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Abstract. This paper considers a robust optimal reinsurance and investment problem under He-

ston’s Stochastic Volatility (SV) model for an Ambiguity-Averse Insurer (AAI), who worries

about model misspecification and aims to find robust optimal strategies. The surplus process of

the insurer is assumed to follow a Brownian motion with drift. The financial market consists

of one risk-free asset and one risky asset whose price process satisfies Heston’s SV model. By

adopting the stochastic dynamic programming approach, closed-form expressions for the opti-

mal strategies and the corresponding value functions are derived. Furthermore, a verification

result and some technical conditions for a well-defined value function are provided. Finally,

some of the model’s economic implications are analyzed by using numerical examples and sim-

ulations. We find that ignoring model uncertainty leads to significant utility loss for the AAI.

Moreover we propose an alternate model and associated investment strategy which would can be

considered more adequate under certain finance interpretations, and which leads to significant

improvements in our numerical example.
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1. Introduction

Reinsurance and investment are two significant issues for insurers: reinsurance is an effec-

tive risk-management approach (risk-spreading), while investment is an increasingly important

way to utilize the surplus of insurers. Recently, optimal reinsurance and/or investment prob-

lems for insurers have attracted great interest. For example, Bai & Guo (2008), Luo (2009),

Azcue & Muler (2009) and Chen et al. (2010) investigated the optimal reinsurance and/or

investment strategies for insurers to minimize the ruin probability under different market as-

sumptions; Bäuerle (2005), Delong & Gerrard (2007), Bai & Zhang (2008), Zeng et al. (2010)

and Zeng & Li (2011) studied the optimal reinsurance and investment strategies for insurers

with mean-variance criteria. In addition, some scholars have recently studied the optimal rein-

surance and/or investment strategies for insurers with constant absolute risk aversion (CARA)

utility, see among Browne (1995), Yang & Zhang (2005), Wang (2007), Xu et al. (2008) and so

on.

Although many scholars have investigated optimal reinsurance and investment strategies for

insurers, we think that two aspects ought to be explored further. On the one hand, most of the

above-mentioned literature assumes that the volatilities of risky assets’ prices are constants or

deterministic functions. This simplification goes against well-documented evidence to support

the existence of stochastic volatility (SV), as far back as French et al. (1987) and Pagan &

Schwert (1990), with detailed studies of SV and empirical evidence of continuing to this day

(see Viens (2012)). In particular, SV can be seen as an explanation of many well-known em-

pirical findings, for example, the volatility smile and the volatility clustering implied by option

prices. To study more practical financial market, Heston (1995) assumed that the volatility of

the risky asset was driven by a Cox-Ingersoll-Ross (CIR) process; this model has some compu-

tational and empirical advantages. Since then, numerous scholars have investigated the optimal

portfolio choice for investors under Heston’s SV model. For instance, Liu & Pan (2003), Chacko

& Viceira (2005), Kraft (2005) and Liu (2007) considered the optimal investment and/or con-

sumption problems under Heston’s SV model by adopting the stochastic dynamic programming

approach; Pham & Quenez (2001), Viens (2002), and Kim & Viens (2012) focused on optimiza-

tion portfolio problem under SV model with partially observed information using particle filter

theory.
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Recently, some papers have appeared investigating the optimal reinsurance and investment

strategies for insurers with various stochastic investment opportunities, such as Constant Elas-

ticity of Variance (CEV) models, stochastic risk premium models and stochastic interest rate

models. Gu et al. (2012) considered the optimal reinsurance and investment strategies for an

insurer under a CEV model, where the volatility of the risky asset was dependent on the price

of the risky asset. Liang et al. (2011) assumed that the risk premium satisfies an Ornstein-

Uhlenbeck (OU) process, and derived the explicit expression for an optimal strategy with rein-

surance and investment. Note that none of these models contain full-fledged SV assumptions,

the CEV model being a local volatility one. The question of optimal reinsurance and investment

under Heston’s SV model was just introduced in the paper Li et al. (2012), which pioneers the

investigation of an optimal time-consistent strategy for insurers, and includes a closed-form so-

lution by solving an extended Hamilton-Jacobi-Bellman (HJB) equation under a mean-variance

criterion.

Even this paper suffers from being unable to account for model uncertainty at levels beyond

the volatility. However, it is a notorious fact in the practice of portfolio management that return

levels for risky assets are difficult to estimate with precision. In the context of insurance and

reinsurance, the same uncertainty is true regarding expected surpluses. As a consequence, the

Ambiguity-Averse Insurer (AAI) will look for a methodology to handle this uncertainty. Rather

than make ad-hoc decisions about how much error is contained in the estimates return levels

for risky assets and surpluses, the AAI may instead consider some alternative models which are

close to the estimated model. This more systematic method has been successfully implemented

over the last 15 years in quantitative investment finance, for portfolio selection and asset pricing

with model uncertainty or model misspecification, and has seen some recent applications in

insurance. We review some of the prominent results.

Anderson et al. (1999) introduced ambiguity-aversion into the Lucas model, and formulated

alternative models. Uppal & Wang (2003) extended Anderson et al. (1999), and develope-

d a framework which allows investors to consider the level of ambiguity. Maenhout (2004)

optimized an intertemporal consumption problem with ambiguity, and derived closed-form ex-

pressions for the optimal strategies under “homothetic robustness”. Liu et al. (2005) studied the

role of ambiguity-aversion in options pricing under an equilibrium model with rare-event premi-

a. Maenhout (2006) found the optimal portfolio choice under model uncertainty and stochastic

premia, and provided a methodology to measure the quantitative effect of model uncertainty. Xu

et al. (2010) considered a robust equilibrium pricing model under Heston’s SV model. In recent
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years, some papers focused on optimal reinsurance and investment strategies with ambiguity.

Zhang & Siu (2009) investigated a reinsurance and investment problem with model uncertainty,

and formulated the problem as a zero-sum stochastic differential game. Lin et al. (2012) dis-

cussed an optimal portfolio selection problem for an insurer who faces model uncertainty in a

jump-diffusion model by using a game-theory approach.

Among the very few papers studying optimal reinsurance and investment strategies with He-

ston SV, only Li et al. (2012) found an optimal time-consistent strategy for insurers, and did so

with a mean-variance criterion. In our paper, we take up this general question with Heston’s SV

model as well, but chose to use an AAI, and look for a mathematically tractable framework un-

der model uncertainty. Consequently, we settle on a CARA utility criterion (Constant Absolute

Risk Aversion, exponential utility).

It is known that Heston’s SV model may result in an infinite value function if the insurer’s

utility is CARA (power-function utilities also have this deficiency, see Taksar & Zeng (2009)).

One gets around this problem by imposing some technical conditions on the model parameters

to guarantee that the value function is well-defined. With such a model, it is possible for the AAI

to allow for model uncertainty, and to seek robust decision rules, i.e. investment strategies that

are insensitive to these uncertainties to a large extent. In summary, in this paper, we investigate

the robust optimal reinsurance and investment strategy for an AAI with CARA utility in a SV

financial market.

Specifically, the surplus process of the insurer is assumed to follow a Brownian motion with

drift; the financial market consists of one risk-free asset and one risky asset whose price is

described by Heston’s SV model. To incorporate the model uncertainty, we assume that the in-

surer is ambiguity-averse, and we model the level of ambiguity by weighing it with a preference

parameter that is state-dependent: following Menhout (2004, 2006), this ambiguity level is cho-

sen as inversely proprotional to the optimization’s value function, which is consistent with the

economically correct interpretation of high value function implying high levels of risk aversion

(so high aversion to uncertainty). With this model for the market and surplus, and ambiguity

quantification, we formulate a robust problem with alternative models. Secondly, we derive

the explicit closed-form expressions for the optimal reinsurance and investment strategy for the

AAI with CARA utility, as well as the corresponding value function. Convenient sufficient con-

ditions for a verification result are provided. Finally, some economic implications of our results

and numerical illustrations are presented.
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Summarizing and comparing with the existing literature, we think our paper proposes four

main innovations:

(i): A robust optimal reinsurance and investment problem under Heston’s SV model with

CARA utility is considered, and at the mathematical level, the verification result for

this model has distinct differences with the result in Li et al. (2012): in particular,

sufficient conditions are proposed in our paper, which ensure the optimal strategies and

corresponding value functions may satisfy the verification theorem in Kraft (2004).

(ii): The levels of ambiguity in a time-varied investment opportunity set are investigated

for the AAI, which Zhang & Siu (2009) and Lin et al. (2012) did not consider. The

different ambiguity levels give more flexibility to model the individual attitudes to mis-

specification.

(iii): The utility losses from ignoring model uncertainty and prohibiting reinsurance for

the AAI are disclosed: our numerics clearly show the wisdom in not ignoring the im-

pacts of model misspecification, and the importance of risk management via reinsur-

ance.

(iv): An alternative and effective robust model is proposed, in which one assumes the

AAI has the full confidence in the parameters associated with SV, but not with those

relative to mean rates. Such an assumption is consistent with the current trends by

which volatility is ever more closely monitored and recorded1, while mean rates are

still considered as exceedingly difficult to pin down. Our numerics show that small

changes in the optimal strategy greatly enhance the value function, when SV is no longer

uncertain. This improved model should be of direct practical significance for those

insurers who choose to invest in S&P500 index funds, which the VIX tracks explicitly.

The rest of this paper is organized as follows. The economy and assumptions are described

in Section 2. In Section 3, a robust control problem for an AAI with CARA utility is presented.

Section 4 derives the closed-form expressions for the optimal strategy and the corresponding

value function with some technical conditions, and explores some economic implications of our

results. Section 5 analyzes our results with numerical illustration, and recommends an improved

model for applications. Section 6 provides our conclusions, and proposes some promising

extensions of our work.
1For instance, the VIX index is regarded so highly as an accurate measure of volatility on the Chicago Board

of Options Exchange (CBOE), that the derivative products based on the VIX have produced, over the past 5 years,

some of the highest trade volume on the CBOE.
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2. Economy and assumptions

We consider a continuous-time financial model with the following standard assumptions: an

insurer can trade continuously in time, and trading in the financial market or the insurance

market involves no extra costs or taxes. Let (Ω,F , P) be a complete probability space with fil-

tration {Ft}t∈[0,T ] generated by three standard one-dimension Brownian motions {ZS (t)}, {ZM(t)}
and {ZR(t)}, where {ZR(t)} is independent of {ZS (t)} and {ZM(t)}, T is a positive finite constant

representing the terminal time. Any decision made at time t is based on Ft which can be inter-

preted as the information available until time t. Thus T − t can be understood as the horizon at

time t (time to maturity).

2.1. Surplus process. Following the assumption in Promislow & Young (2005), we formulate

the claim process C(t) of the insurer as

dC(t) = adt − bdZR(t), (2.1)

where a > 0 is the rate of the claim and b > 0 can be regarded as the volatility of the claim

process. Note that the diffusion model of the claim process is an approximation of the classi-

cal Cramér-Lundberg model (see, e.g., Grandell (1991) and Zeng & Li (2012)). As stated in

Promislow & Young (2005), in actuarial practice one uses the model (2.1) only when the ratio

a/b is large enough (a/b > 3) so that the probability of realizing negative claims in any one

period is small.

The premium is paid continuously at the constant rate ς0 = (1+µ)a with safety loading µ > 0.

When both reinsurance and investment are absent, the dynamics of the surplus is given by (see

e.g. Emanuel et al. (1975), Grandell (1991) and Promislow & Young (2005))

dR0(t) = ς0dt − dC(t) = µadt + bdZR(t). (2.2)

If the insurer can purchase proportional reinsurance or acquire new business (by acting as

a reinsurer for other insurers, for example) to manager her or his insurance business risk, the

reinsurance level at any time t, is associated with the value 1 − q(t), where q(t) ∈ [0,+∞) can

be regarded as the value of risk exposure. When q(t) ∈ [0, 1], it corresponds to a proportional

reinsurance cover. In this case, reinsurance premia will be paid continuously by the cedent at

the constant rate ς1 = (1+η)(1−q(t))a with safety loading η > µ > 0 as the cost of reinsurance;

at the same time the reinsurer pays 100(1 − q(t))% of each claim occurring at time t while the

insurer pays 100q(t)%. When q(t) ∈ (1,+∞), it corresponds to acquiring new business (see
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Bäuerle (2005)). The process of risk exposure {q(t) : t ∈ [0,T ]} is called a reinsurance strategy,

and the surplus process with such a reinsurance strategy {q(t) : t ∈ [0,T ]} is given by

dR(t) = ς0dt − q(t)dC(t) − ς1dt = [λ + ηq(t)]adt + bq(t)dZR(t),

where λ = µ − η.

2.2. Financial Market. We consider a financial market consisting of one risk-free asset (e.g.,

a bond) and one risky asset (e.g., a stock). The price process S 0(t) of the risk-free asset evolves

according to the ordinary differential equation (ODE)

dS 0(t) = r0S 0(t)dt, (2.3)

where S 0(0) = s0 > 0 and r0 > 0 is the risk-free interest rate. The price process S 1(t) of the

risky asset follows Heston’s SV model
dS 1(t) = S 1(t)

[
(r0 + ξV(t))dt +

√
V(t)dZS (t)

]
,

dV(t) = κ(θ − V(t))dt + σ
√

V(t)dZM(t),
(2.4)

where S 1(0) = s1 > 0; V(0) = v0 > 0; ξ > 0 is the premium for volatility; the three parameters

κ > 0, θ > 0 and σ > 0 denote the mean-reversion rate, the long-run mean and the volatility of

the volatility (“vol-vol”) parameter, respectively. Note that σ is sometimes called the volatility

of the volatility, but since we are using a CIR model, it is more correct, in analogy with the

Black-Scholes model, to say that the vol-vol is the state dependent expression σ
√

V (t), just

as we would have for a leveraged CEV model with power “γ”= 1/2. We require 2κθ > σ2

to ensure that V(t) is almost surely non-negative. ZS (t) and ZM(t) are two one-dimensional

standard Brownian motions with Cov
(
ZS (t),ZM(t)

)
= ρ0t in which ρ0 ∈ [−1, 1]. In addition, by

standard Gaussian linear regression, ZM(t) can be rewritten as

dZM(t) = ρ0dZS (t) + ρdZV(t),

where ρ =
√

1 − ρ2
0 and ZV(t) is a standard Brownian motion which is independent of ZS (t) and

ZR(t) .

2.3. Wealth process. In this paper, we assume that the self-financing insurer is allowed to

purchase proportional reinsurance, acquire new business and invest the surplus in the financial

market over t ∈ [0,T ], and the trading strategy is represented by a pair of stochastic processes

π = {q(t), l(t)}t∈[0,T ], where q(t) represents the value of risk exposure and l(t) denotes the dollar

amount invested in the risky asset at time t. The remainder Wπ(t)−l(t) is invested in the risk-free
7



asset, where Wπ(t) is the wealth process associated with strategy π. Thus, the wealth process

Wπ(t) can be presented by the following stochastic differential equation (SDE)

dWπ(t) =[aλ + aηq(t) + ξl(t)V(t) +Wπ(t)r0]dt + bq(t)dZR(t)

+ l(t)
√

V(t)dZS (t),
(2.5)

where Wπ(0) = w0 is the initial wealth.

3. Robust control problem for an AAI

The insurer is assumed to have CARA utility

U(x) = − 1
m

exp(−mx), (3.1)

where m > 0 is a constant representing the absolute risk aversion coefficient. In traditional rein-

surance and investment models, the insurer is assumed to be ambiguity-neutral with objective

function

sup
π∈Π̃

EP[U(Wπ(T ))] = sup
π∈Π̃

EP

[
− 1

m
exp(−mWπ(T ))

]
, (3.2)

where Π̃ is the set of admissible strategies π in a given market, and EP is the expectation under

the single model’s probability measure P. See Yang & Zhang (2005) for the traditional models.

To incorporate information with model uncertainty into the optimal reinsurance and invest-

ment problem for the AAI, we assume that, in our economy, the insurer’s knowledge with

ambiguity is described by allowing changes in the probability measure P, namely uncertainty

in the model’s parameters. This is consistent with the fact that it is often the case that P is the

result of some estimation process with misspecification errors. The fundamental assumption is

that the AAI can not precisely know whether the reference model is the true model. Hence, she

or he will consider some alternative models in the decision process, allowing, for instance, for a

range of each possible parameter in the model for which there is uncertainty. Loosely speaking,

robustness is then achieved by guarding against all adverse alternative models that are reason-

ably similar to the reference one. Parallel to Anderson et al. (1999), one may broadly define the

alternative models by a class of probability measures which are equivalent to P:

Q := {Q|Q ∼ P}. (3.3)

Definition 3.1. A trading strategy π = {q(t), l(t)}t∈[0,T ] is said to be admissible, if

(i) π is progressively measurable and EQ
[∫ T

0
∥π∥4dt

]
< ∞,∀Q ∈ Q;

(ii) ∀(w0, v0) ∈ R ×R+, the SDE (2.5) has a pathwise unique solution {Wπ(t)}t∈[0,T ], and
8



EQ

[
sup

t∈[0,T ]
exp

(
−2mer0(T−t)Wπ

)]
< +∞,∀Q ∈ Q.

Denote by Π the set of all admissible strategies.

According to Girsanov’s theorem, for each Q ∈ Q there exists progressively measurable

process φ(t) = (h(t), g(t), f (t)) such that

dQ
dP
= ν(T ),

where

ν(t) = exp
{ ∫ t

0
h(s)dZS + g(s)dZV + f (s)dZR − 1

2

∫ t

0
h(s)2 + g(s)2 + f (s)2ds

}
is a P-martingale. The reference Karatzas & Shreve (1988) can be consulted for this theorem.

That reference also contains the well-known fact that, if φ(t) = (h(t), g(t), f (t)) satisfies

Novikov’s condition2

EP

[
exp

(
1
2

∫ T

0
∥φ(s)∥2ds

)]
< ∞,

with ∥φ(t)∥2 = h(t)2 + g(t)2 + f (t)2, then ν(t) is a P-martingale with filtration {Ft}t∈(0,T ). Further-

more, by Girsanov’s theorem, Brownian motions under Q ∈ Q can be defined as

dZS
Q(t) =dZS (t) − h(t)dt, (3.4)

dZV
Q(t) =dZV(t) − g(t)dt, (3.5)

dZR
Q(t) =dZR(t) − f (t)dt. (3.6)

Girsanov’s theorem is also known as the method of “removal of drift”, since it allows one to

compute the law of a multidimensional semimartingale by comparing it to the same model with

no drift components.

We formulate a robust control problem inspired by Maenhout (2004) to modify problem (3.2)

as following

sup
π∈Π

inf
Q∈Q

EQ

{∫ T

0

1
ϕ(s)

R(s)ds + U(Wπ(T ))
}
, (3.7)

where alternative models are defined by each probability measure Q ∈ Q, ϕ(t) stands for a

preference parameter for ambiguity-aversion, which measures the degree of confidence in the

reference model P at time t, and R(t) measures the relative entropy between P and Q. A-

long the line of Hansen & Sargent (2001), by defining R(t) := 1
2

[
h(t)2 + g(t)2 + f (t)2

]
, then

EQ
[∫ T

0
R(s)ds

]
measures the discrepancy between P and Q (see, e.g., Dupuis & Ellis (1997)).

2The technical requirements will be stated later.
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With this specification, penalties are incurred for alternative models when they deviate from the

reference model. According to Maenhout (2004),
∫ T

0
1
ϕ(s)R(s)ds effects penalty in decision and

the magnitude of the penalty depends on the preference parameter. Choosing this penalty in the

optimization problem (3.7) allows one to indeed be able to find an interior point maximizer, i.e.

an optimal strategy, even if the parameter ranges are unbounded.

In the case ϕ ≡ 0, the insurer is extremely convinced that the true model is the reference

model P, any deviation from P will be penalized heavily by 1
ϕ
R. Thus, R ≡ 0 must be satisfied

to guarantee 1
ϕ
R ≡ 0 and problem (3.7) reverts to problem (3.2), where no model uncertainty is

allowed, as it should. At the other extreme, if ϕ ≡ ∞, the insurer has no information about the

true model. Since the term 1
ϕ
R vanishes, the scenario will degenerate to the situation discussed in

Zhang & Siu (2009) and Lin et al. (2011), in which the interpretation of robustness is arguably

less quantitatively clear. (For reference to this literature, see Anderson et al. (1999), Uppal &

Wang (2003) and Maenhout (2004)).

Inserting (3.4) and (3.5) into (2.4), Heston’s SV model under the alternative model Q can be

described as


dS 1(t) = S 1(t)

[(
r0 + ξV(t) +

√
V(t)h(t)

)
dt +

√
V(t)dZS

Q(t)
]
,

dV(t) =
[
κ(θ − V(t)) + σ

√
V(t)ρ0h(t) + σ

√
V(t)ρg(t)

]
dt

+ σ
√

V(t)ρ0dZS
Q(t) + σ

√
V(t)ρdZV

Q(t).

(3.8)

We notice that the alternative models in class Q only differ in the drift terms, which is natural

since we are using Girsanov’s theorem to define them. Due to (2.4) and (3.6), the wealth process

can be rewritten as

dWπ(t) =
[
aλ+aηq(t) + l(t)ξV +Wπ(t)r0 + bq(t) f (t)

+ l(t)
√

Vh(t)
]
dt + bq(t)dZR

Q(t) + l(t)
√

VdZS
Q(t).

(3.9)

With the Girsanov’s shift, only changes to drift parameters are allowed, which means we are

unable to consider robustness on the vol-vol parameter σ. Fortunately, as mentioned in the

introduction, and as explored in detail in Section 5, we see that allowing robustness on dV(t)

does not noticeably change the optimal strategy, compared to only allowing for robustness on

the coefficients in the drift part of dS 1(t).
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4. Optimal strategy

To solve problem (3.7), we define the value function J as

J(t,W,V) = sup
π∈Π

inf
Q∈Q

EQ
t,W,V

[∫ T

t

1
ϕ(s)

R(s)ds + U(Wπ(T ))
]
, (4.1)

where EQ
t,W,V[·] = EQ[· | W(t) = W,V(t) = V]. This means that we consider that the volatility

V (t) is observed, an assumption which, as we commented in the introduction, is becoming more

and more reasonable, particularly on indexes (such as the S&P500) where a good volatility

tracker exists (the CBOE’s VIX for the S&P500).

According to the principle of dynamic programming, the HJB equation can be derived as (see

Uppal & Wang (2005), Liu et al. (2005) and Maenhout (2006)):

sup
π∈Π

inf
h,g, f

{
D(π)J +

(
bq f + l

√
Vh

)
JW +

(
σ
√

Vρ0h + σ
√

Vρg
)

JV

+
1
ϕ

(
1
2

h2 +
1
2

g2 +
1
2

f 2
) }
= 0

(4.2)

with the boundary condition J(T,W,V) = − 1
m exp(−mW), where D(π)J is the infinitesimal gen-

erator of the Markov diffusion (W,V) under Q applied to the value function J, and is defined by

(or computes as)

D(π)J =Jt +
[
aλ + aηq + lξV +Wr0

]
JW + κ(θ − V)JV

+
1
2

(l2V + b2q2)JWW + lσVρ0JWV +
1
2
σ2V JVV .

(4.3)

Here Jt, JW , JV , JWV , JWW and JVV represent the value function’s partial derivatives with respect

to (w.r.t) the corresponding variables. Furthermore, for analysis convenience, we choose a

suitable form 3 of preference parameter ϕ(t) proposed by Menhout (2004, 2006) as

ϕ(t) = − β

mJ(t,W,V)
, (4.4)

which is state-dependent. Here β > 0 is the ambiguity-aversion coefficient describing individual

attitude to model uncertainty.

Next we aim to derive the explicit solution to the HJB equation (4.2) with preference param-

eter (4.4). Firstly, we propose an ansatz for the structure of the value function. Then, under

the ansatz we determine the drift corresponding to the worst scenario (the drifts that realize the

3This form of ϕ(t) has following reasonable properties: it increases w.r.t β, W and V and decreases w.r.t m, which

implies the insurer with higher β, W, V or lower m prefers more robustness. Also see footnote in the introduction

on page 5.
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minimum in (4.2)), and derive the optimal strategy. At last, plugging the drift and optimal strat-

egy into (4.2), we hope that the ansatz will allow to separate the variables in the HJB equation,

and obtain the explicit solution to (4.2).

Step 1: Propose the ansatz. Let c(t), d(t) and e(t,V) be three functions to be determined.

Conjecturing that the value function has the following form

J(t,W,V) = − 1
m

exp {−m [c(t) (W − d(t)) + e(t,V)]} , (4.5)

a direct calculation yields
Jt = −m[ct(W − d) − dtc + et]J, JW = −mcJ, JV = −meV J,

JWV = m2ceV J, JWW = m2c2J, JVV = (m2e2
V − meVV)J.

(4.6)

Step 2: Derive the optimal control. According to the first-order conditions, the functions h∗,

g∗ and f ∗ which realize the minimum in (4.2) are given by

h∗(t) =
[
−l(t)

√
V JW(t,W,V) − JV(t,W,V)σ

√
Vρ0

]
ϕ(t), (4.7)

g∗(t) = −JV(t,W,V)σ
√

Vρϕ(t), (4.8)

f ∗(t) = −JW(t,W,V)bq(t)ϕ(t). (4.9)

Substituting (4.5) and (4.6) into (4.7)-(4.9), we have

h∗(t) = −β
[
c(t)l(t)

√
V + eV(t,V)σ

√
Vρ0

]
, (4.10)

g∗(t) = −βeV(t,V)σ
√

Vρ, (4.11)

f ∗(t) = −βbc(t)q(t). (4.12)

The drift terms h∗, g∗ and f ∗ correspond to a worst scenario and the optimal strategy will be

derived under this worst scenario. Inserting (4.5) and (4.10)-(4.12) into HJB equation (4.2)

yields

sup
π∈Π

{
− ct(W − d) + dtc − et − c(aλ + aηq + lξV +Wr0)

+ clVβeVσρ0 − eVκ(θ − V) +
1
2

mc2(l2V + b2q2) + meVclσVρ0

+
1
2

(me2
V − eVV)σ2V +

1
2

(
e2

Vσ
2Vβ + βc2b2q2 + βc2l2V

) }
= 0.

(4.13)

According to the first-order conditions for π = {q(t), l(t)}t∈[0,T ], we have

q∗(t) =
aη
γcb2 , l∗(t) =

ξ − γeVσρ0

γc
, (4.14)
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where γ = β + m.

Step 3: Separate the variables. Plugging (4.14) into (4.13) implies

(−ct − cr0) W + (ctdc−1 + dt − aλ)c − et −
a2η2

2γb2 −
ξ2V
2γ

+ ξVeVσρ0 +
1
2

e2
Vσ

2ρ2Vγ − eVκ(θ − V) − 1
2

eVVσ
2V = 0.

(4.15)

Equation (4.15) is ensured if the following equations are satisfied:

− ct − cr0 = 0, (4.16)

ctdc−1 + dt − aλ = 0, (4.17)

− et −
a2η2

2γb2 −
ξ2V
2γ
+ ξVeVσρ0 +

1
2

e2
Vσ

2ρ2Vγ − eVκ(θ − V) − 1
2

eVVσ
2V = 0. (4.18)

Taking into account the boundary conditions c(T ) = 1 and d(T ) = 0, the solutions to (4.16) and

(4.17) are

c(t) = exp[r0(T − t)], (4.19)

d(t) = − aλ
1 − exp[−r0(T − t)]

r0
. (4.20)

To solve equation (4.18) with the boundary conditions e(T,V) = 0, we may propose a further

ansatz: we assume that e(t,V) has a linear structure as follows

e(t,V) = u(t) + n(t)V, (4.21)

and we will show that a solution of this type exits. Substituting (4.21) into (4.18) and separating

the variables with and without V , respectively, we can derive the following system of ODEs:

− ut −
a2η2

2γb2 − nκθ = 0, (4.22)

− nt −
ξ2

2γ
+ (ξσρ0 + κ)n +

1
2

n2σ2ρ2γ = 0 (4.23)

with the boundary conditions u(T ) = 0 and n(T ) = 0. By solving (4.22) and (4.23), we can

obtain the solutions as

u(t) =
a2η2

2γb2 (T − t) − 2κθ
σ2ρ2γ

ln
(

2k2 exp ((k1 + k2)(T − t)/2)
2k2 + (k1 + k2)

(
exp (k2(T − t)) − 1

)) , (4.24)

n(t) =
exp(k2(T − t)) − 1

2k2 + (k1 + k2)(exp(k2(T − t)) − 1)
k3, (4.25)

where

k1 = ξσρ0 + κ, k2 =
√
κ2 + 2ξσρ0κ + ξ2σ2, k3 =

ξ2

γ
.
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Inserting (4.21) into (4.14) and combining (4.19), (4.20), (4.24) and (4.25), we derive the opti-

mal strategy of problem (3.7). In other words, modulo verification, we have proved the follow-

ing theorem.

Theorem 4.1. For problem (3.7) with preference parameter ϕ(t) = − β

mJ(t,W,V) , if the parameters

satisfy certain conditions 4, the optimal strategy is given by

π∗ = {(q∗(t), l∗(t))}t∈[0,T ],

where

q(t)∗ =
aη
γb2 exp(−r0(T − t)), l(t)∗ =

(
ξ

γ
− n(t)σρ0

)
exp(−r0(T − t)), (4.26)

and the corresponding value function is given by

J(t,W,V) = − 1
m

exp {−m [c(t) (W − d(t)) + u(t) + n(t)V]} , (4.27)

where c(t), d(t), u(t) and n(t) are given by (4.19), (4.20), (4.24) and (4.25), respectively.

Although the optimal strategy is derived, we should guarantee that the Radon-Nikodym de-

rivative ν(t)∗ of Q with respect to P corresponding to the optimal (worst-case scenario) drifts

h∗, g∗ and f ∗, i.e. the expression ν(t) with h∗, g∗, f ∗ instead of h, g, f , is indeed a P-martingale

to ensure a well-defined Q∗. The following corollary states a sufficient condition for this, based

on Novikov’s condition and Theorem 5.1 in Taksar & Zeng (2009).

Corollary 4.2. Novikov’s condition holds for h∗, g∗, f ∗, if the parameters satisfy the following

condition:

β2ξ2

γ2 + β
2N2σ2ρ2 <

κ

σ2 , (4.28)

where N = ξ2

γ(k1+k2) .

Proof. Putting (4.19)-(4.21), (4.24) and (4.25) into (4.10)-(4.12), we have

h∗ = −βξ
γ

√
V , g∗ = −βnσρ

√
V , f ∗ = −aηβ

γb
. (4.29)

With condition (4.28), we can verify that φ∗ = (h∗, g∗, f ∗) satisfies the Novikov’s condition as

follows.

4The verification result and sufficient conditions for it will be stated later.
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Note that n < N for all t ∈ [0,T ] and T ∈ [0,+∞), we have

EP

[
exp

(
1
2

∫ T

0
∥φ∗∥2ds

)]
=EP

[
exp

(∫ T

0

1
2

h∗2 +
1
2

g∗2 +
1
2

f ∗2ds
)]

6KEP

[
exp

(∫ T

0

1
2

(
h∗2 + g∗2

)
ds

)]
(4.30)

with appropriate constant K > 0, since f ∗ is deterministic and bounded on [0,T ]. Thus

EP

[
exp

(
1
2

(
h∗2 + g∗2

)
ds

)]
=EP

[
exp

(
1
2

∫ T

0

(
β2n2σ2ρ2 +

β2ξ2

γ2

)
V(s)ds

)]
6EP

[
exp

(
κ2

2σ2

∫ T

0
V(s)ds

)]
< ∞. (4.31)

The first estimate in (4.31) follows from the condition (4.28) and the second is from Theorem

5.1 in Taksar & Zeng (2009). �

Subsequently, we apply the result of Corollary 1.2 in Kraft (2004) to verify the candidate

value function (4.27) for problem (3.7). The verification result is summarized in the following

proposition.

Proposition 4.3. For problem (3.7), if there exists a function J, which is a solution to HJB

equation (4.2), the parameters satisfy technical condition (4.28) and
32γ2σ2ρ2

0N2 − 8ξγσρ0(8 − γ)N + 32ξ2 − 8γξ2 6
κ2γ2

2m2σ2 ,

32ξ2 − 8γξ2 6
κ2γ2

2m2σ2 ,

(4.32)

then π∗ is an optimal strategy for problem (3.7), and J is the corresponding value function.

The proof of this proposition is given in the Appendix. The dollar amount l∗(t) invested in the

risky asset for the optimal strategy, is state-independent, and has the following structure when

it is expressed in units of time T :

D(t) := l∗(t) exp(r0(T − t)) =
ξ

γ
− n(t)σρ0. (4.33)

Here, exp(r0(T − t)) stands for an accumulation factor (see Henderson (2005)). As stated in

Chacko & Viceira (2005), we decomposed D(t) into two components: ξ
γ

(the myopic demand)

and −n(t)σρ0 (the intertemporal demand). The first component coincides with the optimal

investment strategy when the volatility is deterministic. As seen in (4.25), the second is a

function of the horizon T − t; it is used to hedge SV, and thus is often referred to as a “hedging

device”). For further detail on myopic and intertemporal demands, see Liu & Pan (2003) and

Chacko & Viceira (2005).
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Remark 4.4. (1) Since n(t) > 0, the insurer’s intertemporal demand (or hedging device)

−n(t)σρ0 for the risky asset becomes positive if and only if ρ0 < 0, i.e., the insurer only in-

vests more in the risky asset than under the myopic demand if the shock to the risky asset price

and the shock to the volatility are negatively correlated.

(2) Intertemporal demand will be affected by the horizon T − t. As time passes, the positive

intertemporal demand (ρ0 < 0) shrinks, which means that the hedging device is more useful for

the long-horizon insurer.

(3) The myopic demand ξ
γ

is affected by an aggregate risk-aversion γ = m + β. We thus see that

the myopic demand will shrink when the AAI has either a large m or a large β. This provides

the same insight as the intuition that increase in either aspect of risk causes the insurer-investor

to decrease her position in the risky asset.

In fact, comparing with the Ambiguity-Neutral Insurer (ANI) who ignores the model uncer-

tainty, Remark 4.4(3) can be extended to following proposition.

Proposition 4.5. The AAI with preference parameter (4.4) and CARA utility function U(Wπ(T )) =

− 1
m exp(−mWπ(T )) has the same optimal strategy as the ANI with CARA utility function U(Wπ(T )) =

− 1
γ

exp(−γWπ(T )), where γ = m + β.

Proof. If the AAI with ambiguity-aversion coefficient β0 extremely confirms the true model

is the preference model, the preference parameter ϕ ≡ 0 leads to β0 = 0. As we discussed

above, the AAI with β0 = 0 insists P is the true model and becomes an ANI. Thus, the optimal

strategy for the ANI with CARA utility U(Wπ(T )) = − 1
m+β exp(−(m + β)Wπ(T )) can be shown

as π∗0 = {(q∗0(t), l∗0(t))}t∈[0,T ], where

q∗0(t) =
aη

(m + β)b2 exp(−r0(T − t)), l∗0(t) =
(
ξ

m + β
− n(t)σρ0

)
exp(−r0(T − t)).

According to Theorem 4.1, π∗0 coincides with the optimal strategy for the AAI with β and utility

U(Wπ(T )) = − 1
m exp(−mWπ(T )). �

Remark 4.6. The AAI with high γ is prone to purchasing reinsurance. Besides, the ratio aη
b2

affects the possible profit of being a reinsurer. In addition, the horizon is another key factor to

influence the optimal reinsurance strategy for the insurer. If aη
b2γ
> 1, when T ∈

(
1
r0

ln
(

aη
γb2

)
,+∞

)
,

the optimal reinsurance strategy is to acquire new business only if T − t < 1
r0

ln
(

aη
γb2

)
; when

T ∈
(
0, 1

r0
ln

(
aη
γb2

))
, the insurer’s optimal strategy is to acquire new business over the entire

horizon of insurance-investment. On the other hand, if aη
b2γ
< 1, the insurer may consider that
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the risk of acquiring new business is too high to be accepted. As a result, she or he purchases

reinsurance to spread the risk throughout the investment-insurance horizon.

5. Analysis of our results and and numerical illustration

a µ η b r0 ξ κ σ θ ρ0 T β m

4 0.2 0.4 1 0.05 4 5 0.25 (0.13)2 -0.4 4 1 1.2

This section is devoted to illustrating the impact of parameters and model uncertainty on

optimal reinsurance and investment strategy by some numerical examples. In the following

numerical illustrations, unless otherwise stated, the basic parameters are given in the above

table. The basic insurance parameters are set up as in Promislow & Young (2005), and the

financial market parameters for this section are from existing empirical studies, see Liu & Pan

(2003). Setting ξ = 4 with other parameters, the average equity risk premium per year is 6.76%.

Moreover, the technical conditions (4.28), (4.32) and a/b > 3 are met with these parameters.

As states in Section 3, only in the extreme case (ϕ ≡ 0), would the model uncertainty fail to

affect the optimal strategy. Specifically, due to (4.7)-(4.9), ϕ ≡ 0 results in h∗ = g∗ = f ∗ ≡ 0,

which implies that the AAI considers that the reference model is the true model, and thus the

AAI is equivalent to an ANI in this case. Consequently, in the numerical examples, we need

not distinguish between the ANI and the AAI with β = 0.

5.1. Robustness on the optimal strategy. In this subsection, we analyze the effects of param-

eters on the optimal investment strategy. For the sake of simplifying our exposition, we omit

the effect of the accumulation factor, and therefore by formula (4.33), it is sufficient for us to

investigate how the resulting rescaled wealth D(t) invested in the risky asset changes when we

modify some of the preference and other parameters. We perturb the values of parameters from

80% to 120% of their base values. Figure 1(a) and Figure 1(b) show that the wealth invested in

the risky asset is reduced as the ambiguity aversion β becomes larger; on the other hand, higher

premium for volatility ξ leads to invest more in the risky asset. Comparing these two subfigures,

the robust optimal strategy reduces the sensitivity on ξ. Figure 1(c) and Figure 1(d) indicate an

interesting feature that, for an ANI, D(t) lacks sensitivity w.r.t σ and κ. This corroborates our

intuition that it is not necessary to allow for robustness w.r.t. uncertainty on the vol-vol and

volatility mean reversion rate parameters. More detailed discussions on these two parameters

will be provided in subsection 5.4.
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Figure 1. The impact of parameters on D(t).

Figure 2 illustrates that the AAI has lower risk exposure in the insurance market than the

ANI: specifically, the use of a robust optimal strategy decreases the sensitivity to both the drift

and diffusion parameters a and b in the claims process.

In conclusion, the AAI cuts down their risk exposure significantly both in the insurance

market and the investment market. An explanation for this phenomenon is that the AAI has

a higher aggregate risk aversion due to the model uncertainty; this was already illustrated in

Proposition 4.5.

5.2. Impact of reinsurance on the value function. To analyze the impact of reinsurance on

the value function, we consider a special case in which the insurer neither acquires new business

nor purchases reinsurance, i.e., q(t) ≡ 1,∀t ∈ [0,T ]. It is called an investment-only problem,

and the set of all admissible strategies is denoted by Π′ =
{
l(t)|(1, l(t)) ∈ Π}. For the investment-

only problem, the wealth process can be written as

dWπ(t) = [aλ + aη + ξl(t)V(t) +Wπ(t)r0]dt + bdZR(t) + l(t)
√

V(t)dZS (t). (5.1)
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Figure 2. The impact of parameters on q(t).

Theorem 5.1. For the investment-only problem, the robust optimal investment strategy l∗(t)t∈[0,T ]

is given by

l∗(t) =
(
ξ

γ
− n(t)σρ0

)
exp(−r0(T − t)), (5.2)

and the corresponding value function is

J̃(t,W,V) = − 1
m

exp
{
−m

[
c(t)

(
W − d̃(t)

)
+ ũ(t) + n(t)V

]}
, (5.3)

where c(t) and n(t) are given by (4.19) and (4.25), respectively, and

d̃(t) =
γb2

4r0
exp(r0(T − t)) +

(
aµ
r0
− γb

2

4r0

)
exp(−r0(T − t)) − aµ

r0
, (5.4)

ũ(t) = − 2κθ
σ2ρ2γ

ln
(

2k2 exp ((k1 + k2)(T − t)/2)
2k2 + (k1 + k2)

(
exp (k2(T − t)) − 1

)) . (5.5)

Proof. Conjecture that the value function has the form of (5.3) and substitute (5.3) into HJB

equation (4.2). Using the similar approach to Theorem 4.1, the optimal investment strategy and

the corresponding value function can be obtained as (5.2) and (5.3), respectively. �
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Furthermore, we introduce utility loss to measure the impact of reinsurance on the value

function, and have the following proposition.

Proposition 5.2. The utility loss of the investment-only problem, compared with the reinsurance

and investment problem, is given by

L(t) := 1 − J(t,W,V)
J̃(t,W,V)

= 1 − exp
{
−m

[
c(t)(d̃(t) − d(t)) + u(t) − ũ(t)

]}
= 1 − exp

{
− m

[
γb2

4r0
exp(2r0(T − t)) +

a2η2

2b2γ
(T − t)

+

(
aη
r0
− γb

2

4r0

)
− aη

r0
. exp(r0(T − t))

]}
. (5.6)

Proof. (5.6) can be derived by substituting (4.5) and (5.3) into the definition of L(t). �
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Figure 3. The utility loss from prohibition of reinsurance

The utility loss function L(t) is independent of the state variables W and V . Figure 3 illustrates

that the utility loss is caused by prohibiting reinsurance with the horizon T − t ∈ [0, 4]. As

the time passes, the utility loss drops. A reasonable explanation is that the long-horizon insurer

relies on reinsurance more significantly to divert potential risk. Figure 3(a) shows that the utility

loss decreases with reinsurance premium η at the beginning, and later increases after η reaches

a threshold. Intuitively, an extremely high reinsurance premium provides a favored position

for acquiring business. Thus it will causes utility loss if acquiring new business is prohibited.

Figure 3(b) indicates that the utility loss increases w.r.t γ, which indicates that the AAI with

higher aggregate risk-aversion demands much more for reinsurance for risk-spreading.

5.3. Model uncertainty robustness. If we understand Jβ as the value function for the AAI

with β and J0 as the value function for the ANI, the utility deviation for model uncertainty can
20



be defined as

Lβ1 := 1 − J0

Jβ
.

Given t ∈ [0,T ], base wealth W(t) = 1 and base volatility V(t) = 0.225, Figure 4(a) shows the

utility deviations for three levels of model uncertainty. With higher β, the AAI would be willing

to give up higher utility to seek a much more conservative strategy. This implies that the more

suspicion about preference model she or he has, the more utility deviation will be accepted.

Moreover, Lβ1 is increasing as the horizon extends, which indicates that the utility deviation of

model uncertainty in long-horizon is much larger than the deviation in short-horizon.
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Figure 4. Model uncertainty robustness on the value function

Now we turn to consider a suboptimal strategy. Assume the AAI with ambiguity-aversion

coefficient β > 0 does not take the optimal strategy (4.26), but makes decisions as if she or he

is an ANI. In other words, the AAI follows the strategy π0 = {q0(t), l0(t)}t∈[0,T ] given by (4.26)

with β = 0 as

q0(t) =
aη

mb2 exp(−r0(T − t)), l0(t) =
(
ξ

m
− n(t)σρ0

)
exp(−r0(T − t)).

where n(t) is given by (4.25). The value function for the AAI following the given strategy π0 is

defined by

Jπ0(t,W,V) = inf
Q∈Q

EQ
t,W,V

[∫ T

t

1
ϕπ0

(s)R(s)ds + U(Wπ0(T ))
]
,

where ϕπ0(t) = − β

mJ(t,Wπ0 ,V) is the preference parameter with π0. Via a calculation that is parallel

to previous ones, we arrive at

Jπ0(t,W,V) = − 1
m

exp {−m [c(t) (W − d(t)) + ū(t) + n̄(t)V]} ,
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where ū(t) and n̄(t) satisfy the following ODEs

−ūt(t) −
a2η2

mb2

(
1 − γ

2m
− ū(t)κθ

)
= 0, ū(0) = 0,

−n̄t(t) +
1
2
γσ2n̄(t)2 +

(
γ

m
σρ0ξ − γσ2ρ2

0n(t) + κ
)

n̄(t) +
(
γ

2m2 −
1
m

)
ξ2

+
1
2
γσ2ρ2

0n(t)2 + ξσρ0n(t) − γ
m
ξσρ0n(t) = 0, n̄(0) = 0,

with c(t), d(t) and n(t) are given by (4.19), (4.20) and (4.25), respectively. Define the utility loss

for the suboptimal strategy π0 as

Lβ2 := 1 −
Jβ
Jπ0
β

.

Figure 4(b) discloses the utility losses from ignoring model uncertainty for the AAI as a function

of horizon T − t. For the AAI who has less information about the model P (higher β), the

utility loss is higher than for the one with more information. Moreover, the utility loses has a

remarkable upward trend as the horizon T − t extends.

Overall, the impact of model uncertainty on the optimal strategy and the corresponding value

function is highly significant. The AAI is willing to abandon a certain proportion of utility

to guard against some adverse models which are not too far away from the reference model.

Furthermore, the AAI suffers significant utility loss if she or he ignores model uncertainty,

especially in long-horizon cases.

5.4. An improvement in finance applications. Although we have studied the impact of ro-

bustness along the line of Anderson et al. (1999), we uncovered an interesting feature in Sub-

section 5.1 by which the optimal investment strategy for the ANI seems to lack sensitivity to the

SV parameters σ and κ. In addition to this, there is a possible drawback seen in our robustness

calculations: the deviation for the AAI attains a surprising rate above 80% with a long horizon

T − t = 4, which means that the AAI will abandon 80% of her or his utility to guard against

model uncertainty. In real markets, it is doubtful whether an insurer will abandon so much

utility to acquire a robust optimal strategy. The culprit could be the fact that, as illustrated in

Figures 1(c) and 1(d), model uncertainty on the volatility model is largely irrelevant in terms

of the actual strategy followed, but is costly in terms of utility which is then presumably more

sensitive to the strategy followed.

Therefore, we propose abandoning robustness hedging on dV(t) in (2.4), in an effort to obtain

a lower utility deviation in finance applications. Since κ, σ are the parameters of SV, we assume
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that the AAI has full knowledge on dV(t), and does not consider the robustness on dV(t). Tech-

nically, to eliminate the robustness on SV, we simply require that the drift terms h and g in (3.8)

satisfy ρ0h(t) + ρg(t) = 0; the Heston SV model under the reference model Q ∈ Q can then be

shown to be 
dS 1(t) = S 1(t)

[(
r0 + ξV(t) +

√
V(t)h(t)

)
dt +

√
V(t)dZS

Q(t)
]
,

dV(t) = [κ(θ − V(t))] dt + σ
√

V(t)ρ0dZS
Q(t) + σ

√
V(t)ρdZV

Q(t).

Using a similar approach to Theorem 4.1, we obtain the following theorem without the robust-

ness on SV.

Theorem 5.3. For the optimal problem without robustness on SV, the robust optimal reinsurance

strategy q∗(t) keeps the same form in (4.26). However, the robust optimal investment strategy

l∗(t) is now has the form

l∗(t) =
ξ − mn2(t)σρ0

cγ2
,

where γ2 = m + βρ2, and the corresponding value function is given by

J(t,W,V) = − 1
m

exp {−m [c(t) (W − d(t)) + u2(t) + n(t)V]} ,

where c(t), d(t) and n(t) are given by (4.19), (4.20) and (4.25) respectively, u2 has the forms as

u2(t) =
a2η2

2γb2 (T − t) − 2κθγ2

mσ2ρ2γ
ln

(
2k2 exp ((k1 + k2)(T − t)/2)

2k2 + (k1 + k2)
(
exp (k2(T − t)) − 1

)) .
Here, k1, k2 and k3 in n(t) and u2(t) are given by

k1 =
mξ2σ2

γ2
+ κ, k2 =

√
κ2 +

2ξσρ0κm
γ2

+
ξ2σ2m
γ2
, k3 =

ξ2

γ2
.

With the assumption of full SV model knowledge and observation, Proposition 4.5 is still

correct iff ρ = 1. In fact, β can not be seen as a direct replacement for risk aversion m if ρ , 1.

Instead, ρ plays another important role in the robust decision under this situation. Figure 5(a)

and Figure 5(b) show the great impact of ρ on robust optimal investment strategy, in the range

of standard and extreme levels of leverage (ρ < 0). Since we have full knowledge on SV, the

AAI has more information about the price of the risky asset when V(t) and S 1(t) are highly

correlated. This compensates the model uncertainty robustness. Figure 5(b) indicates that the

model uncertainty robustness completely loses its impact on the investment strategy D(t) with

extreme negative correlation ρ0 = −1.

This assumption of full model and observation information on SV may influence the robust

optimal reinsurance strategy only mildly, but makes a big difference in terms of value function:
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it enhances the performance for expected utility remarkably. Figure 5(c) gives us the significant

result that the utility deviation Lβ1 for the AAI with β = 0.5 compared to the ANI, remains below

20% even with a long horizon T − t = 4. This compares extremely favorably with the same

levels reported in Figure 4(a) in subsection 5.3 when volatility parameter uncertainty is hedged.
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Figure 5. Results without robustness on SV

6. Conclusions

In this paper, we have investigated optimal reinsurance and investment strategies for an AAI

under Heston’s SV model. The claims process of the insurer is approximated by a standard dif-

fusion model. She or he can invest wealth in a time-dependent financial environment, modeled

by Heston’s SV model. At the same time, the insurer may lack full confidence in the model

describing the economy. We propose a systematic analysis of the impact of reinsurance and

model uncertainty on optimal strategies for the AAI.

We have formulated a general problem and derived the optimal strategy, and the correspond-

ing well-defined value function have been derived based on the technical assumptions. In ad-

dition, we have defined utility losses to analyze the impact of reinsurance and robust optimal
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strategy on the value functions. We also have investigated the model uncertainty robustness, and

explored some economic implications. The main findings are as follows. (i) The optimal strate-

gy and the corresponding value function for the AAI are well-defined within certain parameter

ranges, and the well-defined optimal strategy is state-independent. (ii) The optimal strategy for

the AAI is affected by the attitude toward ambiguity, and the AAI facing model uncertainty has

a safer optimal strategy. In addition, much utility loss is experienced if the AAI operates like

an ANI who does lends no heed to the ambiguity. (iii) Abandoning the robustness on SV is

preferable in financial applications, particularly when investing in markets such as the S&P500,

where excellent volatility tracking exists. In fact, the parameters in the SV model have moderate

influence on the optimal investment strategy, but a significant utility enhancement occurs when

one assumes full knowledge of these parameters.

Our conclusions leads to some promising directions for future works. (i) For other non-

utility criteria, such as the mean-variance criterion, would the qualitative conclusions for the

AAI in this paper still be satisfied? (ii) Our basic premise is that the SV in financial markets

can be observed completely; while this is becoming increasingly true in certain markets with

highly liquid options trading, other authors point out the limitations of this assumption: Pham

& Quenez (2001), Viens (2002) and Kim & Viens (2012), particularly when transaction costs

must be taken into account. In such cases, one ought to investigate the robust control problem

for the insurer under partially observed SV.
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[5] Bäuerle, N., 2005. Benchmark and mean-variance problems for insurers. Mathematical Methods of Opera-

tions Research, 62, 159-165.

[6] Browne, S., 1995. Optimal investment policies for a firm with a random risk process: exponential utility and

minimizing probability of ruin. Mathematics of Operations Research, 20, 937-958.
25



[7] Chacko, G., Viceira, L.M., 2005. Dynamic consumption and portfolio choice with stochastic volatility in

incomplete markets. Review of Financial Studies, 8, 1369-1402.

[8] Chen, S.M., Li, Z.F., Li, K.M., 2010. Optimal investment-reinsurance for an insurance company with VaR

constraint. Insurance: Mathematics and Economics, 47, 144-153.

[9] Delong, Ł., Gerrard, R., 2007. Mean-variance portfolio selection for a non-life insurance company. Mathe-

matical Methods of Operations Research, 66, 339-367.

[10] Dupuis, P., Ellis, R.S., 1997. A weak convergence approach to the theory of large deviations. Wiley Series in

Probability and Statistics, New York: Wiley.

[11] Emanuel, D.C., Harrison, J.M, Taylor, A.J., 1975. A diffusion approximation for the ruin probability with

compounding assets. Scandinavian Actuarial Journal, 4, 35-47.

[12] French, W.E., Schwert, G.W., Stambaugh, R.F., 1987. Expected stock returns and volatility. Journal of Finan-

cial Economics, 19, 3-29.

[13] Grandell, J., 1991. Aspects of risk theory. Springer-Verlag, New York.

[14] Gu, A.L., Guo, X.P., Li, Z.F., Zeng, Y., 2012. Optimal control of excess-of-loss reinsurance and investment

for insurers under a CEV model. Insurance: Mathematics and Economics, 51, 674-684.

[15] Hansen, L., Sargent, T., 2001. Robust control and model uncertainty. American Economic Review, 91, 60-66.

[16] Henderson, V., 2005. Explicit solutions to an optimal portfolio choice problem with stochastic income. Jour-

nal of Economic Dynamics and Control, 29, 1237-1266.

[17] Heston, S.L., 1993. A closed-form solution for options with stochastic volatility with applications to bond

and currency options. Review of Financial Studies, 6, 327-343.

[18] Karatzas, I., Shreve, S, 1988. Brownian Motion and Stochastic Calculus, Springer V.

[19] Kim, H.Y., Viens, F., 2012. Portfolio optimization in discrete time with proportional transaction costs under

stochastic volatility, Annals of Finance, 8, 405-425.

[20] Kraft, H., 2004. Optimal portfolios with stochastic interest rates and defaultable assets. Springer-Verlag,

Berlin.

[21] Kraft, H., 2005. Optimal portfolios and Heston’s stochastic volatility model: an explicit solution for power

utility. Quantitative Finance, 5, 303-313.

[22] Li, Z.F., Zeng, Y., Lai, Y.Z., 2012. Optimal time-consistent investment and reinsurance strategies for insurers

under Heston’s SV model. Insurance: Mathematics and Economics, 51, 191-203.

[23] Liang, Z.B., Yuen, K.C., Guo, J.Y., 2011. Optimal proportional reinsurance and investment in a stock market

with Ornstein-Uhlenbeck process. Insurance: Mathematics and Economics, 49, 207-215.

[24] Lin, X., Zhang, C.H., Siu, T.K., 2012. Stochastic differential portfolio games for an insurer in a jump-diffusion

risk process. Mathematical Methods of Operations Research, 75, 83-100.

[25] Liu, J., 2007. Portfolio selection in stochastic environment. Review of Financial Studies, 20, 1-39.

[26] Liu, J., Pan, J., 2003. Dynamic derivative strategies. Journal of Financial Economics, 69, 401-430.

[27] Liu, J., Pan, J., Wang, T., 2005. An equilibrium model of rare-event premia and its implication for option

smirks. Review of Financial Studies, 18, 131-164.

26



[28] Luo, S.Z., 2009. Ruin minimization for insurers with borrowing constraints. North American Actuarial Jour-

nal, 12, 143-174.

[29] Maenhout, P.J., 2004, Robust portfolio rules and asset pricing. Review of Financial Studies, 17, 951-983.

[30] Maenhout, P.J., 2006, Robust portfolio rules and detection-error probabilities for a mean-reverting risk pre-

mium. Journal of Economic Theory, 128, 136-163.

[31] Pagan, A.R., Schwert, G.W., 1990. Alternative models for conditional stock volatility. Journal of Economet-

rics, 45, 267-290.

[32] Promislow, S.D., Young, V.R., 2005. Minimizing the probability of ruin when claims follow Brownian motion

with drift. North American Actuarial Journal, 9, 109-128.

[33] Pham, H., Quenez, M.C., 2001. Optimal portfolio in partially observed stochastic volatility models. The

Annals of Applied Probability, 11, 210-238.

[34] Taksar, M., Zeng, X.D., 2009. A general stochastic volatility model and optimal portfolio with explicit solu-

tions. Working paper. Available at: http://www.math.missouri.edu/˜zeng/pub/ageneral.pdf.

[35] Uppal, R., Wang, T., 2003. Model misspecification and underdiversification. Journal of Finance, 58, 2465-

2486.

[36] Viens, F.G., 2002. Portfolio optimization under partially observed stochastic volatility. COMCON 8. The 8th

International Conference on Advances in Communication and Control. W. Wells, Ed. 1-12. Optim. Soft., Inc,

Pub. Div.

[37] Viens, F.G., Editor, 2012. Symposium on stochastic volatility. Annals of Finance, 8, no. 2-3, 151-425, ISSN:

1614-2446.

[38] Wang, N., 2007. Optimal investment for an insurer with exponential utility preferences. Insurance: Mathe-

matics and Economics, 40, 77-84.

[39] Xu, L., Wang, R.M., Yao, D.J., 2008. On maximizing the expected terminal utility by investment and rein-

surance. Journal of Industrial and Management Optimization, 4, 801-815.

[40] Xu, W.D., Wu, C.F., Li, H.Y., 2010. Robust general equilibrium under stochastic volatility model. Finance

Research Letters, 7, 224-231.

[41] Yang, H.L., Zhang, L.H., 2005. Optimal investment for insurer with jump-diffusion risk process. Insurance:

Mathematics and Economics, 37, 615-634.

[42] Zeng Y., Li, Z.F., 2011. Optimal time-consistent investment and reinsurance policies for mean-variance in-

surers. Insurance: Mathematics and Economics, 49, 145-154.

[43] Zeng, Y., Li, Z.F., 2012. Optimal reinsurance-investment strategies for insurers under mean-CaR criteria.

Journal of Industrial and Management Optimization, 8, 673-690.

[44] Zeng, Y., Li, Z.F., Liu, J.J., 2010. Optimal strategies of benchmark and mean-variance portfolio selection

problems for insurers. Journal of Industrial and Management Optimization, 6, 483-496.

[45] Zhang, X., Siu, T.K., 2009. Optimal investment and reinsurance of an insurer with model uncertainty. Insur-

ance: Mathematics and Economics, 45, 81-88.

27



Appendix

In this appendix, we prove Proposition 4.3.

Proof. We are able to prove Proposition 4.3 by using Corollary 1.2 in Kraft (2004) if π∗ and the

corresponding candidate value function J(t,W,V) has the following properties:

(1). π∗ is an admissible strategy;

(2).

EQ∗
(

sup
t∈[0,T ]

|J(t,Wπ∗ ,V)|4
)
< ∞ (6.1)

where Q∗ is defined by ν(t)∗ with h∗, f ∗ and g∗;

(3).

EQ∗
(

sup
t∈[0,T ]

∣∣∣∣∣ 1
ϕ(t)

R∗(t)
∣∣∣∣∣2) < ∞ (6.2)

with W(0) = w0, V(0) = v0 and R∗(t) = 1
2 (h∗(t)2 + f ∗(t)2 + g∗(t)2);

Subsequently, we verify the properties (1)-(3), respectively.

Proof of (1). Optimal strategy π∗ is deterministic and state-independent, thus condition (i) in

Definition 3.1 is met. Condition (ii) in Definition 3.1 can be obtained by Property (2).

Proof of (2). Substituting (4.26) and (4.29) into (3.9), we have

Wπ∗(t) = w0 exp(r0t) +
∫ t

0
aλ exp(r0(t − s))ds +

1
c(t)

{∫ t

0

ma2η2

γb2 +

+
mξ(ξ − γσρ0n(s))

γ︸                 ︷︷                 ︸
A

Vds +
∫ t

0

aη
γb︸︷︷︸
B

dZR
Q∗ +

∫ t

0

ξ − γσρ0n(s)
γ︸           ︷︷           ︸
C

√
VdZS

Q∗

}
. (6.3)

Inserting (6.3) into candidate value function (4.27), we obtain the following estimate with ap-

propriate constants K > 0:

|J(t,Wπ∗ ,V)4| =
∣∣∣∣∣ 1
m4 exp

(
−4mcWπ∗ + 4mcd − 4mu − 4mnV

)∣∣∣∣∣ 6 K exp
[
−4mcWπ∗

]
6 K exp

[
−4m

(∫ t

0
AVds +

∫ t

0
BdZR

Q∗ +

∫ t

0
C
√

VdZS
Q∗

)]
. (6.4)

The first estimate in (6.4) is valid, since m, c, d and u are deterministic and bounded on [0,T ]

with n(t) > 0,∀t ∈ [0,T ]. The second follows from deterministic and bounded w0 exp(r0t),

aλ exp(r0(t − s)) and ma2η2

γb2 .
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Now we consider the integral exp(
∫ t

0
−4mBdZR

Q∗). Note that mB = aηm
γb is bounded on [0, T ],

we find

exp(
∫ t

0
−4mBdZR

Q∗) = exp
(∫ t

0
8m2B2ds

)
︸                 ︷︷                 ︸

const.

· exp
(
−

∫ t

0
8m2B2ds +

∫ t

0
−4mBdZR

Q∗

)
︸                                            ︷︷                                            ︸

martingale

.

Consequently,

EQ∗
(
exp

(∫ t

0
−4mBdZR

Q∗

))
< ∞. (6.5)

Then, we aim to find an estimate for exp
(∫ t

0
−4mAVds +

∫ t

0
−4mC

√
VdZS

Q∗

)
:

exp
(∫ t

0
−4mAVds +

∫ t

0
−4mC

√
VdZS

Q∗

)
= exp

[∫ t

0

(
16m2C2 − 4mA

)
Vds

]
︸                                   ︷︷                                   ︸

G

· exp
(
−

∫ t

0
16m2C2Vds −

∫ t

0
4mC

√
VdZS

Q∗

)
︸                                                    ︷︷                                                    ︸

F

.

For the term F, we can find an estimate as

EQ∗(F2) = EQ∗
[
exp

(
−

∫ t

0
32m2C2Vds −

∫ t

0
8mC

√
VdZS

Q∗

)]
< ∞, (6.6)

since F2 is a nonnegative local martingale, and thus it is a supermartingale. In fact, F2 is a

martingale due to bounded function −8mC on [0,T ] (see Lemma 4.3 in Taksar & Zeng (2009)).

For the term G, we estimate EQ∗(G2) as

EQ∗(G2) = EQ∗
{

exp
[∫ t

0

(
32m2C2 − 8mA

)
Vds

]}
. (6.7)

Again applying Theorem 5.1 in Taksar & Zeng (2009), we obtain the following sufficient con-

dition for EQ∗(G2) < ∞ :

32m2C2 − 8mA 6
κ2

2σ2 , (6.8)

which is equivalent to the inequality

32γ2σ2ρ2
0n2 − 8ξγσρ0(8 − γ)n + 32ξ2 − 8γξ2 6

κ2γ2

2m2σ2 . (6.9)

Note ∀T ∈ R+, 0 < n(t) < N, t ∈ [0,T ] and the technical condition (4.32), (6.9) holds for

∀T ∈ R+ and ∀t ∈ [0,T ] because of the property of quadratic function. 5 Hence, applying

5Our conditions exclude the unstable situation in the sense that value function might be infinite when the horizon

exceeds a certain level.
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(6.4)-(6.6) and EQ∗(G2) < ∞, we can arrive at

EQ∗
∣∣∣J(t,Wπ∗ ,V)4

∣∣∣ 6 KEQ∗
{

exp
[
−4m

(∫ t

0
AVds +

∫ t

0
BdZR

Q∗ +

∫ t

0
C
√

VdZS
Q∗

)]}
= KEQ∗

(
exp(

∫ t

0
−4mBdZR

Q∗)
)
· EQ∗

[
exp

(∫ t

0
−4mAVds +

∫ t

0
−4mC

√
VdZS

Q∗

)]
6 KEQ∗ (GF) 6 K

(
EQ∗(G2)EQ∗(F2)

) 1
2
< ∞.

The first estimate follows from (6.4). The second equation is satisfied since ZR
Q∗(t) is indepen-

dent of ZV
Q∗(t) and ZS

Q∗(t). The second estimate is valid due to (6.5). The third estimate follows

from Cauchy-Schwarz inequality while the last from EQ∗(G2) < ∞ and (6.6). Therefore, prop-

erty (2) is proved.

Proof of (3). Inserting (4.4) into (6.2), we obtain

EQ∗
(

sup
t∈[0,T ]

∣∣∣∣∣ 1
ϕ(t)

R∗(t)
∣∣∣∣∣2) = EQ∗

(
sup

t∈[0,T ]

m2

β2

∣∣∣J(t,Wπ∗ ,V)
∣∣∣2 |R∗|2) (6.10)

Property (3) can be proved if (6.10) is well-defined. Since ∀M > 0, EQ∗(V M) < ∞, we have

EQ∗(R∗4) < ∞. From property (2), we obtain EQ∗
∣∣∣J(t,Wπ∗ ,V)

∣∣∣4 < ∞. Hence, (6.10) is well-

defined and thus property (3) is verified.

With all the properties are satisfied, we can simply apply Corollary 1.2 in Kraft (2004) to prove

Proposition 4.1 which guarantees that π∗ is the optimal strategy for problem (3.7) and J(t,W,V)

is the corresponding value function. �
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