions in a multiple motions scenario.

Another approach to optic flow computation using
robust statistics is the use of Robust Hough Transform

(Bober and Kittler, 1994a, 1994b). In this approach, an
affine model of motion is introduced and the flow is cal-
culated by Hough Transform. This Hough transform
is based on the parameter space of the affine motion
model, and “voting” uses the error between the bright-
ness values of corresponding (using the affine mapping)
pixels in sequential frames, weighted by a kernel func-
tion belonging to the M-estimators family. The Median
of Absolute Deviation is used to scale the residual be-
fore applying the kernel function. Since a good match
should lead to a low-error function (and thus a low vote
in Hough transform space), the problem then reduces
to an optimisation problem: finding the minimum in
Hough space. The resulting optimisation problem is
then solved using the “deepest descent” method. This
algorithm has serious limitations due to the robustness
limitation of M-estimators (see previous discussion of
Black and Anandan’s method). Moreover, for the op-
timisation scheme to work, the support function has to
be a well-behaved function. As explained by the au-
thors, the function is only well-behaved in the region
with a valid Taylor expansion. So, in the regions with
motion boundaries, transparency etc, the optimisation
scheme is likely to fail. The poor results presented
for the Yosemite Image sequence (Bober and Kittler,
1994b) confirms our intuition about the limitation of
this algorithm.

The TLS method has been frequently employed to
solve many different computer vision problems. Pro-
viding a comprehensive list of all these attempts is be-
yond the scope of this paper but a number of relevant
works are briefly reviewed. Even though such meth-
ods can improve the results (basically by considering
noise in both the coefficients and the right-hand side
of equations such as (2.2)) these methodsare not ro-
bust methodsas the break down occurs even at one
bad data sample. This deficiency will be addressed in
Section 3.4.

Chu and Delp (1989) have suggested using TLS for
solving the set of over-determined equations resulting
from optic flow formulation. Their study addresses the
rank deficient problem (where the data matrixA in the
final over-determined set of linear equations is rank de-
ficient) but such a approach fails to address the problem
of having discontinuities in either the image brightness
function or the optic flow itself (which commonly hap-
pens in any practical applications).

Chaudhuri and Chatterjee (1991) presented a perfor-
mance analysis of the TLS method for 3D motion esti-
mation. In this study, using synthetic data with additive
uncorrelated Gaussian noise, they conclude that the
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TLS outperforms LS method in deriving both the mo-
tion of deformable objects from range data, and the
motion of a rigid object under perspective projection.

The TLS was also used by Wang et al. (1992) to re-
cover the smooth flow where the chances of having out-
liers are limited. However, it is important to note, that
assuming the flow is smooth is not sufficient to ensure
there are no outliers in the final equations. Secondly,
the assumption of smooth flow, over a predefined area,
is too conservative to be useful in practical applications.
Weber and Malik (1993, 1995) also presented a method
for estimating the optic flow based on the TLS method.
In this work, the authors allowed the outliers to corrupt
the results when they solved the linear equations, but
they rejected the final results based on some weighting
scheme of the singular value decomposition (SVD) of
the augmented data matrices (see Section 4.2, step 5).
This approach appears to be too conservative. Indeed,
this method under utilises the available information by
allowing the outliers to contaminate the estimate in the
first place and then attempts to reject the bad results
when the damage is irreversible (see Section 5.2 for
performance comparison).

The use of an iterative TLS method as a means
of extracting straight lines was also proposed by Van
Mieghem et al. (1995). This method, similar to those
mentioned above, does not have the capability to re-
ject the local outliers and would only work if there
were no badleverage points(points with their inde-
pendent coordinates being far from the bulk of the data,
Rousseeuw and Leroy, 1987).

Although Meer et al. (1991) uses LMedS in other
problems drawn from the computer vision field, it
seems that no previous work has used Least Median
of Squares to solve the optic flow problem. Mitiche
(1994) has mentioned the possibility of using LMedS,
but appears not to have explored this suggestion with
an algorithm or experimental results. We base our new
methods, in part, on the LMedS technique.

3. Methods for Solving Linear Equations
in the Presence of Noise

Before describing our approaches in detail, we need to
introduce various abstract problem formulations: Or-
dinary and Total Least Squares, Closest Point and Stan-
dard Regression and Least Median of Squares. For the
sake of clarity and simplicity, the 2D version of these
problems are described here.

3.1. Ordinary and Total Least Squares Problem

Consider the problem of solving an over-determined
set of linear equationsAv = d, wherev = (x, y), A is
the matrix withij th entryai j andd is a (column) vector
with row di . Suppose we havep linear equations in
two unknowns (x andy):

ai 1x + ai 2y = di , i = 1, . . . , p (3.1.1)

In case of LS, we seek the(x, y) that minimises:

ELS =
p∑

i =1

(ai 1x + ai 2y − di )
2 (3.1.2)

This formulation has an explicit solution (simply ob-
tained by differentiatingELS, with respect to the un-
knowns, and equating these derivatives to zero):

vLS = (AT A)−1ATd (3.1.3)

The solutionvLS exactly satisfies the equationAv =
d + 1dLS, where1dLS is a column vector. An attrac-
tive feature of the LS solution is that the LS produces an
estimate, assuming that all the elements of matrix1dLS

are uncorrelated random variables with equal variance,
that has the smallest variance amongst the solutions that
are linear in the datad when there are no systematic
errors(VanHuffel and Vandewalle, 1991). The empha-
sis on the last qualifying phrase is placed there as this
is the key weakness of the LS approach in optic flow
calculations; particularly in regions, such as occluding
boundaries, where the underlying model is no longer
valid. This observation is one of the foundations of our
proposed robust methods.

In case of TLS, we seek the(x, y) that minimises
(sum of square orthogonal distances):

ETLS =
p∑

i =1

(ai 1x + ai 2y − di )
2

(ai 1 + ai 2)2
(3.1.4)

This formulation also has an explicit solution:

vTLS = (AT A − κ2I )−1ATd (3.1.5)

where κ is the smallest singular value of the aug-
mented matrix [A d] (VanHuffel and Vandewalle,
1991). The solutionvTLS exactly satisfies the equa-
tion [A + 1ATLS]v = d + 1dTLS where1ATLS and
1dTLS are column vectors.
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It should be noted here that the TLS is often preferred
over LS because TLS solution, unlike the LS solution
which is only consistent where the observation matrix
d is error free, remains consistent even when all the
data matrices are noisy. Being consistent means that
the estimated solution converges to the true solution
as the number of equations tends to infinity (based on
the assumption that all the elements of all the matrices
starting with1 are uncorrelated random variables with
equal variance). It is also important to note that this
property of the TLS solution does not depend on any
assumed distributional form of the errors (VanHuffel
and Vandewalle, 1991).

However, the TLS, as well as the LS problem, is
extremely sensitive to the influence of any outliers. In-
deed, its breakdown point is only 0%. This means that
even one contaminated element, in either of the data
matrices, can result in a solution arbitrary far from any
solution consistent with the rest of equations.

3.2. The Standard Regression (SR) and the Closest
Point (CP) Problem

Much of the robust statistics literature is concentrated
on finding a robust solution for the SR problem. As
it will be explained in this section, there is subtle dif-
ference between the LS based solution to the SR (or
CP) problems and the LS based solution to a system
of over-determined linear equations. In order to clar-
ify the differences between our robust approaches and
the ones proposed in robust statistics literature (e.g.,
Rousseeuw and Leroy, 1987), it is essential to reiterate
the SR and CP problems.

In case of the SR, we have a number of data points,
to which we wish to fit a line. That is, given a set
of p points: {(xi , yi ), i = 1, . . . , p}, we wish to find
the line, parameterised by(m, n), i.e., y = mx + n,
such that the sum of squared residuals (squared vertical
distances to the line from the points) is minimised. That
is, to find(m, n) that minimises

ESR =
p∑

i =1

(mxi + n − yi )
2. (3.2.1)

In case of CP, given a set ofp lines: y = mi x + ni ,;
i = 1, . . . , p, the problem is to find the point that
has the minimum sum of squared vertical distances to
the lines. That is, to find the(x, y) that minimises:

ECP =
p∑

i =1

(mi x + ni − y)2. (3.2.2)

Although, there is a one-to-one relationship between
the formulation of the CP and SR problem, neither of
those has one-to-one relationship to the formulation of
the LS problem. Comparing Eqs. (3.2.2) (or (3.2.1))
with (3.1.2) reveals the difference between these ap-
proaches. The main distinction arises from the fact that,
even though every equation in the LS formulation can
be regarded as a line, the residual associated with each
line in the LS formulation will be weighted differently
in the final minimisation problem based on the absolute
magnitude of the coefficients of that equation. This is
because, in order to map a formulation such as (3.1.2)
onto (3.2.1) (or (3.2.2)) one has to divide the residual
by a constant line dependent factor (to make the coef-
ficient of one unknown,n in (3.2.1) andy in (3.2.2),
have unit magnitude).

This distinction is important since our equations
often carry a natural scale. For example, the OFC,
Eq. (2.1), produces coefficients that are scaled by the
gradient of the image brightness. This has the natu-
ral and useful consequence that those constraints re-
sulting from parts of the image with high contrast
will carry more weight, in a least squares formulation
(an observation commonly made in the literature—see,
for example, Shi and Tomasi (1994) or J¨ahne (1993),
p. 122). To arbitrarily rescale such natural weights, as
one would have to do to reformulate the problem as an
instance of the CP (or SR) problem, is likely to be a
retrograde step (see Bab-Hadiashar (1996), for details).

3.3. LMedS and WLS

The LMedS problem (Rousseeuw, 1984; Rousseeuw
and Leroy, 1987) is a reformulation of the standard
regression problem. Instead of finding the line that has
the smallest squared vertical distances from the data
points, the LMedS approach identifies the narrowest
strip (bounded by two parallel lines) that contains one
more than half of the data points: the LMedS line then
runs down the middle of this strip (Steele and Steiger,
1986). Mathematically, the LMedS is given by:

Minimize
θ

med
i

r 2
i (3.3.1)

wherer is the vertical distance from every point to
the fitted line andθ is the set of estimated parame-
ters (Rousseeuw and Leroy, 1987). It is usual, for
efficiency, to only approximately solve the LMedS
problem and use this approximate solution in defin-
ing outliers. The WLS final solution is then obtained
by weighted least squares.
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The breakdown point of the LMedS is 50%—it can
tolerate up to half of the data points being arbitrarily
bad! As long as the majority(p/2 + 1, in our exam-
ples) are “sensible”, in some sense, the solution will
be “sensible”. As we described before, our preferred
formulation for the optic flow problem is a LS or a TLS
formulation. The LMedS method is a robust solution
to the SR problem: therefore, we have reformulated
the LMedS and the WLS to apply to the LS and TLS
problem. In the sequel, when we refer to the LMedS
approach, we refer to the approach as modified for our
purposes.

3.4. LMSOD and WTLS

In this section, the Weighted Total Least Square
(WTLS) method is introduced for solving an over-
determined set of linear equationsAv ≈ d where the
data matricesA andd contain both noise and outliers
without A being rank deficient. The proposed method
differs from the WLS method in two ways. Firstly, un-
like the WLS, the outliers (of Eq. (2.2)) in this method
are detected using a method we call the Least Median
of Square Orthogonal Distances (LMSOD) technique.
The LMSOD seeks an approximate solutionv which
exactly satisfies the(A + 1A) v = (d + 1d) while
minimising the median of squares of the orthogonal
distances between solutionv and the geometrical entity
represented by every equation in the original set. The
second major difference is that the WTLS method, un-
like the WLS which uses ordinary least squares to solve
the inlier group, uses the total least squares technique to
solve the remaining system of over-determined linear
equations (after rejecting the outliers, see Section 4.3).

It is important to note here that this method has all the
advantages of the TLS method without being sensitive
to the influence of outliers. Comparing the LMSOD
to the LMedS, it is trivial to show that the LMSOD
method also has a breakdown point of 50%.

3.5. Summary and Comparison of the Formulations

The CP and SR problems are essentially dual formu-
lations of the same problem. The LS formulation is
related to the CP and SR formulations but not an iden-
tical reformulation. The LS and TLS are all fast to
compute; however, they are all non-robust. The LMedS
and LMSOD are very robust; but are expensive to com-
pute. Indeed, no closed form solution of the LMedS

(or LMSOD) formulation is known. The fastest known
method for computing the exact LMedS solution in
2D space hasO(p2) time andO(p) space complexity
(Edelsbrunner and Souvaine, 1990).

4. Proposed Optic Flow Methods

We now have all the ingredients (and background ra-
tionale) for constructing our methods. Given a set of
linear OFC equations (Eq. (2.1)), we would, ideally
have a single unique solution. However, in reality,
we are faced not only with a situation in which most
lines do not go through the real solution point, but that
there are severe outlier lines. To overcome the prob-
lem of having both noise and outliers, we propose and
investigate two different optic flow methods. The first
approach is based on LMedS and utilises the WLS for
computing the optic flow. The second method is based
on using the LMSOD for outlier rejection and utilises
the WTLS for computing the optic flow field.

To these basic strategies we need to add one fur-
ther ingredient. The whole basis of the LMedS and
LMSOD methods is that there must be a population
that is in the majority. This can, of course, break-
down (if we have, say, three populations roughly equal
in size). Moreover, since we are using approximate
LMedS and LMSOD solutions, and because there may
be other noise (perhaps there simply is not enough tex-
ture in the region to give any reasonable constraints);
we need to be able to validate our final answer (and
reject estimates that are clearly erroneous). We shall
propose a measure of reliability (Section 4.4) for this
purpose. Thus our scheme requires just two thresholds:
a threshold for outlier detection (Section 4.3) before ap-
plying WLS or WTLS, and a threshold for reliability to
discard any final answers, after WLS or WTLS, that are
still unlikely to be accurate (Section 4.4). The precise
methods for choosing these thresholds are not essential
to the proposed scheme and their details are given in
Sections 4.3 and 4.4. One of these threshold is always
set (Section 4.3) to a fixed value, determined experi-
mentally (Rousseeuw and Leroy, 1987); and the other
is set by a user-defined value.

4.1. Ordinary Least Squares Based Optic Flow
Technique (WLS)

For purposes of clarity, we list the steps of our WLS
based algorithm here:
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1. Estimate the spatio-temporal derivatives of the im-
age brightness function. The precise form of esti-
mate, whilst important for accuracy, is not essential
to our proposal. We choose to use, for our exper-
iments, convolutions with derivatives of Gaussian
functions (as is customary in many approaches, see,
for example, Nagel (1995)).

2. Select a patch of the image, over which we are go-
ing to assume some motion consistency. The pre-
cise form of the motion consistency is not essential:
we are simply assuming a single or dominant popu-
lation (we only recover the dominant population if
there is more than one—our method can be elabo-
rated to remove the dominant population and resolve
for any secondary populations).

3. Use an approximate LMedS solution to obtain a
temporary estimate of the motion. Again, the pre-
cise method to approximate the LMedS solution
can vary. We use here an algorithm adapted from
Rousseeuw and Leroy (1987). Whereas that method
was defined for a SR problem, it is modified to suit
the LS problem. One simply chooses some frac-
tion of the constraint equations, containn equations
wheren is the number of rows in the solution ma-
trix v of Eq. (2.2), and for each set, calculates the
exact solution. For this solution one can calculate
the square residuals for all other geometrical entities
(lines, planes, hyperplanes, etc.) represented by the
rest of the equations and, in turn, calculate the me-
dian of these square residuals. The solution with
the smallest median of square residual is chosen as
the approximate LMedS solution. In a naive ap-
proach to approximating the LMedS solution, one
would try to use every possible combination of all
the equations (lines, planes, etc.—depending upon
the motion model dimensions—a combinatorially
explosive situation) and evaluate the median of the
residuals produced by the intersection of each com-
bination. However, one can use a very small fraction
of the possible combinations and the probability is
high that the subsample will produce a solution that
belongs to the majority population (using approxi-
mate LMedS for outlier detection, we need only one
such good intersection). Indeed, if one choosesm
equations ofn unknown, from thep constraints we
have in each patch, then the probability of this sam-
ple giving a good estimate for the LMedS solution
is (Rousseeuw and Leroy, 1987):

1 − (
1 − (1 − ε)n

)m
(4.1.1)

whereε is the fraction of samples that do not belong
to the majority population. From this formula, it can
be seen that one can choose a very small population
m, and still such that the probability is close to 1.
We often usem as small as 30.

4. Reject outliers using a method of outlier rejection,
based upon the temporary estimate of motion. De-
tails of this step is given in Section 4.3.

5. Solve the WLS problem resulting from the previous
step. In our experiments, since we use weights 0 (re-
ject) or 1 (accept), this is simply a matter of remov-
ing the rejected equations from Eq. (2.2) and solving
by LS, the smaller system, according to Eq. (3.1.3).

6. Examine the result, using a measure of reliability
and do not produce any estimate if the result is
judged to be still unreliable (see Section 4.4 for de-
tails).

In our experiments, we repeat the above process for a
patch centred upon every pixel, to yield the estimated
of the flow at that pixel.

4.2. Total Least Squares Based Optic Flow
Technique (WTLS)

For the sake of clarity, the proposed algorithm is de-
scribed in four steps (the first two steps are exactly the
same as the WLS algorithm and will not be repeated,
here):

3. Use a fast and very robust approximate LMSOD
solution to obtain a temporary estimate of the solu-
tion v (free from the influence of any existing out-
lier). Here, a method to approximate the LMSOD
is proposed in a manner similar to Rousseeuw and
Leroy’s (1987) approximate LMedS. The method
starts by randomly choosing a number of sample
equations (the sample must satisfy the same condi-
tion as explained in previous section). By solving
every such set of equations and finding the median
of the squared orthogonal distances between this
solution and the geometrical entities represented by
the rest of the equations in the original set, one can
find the solution which approximately satisfies the
LMSOD. Similar to the LMedS case, one needs to
choose only one sample belonging to the majority
in order to return the approximate solution associ-
ated with the majority (see step 3 of Section 4.1).
Therefore, limited number of samples is often re-
quired.
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4. Having found the approximate LMSOD, one can
weight the different equations based on the scaled
orthogonal distances between the LMSOD solu-
tion and the geometrical entity represented by ev-
ery equation in the original system of equations.
The details of the weighting scheme is described in
Section 4.3. After identifying the outliers, the out-
lier equations are eliminated (weight them by zero)
to arrive at a new system of over-determined lin-
ear equationsAs v = ds in which the number of
equations are now less than or equal the original set
(subscripts refers to the inlier group).

5. The final solution can be obtained by solving the
new system of over-determined linear equations us-
ing total least squares technique (Section 3.1):

v = (
AT

s As − κ2I
)−1

AT
s ds (4.2.1)

whereκ is the smallest singular value of the aug-
mented matrix [As ds] andI is the identity matrix.
There are cheaper ways to calculate the total least
squares solution than calculating the solution from
above formula but their description is beyond the
scope of this paper (see VanHuffel and Vandewalle
(1991) for more details).

6. The last step in this algorithm is to examine the
result, using a measure of reliability and not pro-
ducing any estimate if the result is judged to be still
unreliable (see Section 4.4 for details).

Similar to the first algorithm, the above process is re-
peated for a patch centred upon every pixel, to yield
the estimate of the flow at that pixel.

As stated by Weber and Malik (1995), the TLS is
very sensitive to non-iid (independently and identi-
cally distributed) noise. In fact, the TLS may perform
worse than LS if the noise in different parameters of
the system are not uncorrelated. To demonstrate this
effect and the performance of our proposed estimator,
a simple though demanding example is solved using
our method. In this experiment, a set of 81 linear equa-
tions is considered: where a narrow majority of them
(41 lines) satisfies the solution (2, 3) and the rest are
consistent with the solution(−1, −2). Then, we add
10% normal random noise to all the elements of the
data matrices associated with the majority (parameters
of all the lines passing through (2, 3) are contaminated
with normal noise). Figure 3 shows the resulting equa-
tions plotted in Cartesian coordinates. The black arrow
shows the WTLS solution (1.825, 2.811) and the white

Figure 3. Robust total least square example. The black arrow shows
the WTLS solution (1.825, 2.811) and the white arrow points to the
LS solution (0.110, 0.848).

arrow points to the LS solution (0.110, 0.848). The TLS
solution to this set of equations(−73.045, 66.238) is
out of range and has not been included in Fig. 3. This
indeed demonstrate the high sensitivity of the TLS so-
lution to non-iid noise and outliers.

4.3. Outlier Threshold

In our method, having obtained an approximate solu-
tion, based on an approximate LMedS or LMSOD; we
wish to assess the reliability of each constraint equa-
tion.

Rousseeuw and Leroy (1987) give a good recipe for
detecting outliers. We first calculate, for each con-
straint a residualri , then we calculate a scale factors0

according to:

s0 = 1.4826

(
1 + 5

p − n

)√
med

i
r 2

i . (4.3.1)

We then, for every constraint, associate a binary weight
(wi ) so that the weight is 0 for any constraint whose
residualri is such that|ri /s0| is greater than 2.5. Rather
then using these weights, to directly reformulate the
problem now as a (weighted) LS or TLS problem, we
go through one more step of scaling. This is because the
original weights were chosen, according to Eq. (4.3.1),
using the median involving the outliers. Since we now
have a better idea of which are truly outliers, we cal-
culate:

s∗ =
√ ∑p

i =1 wi r 2
i∑p

i =1 wi − n
(4.3.2)
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and we, finally, reject those constraints for which
the associated value|ri /s∗| is greater than 2.5 (see
Rousseeuw and Leroy (1987) for details).

4.4. Measure of Reliability

Although the LMedS and LMSOD techniques have the
highest possible breakdown point (50%) of all known
robust estimators, it has the potentially fatal flaw in that
is still produces an estimate, even if the number of out-
liers is more than 50%. Moreover, there are extreme
cases where an image patch may not contain sufficient
data (lack of texture) or data so badly corrupted (alias-
ing, for example) for any estimate to be valid.

Thus, we still need to validate the estimate pro-
duced by our method. A tool for the validation process
can be modelled on “the coefficient of determination”
(Kvalseth, 1985). The coefficient of determination, de-
notedR2, has been defined for the Standard regression
problem in at least nine different ways. The most well
known of all the definitions is:

R2 = 1 −
∑p

i =1(yi − ŷ)2∑p
i =1(yi − ȳ)2

(4.4.1)

whereŷ is the estimate ofy provided by the regression
fit and ȳ is the mean of all of the data pointsyi .

For the WLS technique, we have found the following
statistic, inspired by the form of the above measure,
experimentally satisfactory:

R2
WLS = 1 −

∑p
i =1 wi (di − d̂i )

2∑p
i =1 wi (di − d̄i )2

(4.4.2)

whered̄i is the average value of thedi andd̂i is such that
ai 1ûx + ai 2ûy = d̂i for the estimates of flow(ûx, ûy)

from our WLS technique.
However, for the WTLS technique, we want to en-

sure that the Frobenius1 norm of the perturbation matrix
1 = [1As 1ds] is small enough for the solution to be
acceptable. Since it has been shown thatκ (the small-
est singular value of the augmented matrix [As ds])
is equal to the Frobenius norm of the perturbation ma-
trix 1 for the calculatedv (VanHuffel and Vandewalle,
1991), we propose the followingR2 statistic:

R2
WTLS = 1 − κ2∑

i (dsi − d̄si)2
(4.4.3)

wheredsi represents the different elements of vectords

and maximum number ofi is set by the number equa-
tions regarded as inliers.

5. Experimental Validation

The quantitative performance of the proposed algo-
rithms have been measured by applying the algorithms
to image sequences for which the true flow fields are
known. We provide quantitative performance figures
for both synthetic and real image sequences. The syn-
thetic image sequences contain a controlled number of
the features, exhibited in real image sequences, that vi-
olate the basic model assumptions (motion consistency
and image brightness consistency): thus they provide
very optimistic (upper) bounds on the performance one
can expect. However, synthetic image sequences do
have two experimental advantages which make them
useful: one can easily calculate the true motion field
(indeed there are relatively few real sequences with
known motion fields in general use in the vision com-
munity), and one can control the ways in which the
basic model assumptions are violated. In our exam-
ples, the synthetic sequences basically violate just one
model assumption: there is a motion discontinuity (and
a simple and precisely known one at that) that allows us
to investigate the performance of the algorithm in quan-
titatively identifying the failure of the simple motion
model (and correctly reporting one of the two motions
in a patch near the boundary).

All of the derivatives of the image brightness func-
tion are calculated by constructing the appropriate
derivative of a 3D Gaussian function (with equal spa-
tial and temporal standard deviation). Each sequence
is then convolved with these derivative of Gaussian
functions. We report the results for different sized
spatial rectangular windows within which the motion
is assumed to be constant or affine. The number of
unknowns in both approaches (number of columns in
matrix A of Eq. (2.2)) depends on the model of motion
in every patch of the image. Constant (2 unknowns)
and affine (6 unknowns) motions are the most com-
mon models of motion proposed in the optic flow lit-
erature (see Szeliski and Coughlan (1994) for detail
description of different motion models) . To keep the
computation minimum, in both approaches, first the
LMedS or LMSOD is solved for all the OFC contained
in a square window with constant model of motion.
Then, the weights are calculated for every OFC based
on its residual with respect to the initial estimate. The
intuitive idea behind this is very simple. The outliers
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contaminating the OFC (due to multiple motions, trans-
parency, etc.) are independent of the motion model and
by rejecting the outliers using constant motion model,
the computational time is reduced. It is important to
note that this argument is only justified for small win-
dows where the chance of disregarding good points at
the tail of the affine model by the robust solution calcu-
lated using constant model is negligible. One of course,
may achieve slightly better results by using the affine
model of motion in both steps.

The constraints whose their scaled residual is above
some threshold are simply rejected. The final step in
estimating the flow field is to solve the new system of
over-determined linear equations using LS or TLS and
compute the associatedR2 statistics. To investigate
the effect of different motion models on the accuracy
of estimated flow field, the weighted set of OFC is
solved using both the constant (2 unknowns) and the
affine motion model (6 unknowns).
The error analysis is performed using Barron’s (Barron
et al., 1994) software and the errors are reported in “de-
grees”. This measure is the angle between the true and
estimated motions when each is expressed in homoge-
neous coordinates. We refer to the cited paper for full
details. As stated by Otte and Nagel (1994), the values
of the errors reported by this measure should be treated
with some suspicion as estimates that have the same
magnitude of error may provide vastly different angu-
lar errors. For the sake of comparison, the results of
most accurate optic flow techniques were also quoted
(where available) from the literature.

Before the experimental results are detailed, the
computational cost will be briefly discussed. Properly
comparing the computational cost of algorithms is, of
course, a difficult procedure. Various optimisations can
dramatically change the time it takes an algorithm to
run. Moreover, the speed can be affected by various pa-
rameter settings: in our approach, two significant set-
tings are the size of the patch, and the number of pairs
of lines we use to approximate the LMedS (or LMSOD)
result in that patch. For these reasons, since our code
(and usually the code of other researchers) is written
more for correctness than speed, we give only rough,
indicative times. Running on an SGI Indy (SC 4600
at 132 MHz) our code for LS based method (WLS)
takes approximately 10 min to calculate the flow for the
Yosemite image sequence (it simultaneously computes
results for constant and affine model of motion and also
perform the validation procedure for both cases), using
patches of size 15×15 around each pixel, and using 30

pairs of lines in each patch to approximate the LMedS.
We can get similar results faster, by using only 10 pairs
of lines per patch, for example, and the running time is
roughly halved. The computation time for the WTLS
method is slightly higher and depends on the method
used for solving the TLS problem (see VanHuffel and
Vandewalle (1991) for more details). The Fleet and
Jepsons (1990) method takes about an hour to compute
the flow for this sequence on the same machine. See
Liu et al. (1996) for detail discussion on computation
time of various optic flow techniques.

5.1. New-Sinusoid1 Image Sequence

We created a sinusoidal image sequence similar to
Sinusoid1 of (Barron et al., 1994). The sequence con-
tains images having the same spatial frequencies as
Sinusoid1. However, in contrast to that sequence,
which had spatially constant motion across the whole
image, our sequence has motion boundaries. This was
achieved by creating a stationary square (length of side
50 pixels) in the middle of each image. Figure 4 shows
a sample image from the sequence and Table 1 presents
the error statistics for this sequence. The result for the
Fleet and Jepson (1990) method is created using the
software developed by Barron et al. (1994). From this
table, it is seen that our method clearly outperforms the
Fleet and Jepson method in both accuracy and density
of the points for which estimates are provided.

Without the validation procedure, to detect motion
estimates that do not fit our image model well, we still
have some erroneous estimates along the boundaries of
the stationary rectangle.

Figure 4. One frame taken from New-Sinusiod1 sequence.
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Table 1. Error analysis using New-Sinusoid1 image sequence.

Avg. error Std. dev. Density
Technique (degree) (degree) (%)

Fleet and Jepson(σ = 2.5, τ = 1.25) 7.39 10.84 43.4

Fleet and Jepson(σ = 2.5, τ = 2.5) 1.41 3.65 46.0

WLS2 (σ = 1.0, 5 × 5, m = 30, without check) 1.56 7.12 100

WLS2 (σ = 1.0, 5 × 5, m = 30, R2 = 0.9999) 0.05 0.06 84.6

WLS6 (σ = 1.0, 5 × 5, m = 30, without check) 1.51 5.86 100

WLS6 (σ = 1.0, 5 × 5, m = 30, R2 = 0.9999) 0.05 0.06 83.5

WTLS2 (σ = 1.0, 5 × 5, m = 30, without check) 2.82 8.82 100

WTLS2 (σ = 1.0, 5 × 5, m = 30, R2 = 0.9999) 0.05 0.06 76.1

WTLS6 (σ = 1.0, 5 × 5, m = 30, without check) 1.51 6.23 100

WTLS6 (σ = 1.0, 5 × 5, m = 30, R2 = 0.9999) 0.08 0.22 88.4

Note: The first column of entries determines the method applied to generate the row of
error statistics. In our methods (WLS and WTLS) the numbers 2 and 6 represent the
constant and affine motion models, respectively. The numbers in brackets depict the size
of the Gaussian smoothing(σ is the standard deviation of the filter), the size of local patch
used(p), the number of pairs of lines used to approximate the LMedS or the LMSOD
(m), and the reliability threshold(R2), in that order.

Figure 5. The correct flow of the New-Sinusoid1 sequence. Small
∗ symbols denote zero velocities at those positions.

From Figs. 5–7, one can clearly see that our valida-
tion procedure correctly removes the unreliable motion
estimates (and, in this simple case, the unreliable mo-
tion estimates are those around the boundary of the cen-
tral rectangle: where the image motion model breaks
down). The size of the improvement can be judged by
comparing successive rows in Table 1 (WLS without
check or validation compared with WLS using same

Figure 6. New-Sinusoid1 sequence—Flow calculated with WLS
without validation.

size patch, etc., but with validation usingR2 = 0.9999).
The validation procedure reduces the average error
greatly but still retains a very high density of re-
ported motion estimates. Since the spatial and tem-
poral derivatives for this sequence are fairly accurate,
there is no significant difference between the LS and
TLS based approaches. Moreover, the underlying mo-
tion is simple translation which can be modelled nicely
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Figure 7. New-Sinusoid1 sequence—Flow calculated with WLS
with validation. Representative example of the result of applying the
validation procedure(R2 = 0.9999) to remove unreliable motion
estimates. The position marked with a× are those where the esti-
mates were judged to be too unreliable. As expected, these unreliable
estimates are clustered around the motion boundaries.

by both the constant and affine model of motion and
therefore the final results for both approaches are very
similar.

5.2. Yosemite Image Sequence

The Yosemite sequence is one of the most complicated
synthetic sequences that is widely used in the research
community. The sequence was generated from digital
terrain data of the Yosemite valley and the sequence de-
picts a simulated “fly-through”. The motion is mainly
divergent, while the clouds drift towards the right with
a speed of 1 pixel/frame. Since the fractal texture of
the cloud changes in different images of the sequence
(Heeger, 1997), its true motion is not simply related to
the image brightness changes (Fig. 8). Thus, we only
provide the error statistic for the cloudless sequence.
The sequence is poorly sampled in time and the larger
motions are, therefore, subject to bad temporal aliasing.
The results of using this sequence in our experiments
are shown in Tables 2 and 3. We also depict the true
flows (Fig. 9), flows recovered by our method without
validation (Fig. 10) and with validation (Fig. 11).

The first group of error statistics (Table 2) is calcu-
lated using the entire image while the second group
(Table 3) is calculated by clipping the top 70 rows of
the image and computing the results for the rest of

Figure 8. Yosemite Sequence—with cloud.

Figure 9. Yosemite Sequence Correct Flow—with cloud.

Figure 10. Yosemite Sequence WLS Flow (no validation)—with
cloud.

the image. Since the horizon appears as a source of
discontinuity, the second group (without the horizon)
contains more accurate results.
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Table 2. Error analysis using Yosemite image sequence (cloud region included).

Avg. error Std. dev. Density
Technique (degree) (degree) (%)

Fleet and Jepson(σ = 1.5, = 1.25, 1990) 4.95 12.39 30.6

Fleet and Jepson(σ = 1.5, = 2.50, 1990) 4.29 11.24 34.1

Weber and Malik (1993) 3.42 5.35 45.2

Szeliski and Coughlan (1994) 3.06 7.54 39.6

Weber and Malik (1995) 4.31 8.66 64.2

Giachetti and Torre (1996) 2.82 6.98 70.79

WLS2 (σ = 2.0, 15× 15, m = 30, without check) 3.17 6.46 100

WLS2 (σ = 2.0, 15× 15, m = 30, R2 = 0.99) 3.13 7.07 76.2

WLS6 (σ = 2.0, 15× 15, m = 30, without check) 2.86 6.76 100

WTLS2 (σ = 2.0, 15× 15, m = 30, without check) 2.49 3.08 100

WTLS2 (σ = 2.0, 15× 15, m = 30, R2 = 0.99) 2.14 2.58 81.6

WTLS6 (σ = 2.0, 15× 15, m = 30, without check) 2.05 2.92 100

WTLS6 (σ = 2.0, 15× 15, m = 30, R2 = 0.99) 2.01 2.81 96.3

WTLS2 (σ = 2.0, 15× 15, m = 30, R2 = 0.999) 1.74 2.37 72.0

Note: Same as in Table 1.

Table 3. Error analysis using Yosemite image sequence (cloud region excluded).

Avg. error Std. dev. Density
Technique (degree) (degree) (%)

Black (1994) 3.52 3.25 100

Black and Jepson (1994) 2.29 2.25 100

Black and Anandan (1996) 4.46 4.21 100

Ju et al. (Skin and Bones, 1996) 2.16 2.00 100

WLS2 (σ = 2.0, 15× 15, m = 30, without check) 2.51 2.57 100

WLS6 (σ = 2.0, 15× 15, m = 30, without check) 2.02 2.05 100

WTLS2 (σ = 2.0, 15× 15, m = 30, without check) 2.56 2.34 100

WTLS6 (σ = 2.0, 15× 15, m = 30, without check) 1.97 1.96 100

Note: Same as in Table 1.

Figure 11. Yosemite Sequence WLS FlowR2 = 0.9—with cloud.
The validation procedure has correctly identified many of the motion
vectors in the cloud region as being unreliable.

Considering the results for this sequence, we see
WLS and WTLS are clearly superior to any of the pub-
lished methods used in the comparison. One can also
see, from these results, that the WTLS based method is
generally more accurate than the WLS method. Since
the actual motion in this sequence is a “fly-through”
motion, the affine model of motion performs better than
the constant model of motion.

5.3. Otte Image Sequence

This sequence is a real image sequence, recorded us-
ing a camera, which translates toward a scene. The
objects in that scene are stationary, except for a Marble
block, which is translating towards the left. A snapshot
taken from this sequenceis shown in Fig. 12—for more
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Table 4. Error analysis using Otte image sequence.

Avg. error Std. dev. Density
Technique (degree) (degree) (%)

Fleet and Jepson(σ = 2.0, τ = 1.25) 2.08 3.77 50.6

Fleet and Jepson(σ = 2.0, τ = 2.50) 2.56 4.08 57.1

Fleet and Jepson(σ = 2.5, τ = 1.25) 2.05 3.85 55.8

Fleet and Jepson(σ = 2.5, τ = 2.50) 2.53 4.25 62.2

Giachetti and Torre (1996) 5.33 — 100(25)

WLS2 (σ = 2.0, 15× 15, m = 30, without check) 3.39 6.55 100

WLS2 (σ = 2.0, 15× 15, m = 30, R2 = 0.99) 1.50 2.22 59.1

WLS6 (σ = 2.0, 15× 15, m = 30, without check) 3.51 6.48 100

WLS6 (σ = 2.0, 15× 15, m = 30, R2 = 0.99) 1.44 1.92 55.9

WTLS2 (σ = 2.0, 15× 15, m = 30, without check) 3.74 8.09 100

WTLS2 (σ = 2.0, 15× 15, m = 30, R2 = 0.99) 1.61 2.60 71.2

WTLS6 (σ = 2.0, 15× 15, m = 30, without check) 3.67 7.37 100

WTLS6 (σ = 2.0, 15× 15, m = 30, R2 = 0.99) 2.46 4.71 82.0

WTLS6 (σ = 2.0, 15× 15, m = 30, R2 = 0.999) 1.55 2.34 51.6

Note: Same as in Table 1.

Figure 12. Snapshot taken from the Otte sequence.

details of the sequence see (Otte and Nagel, 1994). The
scene contains many sharp discontinuities in both depth
and motion. The results of our experiments are shown
in Table 4. One can clearly see, from these results
that our methods perform better than other published
approaches. The results for the Fleet and Jepson’s
(1990) method is created using the software provided
by Barron et al. (1994).

The above results show that both methods are very
robust to the existing depth and motion discountiniuties
(see Figs. 13–15). Although the results for both the

Figure 13. Otte Sequence—Correct Flow. Note that, unlike most
test sequence with known velocity, there are actually patches of un-
known velocity in this sequence (marked with× symbols).

LS and TLS based methods are very similar, the TLS
based method seems to perform slightly better than the
LS based method (after reliability check).

6. Conclusion

Two new robust methods for solving a system of over-
determined linear equations have been developed for
the purpose of calculating optic flow. The essence of
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Figure 14. Otte Sequence—WLS Flow (no validation).

Figure 15. Otte Sequence—WLS Flow(R2 = 0.99).

the first method is that we use anapproximateLeast
median of Squares approach to identify outliers. This
is particularly good at identifying and removing the
effects of the breakdown of the motion consistency
assumptions underlying all optic flow formulations
(implicitly or explicitly, all formulationsmustuse a
form of this assumption to “beat the aperture prob-
lem”). Having detected and removed outliers, a simple
Least Squares approach is used, followed by a valida-
tion step. The validation procedure, although probably
useful in other situations, is very necessary to detect
situations where the local area does not contain one
dominant motion.

The second method focuses on solving a sys-
tem of over-determined linear equations when all the

parameters of the equations are contaminated with both
noise and outliers. The proposed algorithm uses a new
robust regression method named the least median of
squares orthogonal distances in conjunction with the
well-known total least squares method for dealing with
the outliers and noise, respectively. A fast method for
computing an approximate solution to the LMSOD is
also proposed which makes the computation inexpen-
sive.

An important ingredient of both approaches is that
we develop an effective validation procedure by which
the unreliable estimates are detected.

Although the presented algorithms are conceptu-
ally very straightforward, it was shown by a number
of experiments over the synthetic and real image se-
quences that they outperform any other (often very
sophisticated) optic flow technique appearing in com-
puter vision literature.

Finally, it should be stressed that, since the essence
of our approach is that it is a robust method to solve
an over-determined linear system of equations, the ap-
proach should be applicable to a wide variety of prob-
lems (including and beyond other problems drawn from
computer vision research).
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Note

1. The Frobenius norm of am × n matrix M , with entriesmi j , is

defined as||M ||F =
√∑m

i =1
∑n

j =1 m2
i j .
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