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Robust Optimal Operation of Active Distribution
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of Distributed Energy Beta Distribution
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Abstract——With the gradual increase of distributed energy
penetration, the traditional optimization model of distribution
network can no longer guarantee the stable and efficient opera‐
tion of the distribution network. In order to deal with the inevi‐
table uncertainty of distributed energy, a new robust optimal
operation method is proposed for active distribution network
(ADN) based on the minimum confidence interval of distributed
energy Beta distribution in this paper. First, an ADN model is
established with second-order cone to include the energy stor‐
age device, capacitor bank, static var compensator, on-load tap
changer, wind turbine and photovoltaic. Then, the historical da‐
ta of related distributed energy are analyzed and described by
the probability density function, and the minimum confidence
interval is obtained by interval searching. Furthermore, via tak‐
ing this minimum confidence interval as the uncertain interval,
a less conservative two-stage robust optimization model is estab‐
lished and solved for ADN. The simulation results for the IEEE
33-bus distribution network have verified that the proposed
method can realize a more stable and efficient operation of the
distribution network compared with the traditional robust opti‐
mization method.

Index Terms——Active distribution network, robust optimiza‐
tion, Beta distribution, second-order cone.

I. INTRODUCTION

WITH the development of active distribution network
(ADN) technology, power distribution system has

changed from a traditional single system to a flexible interac‐
tive system that includes multiple distributed energy sources
and flexible loads. The penetration of uncertain distributed
energy will bring great challenges to the stability, economy,
and flexibility of the distribution network, and the optimiza‐
tion model of the distribution network will change according‐
ly [1]-[3].

The optimal operation of distribution network consists of
two parts. The optimal operation of active power is regulat‐
ed by controlling energy storage, flexible load, substation
transmission, and distributed energy generation [4] - [7]. The
optimal operation of reactive power is regulated by control‐
ling capacitor banks (CBs), static var compensators (SVCs),
and on-load tap changers (OLTCs). By adjusting the above
devices, the network loss, cost or voltage deviation can be
minimized under the condition of satisfying the power flow
safety constraints [8]-[11].

Since the power flow constraints of the distribution net‐
work structure are non-linear, it brings many difficulties to
the optimization process. At present, most results treat the
secondary variables such as the voltage and current as linear
variables since it has been proven that such process of linear‐
ization does not affect the optimization accuracy [12]-[14].
At the same time, the second-order cone (SOC) relaxation
method can solve the power flow model of radial systems
well, and its convergence error can be usually guaranteed
within the order of 10-4 [15]-[18]. The power flow model af‐
ter the SOC relaxation can be directly solved by the general
commercial solver.

As a new optimization method to solve the uncertainty of
internal structure and external environment, the robust opti‐
mization can effectively guarantee the optimal operation of
distribution network in the random fluctuation environment
of distributed energy [19]-[22]. Therefore, it has been widely
used in the power system optimization. Reference [23] estab‐
lishes a two-stage robust reactive power optimization model
that considers the wind power uncertainty. This model ex‐
presses the wind power in the form of intervals. The capaci‐
tance compensator, SVC, and OLTC in the control system
minimize the network loss. This method is the mainstream
method to solve the robust optimization of the distribution
network at this stage. Reference [24] uses photovoltaic (PV)
inverters as control modules for distribution network optimi‐
zation. Meanwhile, a robust optimization model considering
PV uncertainty is established. Reference [25] uses the corre‐
lation of wind power and PV power as the basis for select‐
ing the robust optimization interval, which reduces the con‐
servative optimization of robust optimization in the scenarios
involving multiple distributed energy sources.

For the above optimization methods for ADN, the interval
partition of uncertainty for distributed energy is conservative
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or limited, which can not reflect the facts well. Meanwhile,
the existing optimal operation of distributed network only
considers the network loss, while the role of the energy stor‐
age device in multi-time scales is not considered, which may
lead to inaccurate results. Therefore, in this paper, a new ro‐
bust optimal operation model of ADN is established based
on the confidence interval of distributed energy Beta distribu‐
tion. The main contributions of this work are as follows.

1) An ADN optimization model including the energy stor‐
age device, capacitor compensator, SVC, OLTC, wind tur‐
bine (WT), and PV is established. The model is transformed
as a linear model with the SOC constraints, and the corre‐
sponding relaxation error of the SOC is quantitatively ana‐
lyzed to ensure the accuracy of the model.

2) The probability density function of distributed energy
output is obtained by fitting the historical output data of dis‐
tributed energy through Beta distribution, and the minimum
confidence interval of distributed energy output is obtained
by interval search, which can better describe the uncertainty
of distributed energy output and make the robust optimiza‐
tion of distribution network less conservative.

3) Taking the minimum confidence interval of distributed
energy output as the uncertain interval of robust optimiza‐
tion of ADN, a two-stage robust optimization model of ADN
is established. The optimal operation results show that the
proposed model is more in line with the actual situation than
the traditional robust optimization (TRO) model.

II. ADN MODEL

According to the branch power flow model of distribution
network, in this paper, the energy storage device is seen as
the adjustable device of active power, and the SVC, capaci‐
tance compensator, and OLTC are regarded as the adjustable
devices of reactive power. In the following, the power flow
model will be relaxed and linearized through the SOC to
make it easier to solve.

A. Objective Function

In this paper, the optimization objective of the ADN main‐
ly consists of three parts in the operation cycle. The first
part is the cost of network loss. As is known, reducing the
network loss can improve the operation efficiency of distri‐
bution network. The second part is the power purchasing
cost of substation. Since the system considers the time-of-
use electricity price and energy storage, the cost can be re‐
duced by rationally mobilizing resources. The third part is
the penalty cost of the bus voltage fluctuation. The fluctua‐
tion of the bus voltage usually affects the users’ experience.
Therefore, the penalty of voltage fluctuation should be added
to the objective function. The total objective function is set
as:

min∑
t = 1

T ( )∑
(ij)ÎX

c1 I 2
ijtrij +∑

mÎ Y

c2 Pmt +∑
nÎ Z

c3 ||V 2
nt -V 2

N (1)

where T is the period of operation; X, Y, and Z are the sets
of the distribution network branches, substation buses, and
distribution network buses, respectively; c1, c2, and c3 are the
factors of the network loss cost, power purchasing cost, and

voltage fluctuation penalty, respectively; Iijt is the current of
branch (i, j) at time t; rij is the resistance of branch (i, j);
Pmt is the active power flowing into bus m at time t; Vnt is
the voltage of bus n at time t; VN is the rated voltage; and Z
is the set of branches containing all bus.

B. Power Flow Constraints of Distribution Network

In this paper, the branch power flow is used to describe
the power flow constraints of distribution network. The ex‐
pressions are as follows.

∑
iÎ π(i)

[(Pit - I 2
ijtrij)+PiWt +PiPVt +PiESSt] =∑

jÎ¶( j)

Pjt +Piload -Pint

(2)

∑
iÎ π(i)

[(Qit - I 2
ijt xij)+QiCBt +QiSVCt] =∑

jÎ¶( j)

Qjt +Qiload -Qint

(3)

where π(i) is the parent branch set of bus i; ¶( j) is the child
branch set of bus i; Pit and Qit are the active and reactive
power flowing into bus i at time t, respectively; Pjt and Qjt

are the active and reactive power flowing out of bus j at
time t, respectively; PiWt is the output of WT at bus i at
time t; PiPVt is the output of PV at bus i at time t; PiESSt is
the output of the energy storage device at bus i at time t;
Piload and Qiload are the active and reactive load power of bus
i, respectively; Pint and Qint are the active and reactive pow‐
er for transformer bus at time t, respectively; xij is the reac‐
tance of branch (i, j); QiCBt is the reactive power compensat‐
ed by the capacitor at bus i at time t; and QiSVCt is the reac‐
tive power compensated by the SVC at bus i at time t.

OLTC can adjust the voltage of transformer at the second‐
ary side by changing its tap ratio, thus the voltage relation‐
ship between the child bus and parent bus is:

V 2
jt =V 2

it - 2(Pjtrij +Qjt xij)+ I 2
ijt (r

2
ij + x2

ij) "(ij)ÎX/TB (4)

V 2
jt

α2
ij

=V 2
it - 2(Pjtrij +Qjt xij)+ I 2

ijt (r
2
ij + x2

ij) "(ij)Î TB (5)

where Vjt is the child bus voltage at time t; Vit is the parent
bus voltage at time t; α ij is the transformer ratio; and TB is
the set of branches containing OLTC.

C. Transformation of Power Flow Constraints

In order to solve the power flow model of the distribution
network, the bilinear and quadratic variables in the power
flow constraints need to be transformed.

The linearization process of the voltage and current vari‐
ables are:

V 2
it = V͂it (6)

I 2
ijt = I͂ ijt (7)

Through the above transformations, there are no quadratic
variables in the power flow constraints.

For the bilinear problem brought by OLTC, the processing
method of [23] is to transform the bilinear problem by the
big M method. We introduce a set of auxiliary variables

{ }|ck k = 12...n , and ckÎ{01}, ∑
k = 1

n

ck = 1. The bus voltage

containing the transformer is transformed as:

V͂it

α2
ij

=
V͂it

α2
ij1

c1 +
V͂it

α2
ij2

c2 + ...+
V͂it

α2
ijn

cn (8)

where α ijk (k = 12...n) is the transformer ratio in case k
where the transformer can be adjusted. Further, we introduce

a set of linear variables { }|pk k = 12...n , pkÎR to re‐

place V͂itck:

V͂it

α2
ij

=
p1

α2
ij1

+
p2

α2
ij2

+ ...+
pn

α2
ijn

(9)

A set of bilinear variables containing the transformer ratio
and voltage are transformed into the sum of a set of linear
variables.

We introduce a large real number M and give the follow‐
ing constraints:

-M (1- ck)+ V͂it £ pk £M (1- ck)+ V͂it (10)

-Mck £ pk £Mck (11)

In this way, the bilinear variables are directly changed to
linear variables. Similarly, the compensation power of the ca‐
pacitive reactive power compensator can be rewritten as:

QiCBt =
1
2

CiV͂it (12)

where Ci is the capacitance value of the capacitive reactive
power compensator, which is a discrete variable. It can be
seen that CiV͂it is also a bilinear variable about the voltage
and capacitance. In the same way, we introduce a set of aux‐

iliary variables { }|dk k = 12...m , and dkÎ{ }01 , ∑
k = 1

m

dk = 1.

Therefore, the following equation can be obtained:

CiV͂it =Ci1V͂itd1 +Ci2V͂itd2 + ...+CimV͂itdm (13)

where Cik (k = 12...m) is the all discrete reactive power of
capacitor i.

Then, we further introduce a set of linear variables

{ }|qk k = 12...m , qkÎR to replace V͂itdk:

CiV͂it =Ci1q1 +Ci2q2 + ...+Cimqm (14)

The constraints of this set of variables are:

-M (1- dk)+ V͂it £ qk £M (1- dk)+ V͂it (15)

-Mdk £ qk £Mdk (16)

In this way, the bilinear variables are transformed into the
sum of a set of linear variables, which can be directly solved
by a general commercial solver.

D. Energy Storage Device Constraint

The energy storage device is used to suppress the fluctua‐
tion of distributed energy sources, reduce the pressure of the
power distribution network, and ensure the economical and
stable operation of the system. The corresponding model can
be expressed as:

-DPess £Pesst + 1 -Pesst £DPess (17)

-P ess
£Pesst £ P̄ess (18)

Pess1 =PessT (19)

where DPess is the maximum change rate of the charging and

discharging power of the energy storage device; Pess is the
capacity of the energy storage device; and -P ess

and P̄ess are

the lower and upper bounds of the capacity of the energy
storage device, respectively.

E. SOC and Stability Constraints of Distribution Network

For the ADN, the voltage, branch current, active power,
and reactive power of the distribution network are expressed
by the SOC constraint as:
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2Pijt

2Qijt

V͂it - I͂ ijt 2

£ V͂it + I͂ ijt (20)

For the bus voltage of the distribution network, the securi‐
ty constraints can be formulated as:

-V
2 £ V͂it £ V̄ 2 "iÎ Z (21)

where V and V̄ are the lower and upper bounds of the bus
voltage fluctuation, respectively.

For the branch power flow of the distribution network, the
security constraint is as follows.

-P£Pijt £ P̄ "(ij)ÎX (22)

where P and P̄ are the lower and upper bounds of the
branch power flow of the distribution network, respectively.

III. ESTABLISHMENT AND SOLUTION OF ROBUST

OPTIMIZATION MODEL

The above model (1) is a traditional optimization model,
which is only suitable for the case that the distributed ener‐
gy output is determined. Considering the uncertainty of dis‐
tributed energy output, this paper further proposes the inter‐
val distribution probability of distributed energy, and estab‐
lishes a robust optimization model for ADN based on the
minimum confidence interval of distributed energy Beta dis‐
tribution.

A. Uncertainty Description of Distributed Energy Based on
Beta Distribution

The uncertain distribution of wind power is represented
by the set St:

St = { }|PWt P′Wt - ε t £PWt £P′Wt + ε t (23)

where PWt is the actual wind power value; P′Wt is the aver‐
age value of the wind power interval; and ε t is obtained
from the historical distribution of power prediction error at
time t.

In order to obtain the wind power distribution in this inter‐
val, we assume that there are N data in the set and normal‐
ize the data as:

ì

í

î

ïï
ïï

θ it =
PWt - (P′Wt - ε t)

(P′Wt + ε t)- (P′Wt - ε t)
=

PWt -P′Wt + ε t

2ε t

θ itÎ[01]
(24)

Then, the normalized wind power distribution is represent‐
ed by the following set:

S't = { }θ1tθ2t...θ it...θNt (25)

According to the method of [26], we can fit the historical
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where α ijk (k = 12...n) is the transformer ratio in case k
where the transformer can be adjusted. Further, we introduce
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A set of bilinear variables containing the transformer ratio
and voltage are transformed into the sum of a set of linear
variables.

We introduce a large real number M and give the follow‐
ing constraints:

-M (1- ck)+ V͂it £ pk £M (1- ck)+ V͂it (10)

-Mck £ pk £Mck (11)

In this way, the bilinear variables are directly changed to
linear variables. Similarly, the compensation power of the ca‐
pacitive reactive power compensator can be rewritten as:

QiCBt =
1
2

CiV͂it (12)

where Ci is the capacitance value of the capacitive reactive
power compensator, which is a discrete variable. It can be
seen that CiV͂it is also a bilinear variable about the voltage
and capacitance. In the same way, we introduce a set of aux‐

iliary variables { }|dk k = 12...m , and dkÎ{ }01 , ∑
k = 1

m

dk = 1.

Therefore, the following equation can be obtained:
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In this way, the bilinear variables are transformed into the
sum of a set of linear variables, which can be directly solved
by a general commercial solver.

D. Energy Storage Device Constraint

The energy storage device is used to suppress the fluctua‐
tion of distributed energy sources, reduce the pressure of the
power distribution network, and ensure the economical and
stable operation of the system. The corresponding model can
be expressed as:
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where DPess is the maximum change rate of the charging and

discharging power of the energy storage device; Pess is the
capacity of the energy storage device; and -P ess

and P̄ess are

the lower and upper bounds of the capacity of the energy
storage device, respectively.

E. SOC and Stability Constraints of Distribution Network

For the ADN, the voltage, branch current, active power,
and reactive power of the distribution network are expressed
by the SOC constraint as:
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For the bus voltage of the distribution network, the securi‐
ty constraints can be formulated as:

-V
2 £ V͂it £ V̄ 2 "iÎ Z (21)

where V and V̄ are the lower and upper bounds of the bus
voltage fluctuation, respectively.

For the branch power flow of the distribution network, the
security constraint is as follows.

-P£Pijt £ P̄ "(ij)ÎX (22)

where P and P̄ are the lower and upper bounds of the
branch power flow of the distribution network, respectively.

III. ESTABLISHMENT AND SOLUTION OF ROBUST

OPTIMIZATION MODEL

The above model (1) is a traditional optimization model,
which is only suitable for the case that the distributed ener‐
gy output is determined. Considering the uncertainty of dis‐
tributed energy output, this paper further proposes the inter‐
val distribution probability of distributed energy, and estab‐
lishes a robust optimization model for ADN based on the
minimum confidence interval of distributed energy Beta dis‐
tribution.

A. Uncertainty Description of Distributed Energy Based on
Beta Distribution

The uncertain distribution of wind power is represented
by the set St:

St = { }|PWt P′Wt - ε t £PWt £P′Wt + ε t (23)

where PWt is the actual wind power value; P′Wt is the aver‐
age value of the wind power interval; and ε t is obtained
from the historical distribution of power prediction error at
time t.

In order to obtain the wind power distribution in this inter‐
val, we assume that there are N data in the set and normal‐
ize the data as:

ì

í

î

ïï
ïï

θ it =
PWt - (P′Wt - ε t)

(P′Wt + ε t)- (P′Wt - ε t)
=

PWt -P′Wt + ε t

2ε t

θ itÎ[01]
(24)

Then, the normalized wind power distribution is represent‐
ed by the following set:

S't = { }θ1tθ2t...θ it...θNt (25)

According to the method of [26], we can fit the historical
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output error of the WT at time t by Beta distribution as:

f (θ ; ab)=
1

Beta(ab)
θa- 1 (1- θ)b- 1 (26)

Beta(ab)= ∫
0

1

θa- 1 (1- θ)b- 1dθ (27)

where θ is the statistical random variable; and a and b are
the shape parameters of the Beta distribution. The uncertain‐
ty interval of the wind power is not evenly distributed and
the wind power value of this interval can be well fitted by
Beta distribution.

Further, the mean value and variance of the uncertain set
of wind power (μ and σ 2) are obtained:

μ=
1
N∑i = 1

N

θ it (28)

σ 2 =
1

N - 1∑i = 1

N

(θ it - μ)2 (29)

According to the nature of the Beta distribution, the rela‐
tionship among a, b, μ, and σ 2 can be formulated as:

μ=
a

a+ b
(30)

σ 2 =
ab

(a+ b+ 1)(a+ b)2 (31)

Combining (28)-(31), the shape parameters a and b can be
expressed as:

a=
(1- μ)μ2

σ 2
- μ (32)

b=
1- μ
μ

a (33)

In this way, the probability density function of Beta distri‐
bution of the wind power is obtained. The above model rep‐
resents the uncertainty interval of distributed energy in the
form of probability distribution. The distribution function
can be formulated as:

F(θ ; ab)= ∫
0

θ

f (θ ; ab)dθ (34)

By further expanding (34), we can obtain:

F(θ ; ab)=
∫

0

θ

θa- 1 (1- θ)b- 1dθ

∫
0

1

θa- 1 (1- θ)b- 1dθ
(35)

The probability of the normalized distributed energy out‐
put falling in the interval [Γ1Γ2] is obtained as:

Pr(Γ1 £ θ £ Γ2)=F(Γ2 ; ab)-F(Γ1 ; ab) (36)

The interval length is obtained as:

l = Γ2 -Γ1 (37)

To reduce the conservativeness of the robust optimization
interval, the distribution probability of the minimum confi‐
dence interval is assumed to be p. Therefore, the following
optimization problem is formulated:

min(Γ2 -Γ1) (38)

The constraint is set as:
Pr(Γ1 £ θ £ Γ2)³ p (39)

The optimal confidence interval [Γ1Γ2] can be obtained
by calling the common solver. The detailed solution process
is not discussed in this paper. According to the optimal confi‐
dence interval, the uncertainty interval of wind power is
[P′Wt - ε t + 2ε tΓ1P′Wt - ε t + 2ε tΓ2].

The above results are the robust uncertainty intervals of a
WT at one hour. For each distributed energy, the same pro‐
cessing is done for the whole running period. The uncertain‐
ty of PV is also considered as Beta distribution, thus we
have the same treatment for PV. The process is shown in
Fig. 1.

B. Description and Solution of Robust Optimization Model

The objective of the robust optimization is to find the opti‐
mal strategy under the condition where random variables
have the greatest interference with the objective function.
Since the OLTC and compensation capacitor cannot respond
to the random fluctuations of distributed energy sources in
real time, they are used as the first-stage decision variables
of the robust optimization. And the SVC and energy storage
device are used as the second-stage decision variables,
which can quickly respond to the output deviation of distrib‐
uted energy to achieve the optimal goal. The above optimiza‐
tion objectives correspond to the solution of the min-max-
min mathematical model. Therefore, the robust optimization
model of ADN is described as:

ì

í

î

ï

ï
ïïï
ï

ï

ï
ïïï
ï

min
PiESSQiSVC

max
PiPVPiW{min

αiQiCB
∑

t = 1

T (∑
(ij)ÎX

c1 I͂ ijtrij +

})∑
mÎ Y

c2 Pmt +∑
nÎ Z

c3 || V͂nt -V 2
N

s.t. (2)-(22)

(40)

where PiESS, PiPV, and PiW are the outputs of the energy stor‐
age device, PV and WT at bus i, respectively; and QiSVC and
QiCB are the reactive power compensated by the SVC and ca‐
pacitor at bus i, respectively. This model is a linear robust
optimization model including an SOC, which does not in‐
clude bilinear and non-linear variables. The first “min” opti‐
mization model is deterministic. According to the output of

Initialize data

N

Y

Start

End

Predict error distribution
of historical energy output

Fit standard Beta distribution

Minimize confidence interval 

t=T?

t= t+1

Obtain uncertainty interval of distributed energy

Fig. 1. Uncertainty interval of distributed energy output.
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distributed energy, the “min” optimization model is solved
directly by the linear YALMIP-CPLEX solver to obtain the
OLTC and discrete capacitor, which will be also used as the
initial value of the second-stage “min-max” optimization
model. The second “min-max” optimization model is the
common form of robust optimization. The optimal control
variables are the output of SVC and energy storage device,
and the robust uncertainty variable is the output of distribut‐
ed energy. The optimization goal of this model is to give the
best decision when the distributed energy output has the
greatest influence on the objective function. There are some
difficulties in solving the “min-max” optimization model di‐
rectly. The mathematical processing method is to convert the
model to its dual max problem through duality theory, and
solve the max model equivalent to the original model [27],
[28]. Reference [25] has proven that for the distribution net‐
work optimization model after the SOC relaxation, the dis‐
tributed energy output based on robust optimization is al‐
ways on the boundary of the uncertain interval. Therefore,
the boundary of uncertainty interval is used in this paper to
describe the uncertainty of distributed energy output. Then,
the uncertain variable number of the robust optimization
model changes from infinite to finite. Thus, the CPLEX solv‐
er can be directly used to solve the optimization problem af‐
ter the transformation. The solution process of the robust op‐
timization model is shown in Fig. 2.

IV. SIMULATION STUDY

A. System Configuration

In order to verify the effectiveness of the robust optimiza‐
tion model proposed in this paper, the YAMLIP in MAT‐
LAB R2015b and the commercial CPLEX solver are used to
solve the robust optimization problem of IEEE 33-bus system.

The IEEE 33-bus system is shown in Fig. 3, where
ESS stands for energy storage system. The total load is
(3.715+ j1.86)MVA, and the optimized period is set as
T = 24 hours. The OLTC is installed between buses 9 and
10, and its ratio range is [0.98, 1.02], which is divided into
5 switching positions and the variation of each switching po‐
sition is 0.01.

The ESS is installed on bus 23. Its capacity is 0.2 MW
and the power change rate is 0.04 MW/h. Three SVC com‐
pensators are installed on buses 13, 16, and 29, and the ad‐
justable range is [-0.1 Mvar, 0.3 Mvar]. One capacitor com‐
pensator is installed on bus 32, with a capacity range of [0
Mvar, 0.2 Mvar]. There are two WTs connected to buses 8
and 24, with apparent power of 0.6 MVA. There is also one
PV connected to bus 31 and its apparent power is 0.2 MVA.
The output data of distributed energy come from an area in
Australia, and the two-year history data are selected as the
interval selection basis for the random distribution of distrib‐
uted energy output. The minimum confidence interval is ob‐
tained by the prediction errors of distributed energy power
of back propagation (BP) neural network. To ensure the ac‐
curacy of the model, the converted electricity price of the
network loss is set as 0.1 $/kWh, and the penalty coefficient
of voltage fluctuations is set as 0.5. The penalty cost of volt‐
age fluctuations is calculated from voltage per unit. The
time-of-use electricity price of the transformer bus is shown
in Fig. 4.

B. Generation of Minimum Confidence Interval for Distribut‐
ed Energy

According to the proposed method, the output data of dis‐
tributed energy are normalized. At T = 1 hour, the frequency
distribution histogram of the output data of a WT is shown
in Fig. 5.

The distribution interval of the power normalization value
is [0, 1]. According to (28), the mean value of this distribu‐
tion is 0.6238 and the variance is 0.0222. The corresponding
Beta distribution parameters a= 5.97 and b= 3.60 are calcu‐
lated using (29). For this distribution, the confidence proba‐
bility is 96%, and the distribution function value and the
minimum confidence interval are shown in Fig. 6.
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The range of its minimum confidence interval is [0.281,
0.932]. Figure 6 shows that the robust confidence interval
based on the Beta distribution is smaller than the uncertainty
interval of TRO, which has less conservativeness and can
cover most of scenarios. The above result is the robust confi‐
dence interval of the WT at one hour, and the similar pro‐
cess is carried out for 24 operation hours to obtain the uncer‐
tainty interval.

C. Model Economy Analysis

In order to verify the economy of the proposed model, the
distribution network structure is optimized by the determinis‐
tic optimization (DO), TRO, and robust optimization with
minimum confidence interval (ROMCI) methods, respective‐
ly. The network loss cost, power purchasing cost, penalty
cost for voltage fluctuations, and total cost are represented
by C1, C2, C3, and C4, respectively. The results are shown in
Table I.

The results show that the DO method does not consider
the randomness of distributed energy sources, thus there is
no cost increase caused by distributed energy fluctuations.
The total cost of the DO method is lower than that of the

other two optimization methods. The TRO method has the
highest total cost, which indicates that its excessive conserva‐
tism will often lead to poor economy. Although the TRO
method can cover all scenarios, the occurrence of extreme
scenarios is usually a low-probability event, that is, the prac‐
tical application of the method is poor. The total cost of the
ROMCI method is between the DO method and the TRO
method. Meanwhile, the minimum confidence interval can
cover the vast majority of scenarios, and the optimization re‐
sult is less conservative, which indicates that the proposed
model is more practical.

D. Role of Energy Storage Device in Optimization Process

In the proposed model, the capacity and charging and dis‐
charging power of the energy storage device are shown in
Fig. 7. In order to ensure the long-term stable operation of
the system, the energy of the energy storage device returns
to the initial value after one operation period. From the 1st

hour to the 6th hour, the electricity price is lower and the en‐
ergy storage device stores energy. From the 16th hour to the
22th hour, the electricity price is higher and the energy stor‐
age device is discharged. That is, the energy storage device
can reduce the operation cost of the distribution network and
realize the economic operation of the distribution network.

E. Model Stability Analysis

On the other hand, the excessive conservatism suggests a
need for more tunable devices for the system. Therefore, for
the TRO and the proposed methods, the voltage fluctuation
of the distribution network is analyzed in the same reactive
power compensation equipment. In the operation period of
T = 24 hours, the voltage waveforms of the remaining nodes
of the distribution network that do not contain the substation
are shown in Figs. 8 and 9.

The voltage data of the TRO method are compared with
those of proposed method. The bus voltage fluctuation inter‐
val of the TRO method is [0.9362 p. u., 0.9985 p. u.], and
that of the proposed method is [0.9491 p. u., 0.9987 p. u.].
This indicates that the voltage fluctuation range of the TRO
method is larger with the same reactive compensation capaci‐
ty. That is, more reactive compensation devices need to be
configured if the same voltage fluctuation range is to be
achieved.
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TABLE I
COST COMPARISON OF VARIOUS METHODS

Method

DO

TRO

ROMCI

C1 ($)

310.39

377.46

344.40

C2 ($)

8091.05

9346.21

8770.20

C3 ($)

19.30

23.69

21.46

C4 ($)

8420.74

9747.36

9136.06
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Fig. 7. Capacity and charging and discharging power of energy storage de‐
vice in proposed model.
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F. Model Accuracy Analysis

In order to verify the accuracy of the SOC relaxation of
(20). The relaxation error of the SOC is defined as:

∆ ijt = || I͂ ijtV͂ijt -P 2
ijt -Q2

ijt (41)

The relaxation error of each branch is shown in Fig. 10.

The maximum value of the relaxation error in Fig. 10 is
1.82´ 10-4, and the relaxation error is distributed on the or‐
der of 10-4 or less. The effect of this relaxation error on pow‐
er balance is small. That is, the model satisfies the equiva‐

lence of power balance within the allowed error range.

V. CONCLUSION

This paper proposes a robust optimization method for dis‐
tribution networks based on the minimum confidence inter‐
val of Beta distribution. We fit the distributed energy output
by Beta distribution, find the minimum confidence interval
under the distribution, and use it as the uncertainty interval
of distributed energy output for the ADN. Compared with
the TRO method, the method proposed in this paper is less
conservative and has been well verified in the IEEE 33-bus
system.
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