
Research Article

Robust Optimization Approximation for Ambiguous
P-Model and Its Application

Ru-Ru Jia1 and Xue-Jie Bai 2

1Risk Management & Financial Engineering Laboratory, College of Mathematics and Information Science,
Hebei University, Baoding, Hebei 071002, China
2College of Science, Hebei Agricultural University, Baoding, Hebei 071001, China

Correspondence should be addressed to Xue-Jie Bai; hebaubxj@163.com

Received 15 May 2018; Accepted 28 June 2018; Published 18 July 2018

Academic Editor: A. M. Bastos Pereira

Copyright © 2018 Ru-Ru Jia and Xue-Jie Bai. 	is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Robust optimization is a powerful and relatively novel methodology to cope with optimization problems in the presence of
uncertainty. 	e positive aspect of robust optimization approach is its computational tractability that attracts more and more
attention. In this paper, we focus on an ambiguous P-model where probability distributions are partially known. We discuss robust
counterpart (RC) of uncertain linear constraints under two re
ned uncertain sets by robust approach and further 
nd the safe
tractable approximations of chance constraints in the ambiguous P-model. Because of the probability constraints embedded in the
ambiguous P-model, it is computationally intractable. 	e advantage of our approach lies in choosing an implicit way to treat
stochastic uncertainty models instead of solving them directly. 	e process above can enable the transformation of proposed
P-model to a tractable deterministic one under the re
ned uncertainty sets. A numerical example about portfolio selection
demonstrates that the ambiguous P-model can help the decisionmaker to determine the optimal investment proportions of various
stocks. Sensitivity analyses explore the trade-o� between optimization and robustness by adjusting parameter values. Comparison
study is conducted to validate the bene
t of our ambiguous P-model.

1. Introduction

Robust optimization, 
rst proposed by Soyster [1], is a
technology for dealing with optimization problems with
uncertainty. 	is topic was widely discussed successively by
Ben-Tal and Nemirovski [2, 3], who proved that the robust
convex formulation of an uncertain problem is tractable. An
additional attempt was made by Bertsimas et al. [4] and
Bertsimas and Sim [5] to further develop robust optimization
theory. Bertsimas et al. [4] explored the robust counterpart
of a problem with an uncertainty set. Bertsimas and Sim
[5] discussed the tractability for di�erent types of robust
problems. 	e key issue of robust optimization is to model
the uncertainty. 	e uncertain data of a robust optimization
problem vary in an uncertainty set. A vital feature of the
robust optimization approach is its tractability whenever
the uncertainty set itself is computationally tractable. For a
thorough coverage of developments and recent advances in

robust optimization, the interested reader can refer to Gabrel
et al. [6].

In recent years, robust optimization has gained extensive
attention in a great deal of areas. For example, Bai and Liu [7]
developed an uncertain supply chain network design model
to guide the decision maker with robust location-allocation
strategy. Jabbarzadeh et al. [8] presented a stochastic robust
optimization model for the design of a closed-loop supply
chain network under uncertain weights varying in the box
uncertainty set. Omrani [9] introduced a robust optimiza-
tion approach to 
nd common weights in DEA under the
ellipsoidal uncertainty set. Shokouhi et al. [10] employed a
robust optimization approach for imprecise data envelop-
ment analysis under uncertain input and output parameters
varying in the box uncertainty set. Bruni et al. [11] proposed
an adaptive robust optimization model for the resource allo-
cation decisions under uncertain activity durations varying
in the budgeted uncertainty set. Neyshabouri and Berg [12]
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considered a two-stage robust optimization model to elective
surgery and downstream capacity planning under uncertain
parameters varying in the budgeted uncertainty set. Liu et al.
[13] applied distributionally robust optimization approach to
multiproduct newsvendor problem under uncertain proba-
bility distribution of market demand and uncertain carbon
emission. Liu et al. [14] introduced a robust optimization
method for relief logistics planning under uncertainties in
demand and transportation time and deduced the robust
counterpart of the proposed stochastic model under the
budgeted uncertainty set. Zhang and Hai [15] utilized a
RC approach to the biobjective emergency medical service
design problem under the uncertain parameters varying in
the ellipsoidal uncertainty set.

Robust optimization approach, as a tractable alternative
to stochastic optimization, can provide a safe approximation
to chance constraint under uncertainty. Ben-Tal et al. [16]
discussed some approximations of chance constraints, such as
robust safe approximations of ambiguous chance constraints
under box, ball, box + ball, and box + budgeted uncertainty
sets. Li and Li [17] studied the optimal robust optimization
approximations for chance constraints under box and ellip-
soidal uncertainty sets by adjusting the size of uncertainty
sets. Nemirovski [18] addressed robust counterpart forms of
Bernstein approximations of chance constraints under ball +
box, ball, budgeted, and box uncertainty sets. D�̈zg�̈n and
	iele [19] addressed a safe tractable approximation of chance
constraints by robust optimization, when only the 
rst two
moments and the support of the random parameters were
known. Yang and Xu [20] investigated the computational
aspects of chance constraints under uncertain distribution by
distributionally robust optimization. Postek et al. [21] utilized
distributionally robust optimization to study ambiguous
stochastic constraints under partial probability distribution
consisting of means and dispersion measures of the under-
lying random parameters. Qiu et al. [22] considered the
tractable robust formulation under the assumption of ellip-
soid discrete distribution and again under box discrete distri-
bution by distributionally robust optimization. Zymler et al.
[23] studied the tractable approximations of joint chance con-
straints under second-order moment information by robust
distributional optimization.

	e above researches applied robust optimizationmethod
to di�erent 
elds under box, budgeted, and ellipsoidal
uncertainty sets and built safe approximations of chance
constraints under box, budget, box + budget, box + ball,
and ellipsoidal uncertainty sets, none of which are based on
box + ellipsoidal set or box + generalized budgeted set. In
this paper, we focus on an ambiguous P-model under box +
generalized budgeted and box + ellipsoidal uncertainty sets.
	en, we utilize robust optimization approach to build the
safe tractable approximations of the chance constraints for
our ambiguous P-model under box + generalized budgeted
and box + ellipsoidal uncertainty sets, respectively, to resist
computationally intractable problem of chance constraints.

To illustrate the e�ciency of the ambiguous probability
model, we present a numerical example based on portfo-
lio selection problem. Portfolio optimization is to allocate
limited capital on the available 
nancial assets to achieve a

trade-o� between risk and return. 	ere are a lot of studies
on portfolio selection problems. For example, Bai and Liu
[24] introduced the second-order moment of fuzzy variables
and constructed a class of mean-moment fuzzy portfolio
optimizationmodels. Liu et al. [25] studied portfolio selection
problem under credibilistic CVaR criterion. Bruni et al. [26]
proposed the exact and approximate stochastic dominance
strategies for portfolio selection. Ling and Xu [27] explored
robust portfolio selection models under a “marginal + joint”
ellipsoidal uncertainty set. G�̈lpinar and Canako�lu [28]
considered a portfolio selection problem by robust optimiza-
tion approach under temperature uncertainty using scenario-
based as well as symmetric ellipsoidal and asymmetric uncer-
tainty sets. Gregory et al. [29] evaluated the cost of robustness
for the robust counterpart to the maximum return portfolio
optimization problem under uncertain returns varying in
the ellipsoidal uncertainty sets. Unlike these documents, we
utilize robust optimization approach to model a portfolio
selection problem under the uncertain return rates varying
in the box + ellipsoidal and box + generalized budget
uncertainty sets.

	e main contributions of this paper include the follow-
ing aspects. Firstly, we focus on an ambiguous P-model and
deduce its robust counterpart under two re
ned uncertainty
sets: box + generalized budgeted set and box + ellipsoidal
set that are less conservative than unre
ned uncertainty
sets. Secondly, we utilize robust optimization approach to
build the safe tractable approximations of the ambiguous P-
model in the case of box + generalized budgeted and box +
ellipsoidal uncertainty sets, respectively. 	is transformation
reduces greatly computational complexity and makes the
application of our procedure more understandable. 	irdly,
the e�ectiveness of proposed ambiguous P-model is demon-
strated through a portfolio selection problem.

	e remainder of this paper is organized as follows.
In Section 2 we introduce a kind of ambiguous P-model.
Section 3 describes the safe approximations of chance con-
straints for the ambiguous P-model under di�erent uncer-
tainty sets. In Section 4we present a numerical example about
portfolio selection problem to illustrate the e�ciency of the
proposed model. Section 5 concludes the paper.

2. General Formulation of
Ambiguous P-Model

	e 
rst formulation of P-model was presented by Charnes
and Cooper [30]. Charnes and Cooper [31] and Charnes
and Kirby [32] further discussed some special P-models in
chance-constrained programming. 	ere are some applica-
tions of P-model like communications, weather forecasts, and
mass production under an exact speci
cation of the probabil-
ity distribution.

In real-world problems, the exact probability distribution
information of uncertain parameter is o�en unavailable.
Many researchers considered the imprecise probability in the
existing literature. For example,Walley [33] stated the general
imprecise probability as well as its application in statistical
reasoning. Walley et al. [34] provided general algorithms
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for making inferences from any 
nite collection of (possibly
imprecise) conditional probabilities. Cozman andWalley [35]
considered the existence of imprecise probability. Di�erent
from works discussed above, we focus on an ambiguous P-
model where the true distribution is only partially known
and belongs to a given family of distributions. 	e general
formulation of the ambiguous P-model is the following:

min �
s.t. Pr(�,�)∼� {��� + 	 ≤ �} ≥ 1 − �, ∀� ∈ ℘

Pr(�� ,��)∼�� {��	 � ≤ �	} ≥ 1 − �	,∀� = 1, 2, . . . , �, �	 ∈ ℘	.
(1)

In model (1), � ∈ R

 is the vector of decision variables,

and �, �	 ∈ R

 and 	, �	 ∈ R form the chance constraints.

	e objective function is to minimize the probability level� ∈ (0, 1). Parameter �	 ∈ (0, 1) is a prespeci
ed small
tolerance and � is a known constant. Pr(�,�)∼� and Pr(�� ,��)∼��
are the probabilities associated with the distributions � and�	 that belong to the given families ℘ and ℘	 of distributions,
respectively. 	e possible values of the data (�, 	), (�	, �	) are
varying in given uncertainty sets. 	e uncertainty sets are
parameterized, in an a�ne way, by perturbation vectors � =(�1, �2, . . . , ��) and �	 = (�1, �2, . . . , ���) varying in given
perturbation sets� and�	, respectively.	erefore, the bodies
of the chance constraints within model (1) can be written as

��� + 	 ≤ �,
U = {[�; 	] = [�0; 	0] + �∑

=1
� [�; 	] : ∀� ∈ �} , (2)

��	 � ≤ �	,
U	 = {[�	; �	] = [�0	 ; �0	 ] + ��∑

ℎ=1
�ℎ	 [�ℎ	 ; �ℎ	 ] : ∀�	 ∈ �	} ,

∀� = 1, 2, . . . , �,
(3)

where [�; 	; �	; �	] represent basic perturbations from the
nominal data [�0; 	0; �0	 ; �0	 ].

We reformulate model (1) as follows:

min �
s.t. Pr�∼� {� : [�0]� � + �∑

=1
� [�]� � + 	0 + �∑

=1
�	 > �} ≤ �,

∀� ∈ ℘, � ∈ �
Pr��∼�� {�	 : [�0	 ]� � + ��∑

ℎ=1
�ℎ	 [�ℎ	 ]� � > �0	 + ��∑

ℎ=1
�ℎ	 �ℎ	 }

≤ �	, ∀�	 ∈ ℘	, �	 ∈ �	, � = 1, 2, . . . , �.

(4)

	e ambiguous P-model is a signi
cant tool for model-
ing the real-world optimization problems with uncertainty.
However, the model faces the challenge of computing the

optimal solution when the probability distributions are par-
tially known. In order to build computationally tractable
reformulation of the model, it is necessary to deal with the
following chance constraints:

Pr�∼� {� : [�0]� � + �∑
=1

� [�]� � + 	0 + �∑
=1

�	 > �}
≤ �, ∀� ∈ ℘, � ∈ �, (5)

Pr��∼�� {�	 : [�0	 ]� � + ��∑
ℎ=1

�ℎ	 [�ℎ	 ]� � > �0	 + ��∑
ℎ=1

�ℎ	 �ℎ	 }
≤ �	, ∀�	 ∈ ℘	, �	 ∈ �	.

(6)

	ere are several challenging aspects of solving chance
constraints [16]. (i) Due to the ambiguous probability dis-
tributions, it is di�cult to formulate an equivalent deter-
ministic constraint for chance constraints. (ii) It is not
easy to check the feasibility of chance constraints. (iii) 	e
feasible region of chance constraints is o�en nonconvex.
Generally, there are some types of approximation techniques
of chance constraints used in the literature: sampling based
approach [36] and analytical approximation approach [37].
	is paper chooses an implicit way to treat stochastic uncer-
tainty models by replacing the chance constraints with their
computationally tractable safe approximations. In [16], the
safe approximation was de
ned as follows.

De�nition 1 (see [16]). Let [�; 	]�=0,�, � be the data of chance
constraints (5), and let  be a system of convex constraints on� and additional variables V. One says that  is a safe convex
approximation of chance constraints (5), if the � component
of every feasible solution (�, V) of  is feasible for the chance
constraint. If the convex constraints forming  are e�ciently
computable, then the safe approximating program is called
computationally tractable.

3. Safe Approximations of Chance Constraints

In this section, we utilize a robust optimization method
to extend the proposed ambiguous P-model into a robust
formulation under box + generalized budgeted and box +
ellipsoidal perturbation sets.

Nowwe employ robust optimizationmethod to construct
the safe approximations of chance constraints (5) and (6)
under box + generalized budgeted and box + ellipsoidal per-
turbation sets, respectively. In Section 3.1 we give a detailed
approximation process of constraint (5). Here we assume that
all distributions satisfy the following properties, which was
also considered by Nemirovski and Shapiro [37]:(�1). Random variables �, ! = 1, . . . , ", are independent.(�2). 	e distributions � of the components � are such
that∫ exp {�$} d� ($) ≤ exp {max [&+ �, &− �] + 12'2 �2} ,

∀� ∈ R, (7)

with known constants &+ ≥ &− and ' ≥ 0.
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Without loss of generality, we assume &+ = &− = 0 in this
paper.

3.1. �e Safe Approximation under Box + Generalized Bud-
geted Perturbation Set. In the subsection, we are about to 
nd
the safe approximations of chance constraints (5) and (6) with
box + generalized budgeted perturbation set.

First of all, we set out to 
nd the RC of (2) and (3) under
box + generalized budgeted perturbation set.

Set� as the intersection of the box and generalized budget
centered at the origin:�

= {� ∈ R
� : −1 ≤ � ≤ 1, �∑

=1

-------- �'
-------- ≤ /, ! = 1, . . . , "} , (8)

where ' > 0 and 1 ≤ / ≤ " are parameters.

Here the conic representation becomes

� = {� ∈ R
� : 31� + 41 ∈ K

1, 32� + 42 ∈ K
2} , (9)

where

(i) 31� ≡ [�; 0], 41 = [0�×1; 1], and K
1 = {(6, �) ∈ R

� ×
R : � ≥ ‖6‖∞}, whence K1∗ = {(6, �) ∈ R

� × R : � ≥‖6‖1}, which is referred to as the cone dual to K1;

(ii) 32� = [∑−1 �; 0] with ∑ = Diag{'1, . . . , '�} that rep-
resents the diagonal matrix, 42 = [0�×1; /] and K

2 =
K
1
∗, whence K

2
∗ = K

1.

Setting 91 = [<1; ?1] ∈ K
1
∗, 92 = [<2; ?2] ∈ K

2
∗ with one-

dimensional ?1, ?2 and "-dimensional <1, <2, inequality (2)
becomes the following system of constraints in variables ?1,?2, <1, <2, �:
41?1 + 42?2 + [�0]� � + 	0 ≤ �,

(31<1 + 32<2) = −	 − [�]� �,
! = 1, . . . , ",BBBB<1BBBB1 ≤ ?1 [⇐⇒ [<1; ?1] ∈ K

1
∗] ,BBBB<2BBBB∞ ≤ ?2 [⇐⇒ [<2; ?2] ∈ K
2
∗] .

(10)

	ese are equivalent to the following formulations:

?1 + /?2 + [�0]� � + 	0 ≤ �,
(<1 + Σ−1<2) = −	 − [�]� �, ! = 1, . . . , ",BBBB<1BBBB1 ≤ ?1 [⇐⇒ [<1; ?1] ∈ K

1
∗] ,BBBB<2BBBB∞ ≤ ?2 [⇐⇒ [<2; ?2] ∈ K
2
∗] .

(11)

For every feasible solution to the system, we have ?1 ≥ ?1 ≡‖<1‖1, ?2 ≥ ?2 ≡ ‖<2‖∞. 	e solution obtained is still feasible
when replacing ?1, ?2 with ?1, ?2. Based on the above reasons,
we can eliminate the variables ?1, ?2 from this system. 	e
reduced system in variables �, <1, <2 readsBBBB<1BBBB1 + / BBBB<2BBBB∞ + [�0]� � + 	0 ≤ �,

(<1 + Σ−1<2) = −	 − [�]� �,
! = 1, . . . , ".

(12)

Since � − HIJ�$ ‖<	‖� = ∑�=1(‖(<	)‖�)1/� (1 ≤ � < ∞) and‖<	‖∞ = max‖(<	)‖, the simpli
ed formulations are given by

�∑
=1

----(<1)---- + /max


----(<2)---- + [�0]� � + 	0 ≤ �,
(< + Σ−1<2) = −	 − [�]� �, ! = 1, . . . , ".

(13)

For the sake of presentation, we obtain the following formu-

lation by J = <, M = Σ−1<2:
�∑
=1

----J---- + /max


----'M---- + [�0]� � + 	0 ≤ �, (14a)

J + M = −	 − [�]� �,
! = 1, . . . , ". (14b)

	e above process proves that ((14a) and (14b)) is the RC of
(2).

Similarly, we can write the RC of (3):

��∑
ℎ=1

-----Nℎ	 ----- + /	max
ℎ

-----'ℎ	 Oℎ	 ----- + [�0	 ]� � ≤ �0	 , (15a)

Nℎ	 + Pℎ	 = �ℎ	 − [�ℎ	 ]� �,ℎ = 1, . . . , R	. (15b)

	e RC of (2) and (3) are the explicit convex constraints.
Next, we will prove that the RC of (2) and (3) are the safe

convex approximations of the chance constraints (5) and (6),
respectively.

�eorem 2. Let the random perturbations a	ecting (2) obey(�1) and (�2), and consider the RC of (2) corresponding to the
perturbation set (8).�is RC can be equivalently represented by
the system of constraints ((14a) and (14b)). And every feasible
solution to this system ((14a) and (14b)) is feasible for the chance
constraint (5).

Proof. 	e fact that ((14a) and (14b)) represents the RC of
constraint (2) has been proved, with the perturbation set
being (8). Now let us prove that ((14a) and (14b)) is the safe
approximation of constraint (5).	at is, if (�1) and (�2) take
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place and �, J, M are feasible for ((14a) and (14b)), then � is
feasible for constraint (5). Indeed, when ‖�‖∞ ≤ 1, we have

[�0]� � + 	0 + �∑
=1

� [[�]� � + 	] > �, (16)

by (14b), the inequality can be expressed as

− �∑
=1

J� − �∑
=1

M� + [�0]� � + 	0 > �. (17)

Since ‖�‖∞ ≤ 1, we have
�∑
=1

----J---- − �∑
=1

M� + [�0]� � + 	0 > �, (18)

and then, by (14a), we have the following computational
result:

− �∑
=1

M� > /max
----'M---- , (19)

and since ‖'M‖2 ≤ √"‖'M‖∞, we have
− �∑
=1

M� > /√"√ �∑=1'2 M2 . (20)

	erefore, for every probability distribution compatible
with (�2), we have

Pr�∼� {� : � is infeasible for (2)}
≤ Pr�∼�

{{{− �∑
=1

M� > /√"√ �∑=1'2 M2}}}
≤ exp{− /22"} ,

(21)

where the last inequality is due to

Pr
{{{
�∑
=1

a� > Ω√ �∑
=1

'2 a2}}} ≤ exp{−Ω22 } (22)

shown in [16], and parameter Ω takes its value √2 ln(1/�).
	us, the quantity //√" in our present situation plays the
same role that the quantityΩ plays in this situation.

	e proof of theorem is complete.

According to	eorem 2, we can conclude

Pr��∼�� {�	 : � is infeasible for (3)}
≤ Pr��∼��

{{{− ��∑
ℎ=1

Oℎ	 �ℎ	 > /	√R	√
��∑
ℎ=1

('ℎ	 )2 (Oℎ	 )2}}}
≤ exp{− /2	2R	} .

(23)

	is implies that constraint ((15a) and (15b)) is a safe
approximation of the chance constraint (6).

Based on the analysis above, we transform our general
model (4) into a RC approximation model:

min �
s.t. �∑

=1

----J---- + √2" ln(1�)max


----'M---- + [�0]� � + 	0
≤ �
J + M = −	 − [�]� �, ! = 1, . . . , "
��∑
ℎ=1

-----Nℎ	 ----- + √2R	 ln( 1�	)max
ℎ

-----'ℎ	 Oℎ	 ----- + [�0	 ]� �
≤ �0	 , � = 1, . . . , �
Nℎ	 + Pℎ	 = �ℎ	 − [�ℎ	 ]� �,ℎ = 1, . . . , R	, � = 1, . . . , �.

(24)

	e approximation model is the convex nonlinear pro-
gramming, where every convex constraint is e�ciently com-
putable.	erefore, the above approximating programming is
computationally tractable.	e � component of every feasible
solution to the approximation is feasible for the ambiguous
P-model.

3.2. �e Safe Approximation under Box + Ellipsoidal Per-
turbation Set. In this subsection, we are about to 
nd the
safe approximations of constraints (5) and (6) with box +
ellipsoidal perturbation set.

Set � is the intersection of the box and ellipsoid centered
at the origin:

� = {{{� ∈ R
� : −1 ≤ � ≤ 1,√ �∑

=1
( �')
2 ≤ Ω, !

= 1, . . . , "}}} ,
(25)

where ' > 0 is given parameter.
Similar to the method of 
rst cast, we can respectively

write the RC of (2) and (3) as follows:

�∑
=1

----J---- + Ω√ �∑
=1

'2 M2 + [�0]� � + 	0 ≤ � (26a)

J + M = −	 − [�]� �,! = 1, . . . , ", (26b)

and

��∑
ℎ=1

-----Nℎ	 ----- + Ω	√ ��∑
ℎ=1

('ℎ	 )2 (Oℎ	 )2 + [�0	 ]� � ≤ �0	 (27a)

Nℎ	 + Pℎ	 = �ℎ	 − [�ℎ	 ]� �, ℎ = 1, . . . , R	. (27b)

We can summarize our 
nding in the following.
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�eorem 3. Let the random perturbations a	ecting (2) obey(�1) and (�2), and consider the RC of (2) corresponding to the
perturbation set (25). �is RC can be equivalently represented
by the system of conic quadratic constraints ((26a) and (26b)).
And every feasible solution to this system is feasible for the
chance constraint (5).

Proof. 	e fact is that ((26a) and (26b)) represents the RC
of constraint (2), with the perturbation set being (25). Now
let us prove that ((26a) and (26b)) is the safe approximation
of constraint (5). 	at is, if (�1) and (�2) take place and �,J, M are feasible for ((26a) and (26b)), then � is feasible for
constraint (5). Indeed, when ‖�‖∞ ≤ 1, we have

[�0]� � + 	0 + �∑
=1

� [[�]� � + 	] > �, (28)

and, by (26b), the inequality can be expressed as

− �∑
=1

J� − �∑
=1

M� + [�0]� � + 	0 > �. (29)

Since ‖�‖∞ ≤ 1, we have
�∑
=1

----J---- − �∑
=1

M� + [�0]� � + 	0 > �, (30)

and then, by (26a), we have the following computational
result:

− �∑
=1

M� > Ω√ �∑
=1

'2 M2 . (31)

	erefore, for every probability distribution compatible
with (�2), we have

Pr�∼� {� : � is infeasible for (2)}
≤ Pr�∼�

{{{− �∑
=1

M� > Ω√ �∑
=1

'2 O2}}}
≤ exp{−Ω22 } .

(32)

	e proof of theorem is complete.

Based on	eorem 3, we have

Pr��∼�� {�	 : � is infeasible for (3)}
≤ Pr��∼��

{{{− ��∑
ℎ=1

Oℎ	 �ℎ	 > Ω	√ ��∑
ℎ=1

('ℎ	 )2 (Oℎ	 )2}}}
≤ exp{−Ω2	2 } .

(33)

	at is to say, constraint ((27a) and (27b)) is a safe approxi-
mation of chance constraint (6).

	us,model (4) can be formulated as a RC approximation
model:

min �
s.t. �∑

=1

----J---- + √2 ln(1�)√ �∑=1'2 M2 + [�0]� � + 	0
≤ �
J + M = −	 − [�]� �, ! = 1, . . . , "
��∑
ℎ=1

-----Nℎ	 ----- + √2 ln( 1�	)√
��∑
ℎ=1

('ℎ	 )2 (Oℎ	 )2
+ [�0	 ]� � ≤ �0	 , � = 1, . . . , �

Nℎ	 + Pℎ	 = �ℎ	 − [�ℎ	 ]� �,ℎ = 1, . . . , R	, � = 1, . . . , �,

(34)

which is computationally tractable.

4. Robust Portfolio Selection Problem

In the section, we present a numerical example to illustrate
the e�ciency of the ambiguous P-model. All mathematical
models are solved by LINGO 11.0 on personal computer
(Intel� Core� i5-4200M 2.50GHz CPU and RAM 4.00GB)
by using the Microso� Windows 8 operating system.

4.1. Problem Description. An investor intends to invest his
capital in 20 stocks by investing proportion � in asset !,! = 1, . . . , 20. A�er a period of time to investigate the stock
market, it is initially locked in the following 20 candidate
stocks shown in Table 1. 	ere are 7 stocks selected from
Chinese stock market and 13 stocks selected from American
stock market. 	e related parameters are based on the
historical data of March 30, 2018. 	e characteristic of the
domestic market rate is low; in general, the maximum rate
of stocks should not exceed 10.1%, while the foreign market
rate has a large dri�. 	us, the appropriate choice of stocks
can bring a rich pro
t.

Each stock has a daily return rate n, ! = 1, . . . , 20. Due to
the in�uence of various economic factors and noneconomic
factors, the stock return rates constantly change. Figure 1
shows the dri� of the SHSP stock daily return rate, from
which it is easily observed that the return rate varies around
expected value. As a result, consider that the daily return
rates n, ! = 1, . . . , 20, of the twenty stocks are independent
random variables varying in the segments [� − V, � + V]
around expected values �. Table 1 summarizes these data. For
instance, the daily return raten17 of SHSP stock takes its value
in [-2.36, 24.49], where -2.36 and 24.49 represent the lowest
point and the highest point of daily return rate, respectively.

	e investor’s goal is to determine the optimal investment
proportion over the 20 available stocks as return is not less
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Table 1: Descriptive statistics for the daily return rates of 20 stocks.

Decision variable Stock Range of n(%) �(%) V(%)�1 002109 [0.40, 6.70] 3.55 3.15�2 002320 [-0.04, 9.37] 4.67 4.71�3 002745 [0.31, 7.64] 3.98 3.67�4 002780 [-0.06, 9.97] 4.96 5.02�5 002858 [0.75, 6.15] 3.45 2.70�6 300263 [-0.61, 10.09] 4.74 5.35�7 300456 [0.03, 8.68] 4.36 4.33�8 AGLE [-1.61, 16.58] 7.49 9.09�9 CDMO [-1.96, 18.76] 8.40 10.36�10 HATR [-1.92, 17.79] 8.04 9.76�11 IDN [-0.89, 10.88] 5.00 5.89�12 INNT [-1.09, 14.01] 6.46 7.55�13 JNP [-2.21, 21.35] 9.57 11.78�14 JTPY [-1.08, 12.43] 4.68 6.69�15 LENS [-1.05, 11.03] 4.99 6.04�16 NES [-1.06, 12.58] 5.46 6.82�17 SHSP [-2.36, 24.49] 11.07 13.43�18 SRNE [-1.12, 15.08] 6.98 8.10�19 STTO [-1.68, 16.81] 7.57 9.24�20 ZN [-2.05, 20.20] 9.10 11.11

Figure 1: 	e return rate of SHSP.

than a predetermined value. To help the investor make his
mind, we can set up the following model:

min �
s.t. Pr{ 20∑

=1
(n + 1) � ≥ �} ≥ 1 − �, ∀� ∈ ℘

20∑
=1

� = 1, � ≥ 0, ! = 1, . . . , 20,
(35)

where � is the predetermined value, given in Sections 4.2
and 4.3, and � is the risk level. Because the rate n takes its
value in [� − V, � + V] around expected values �, it is
natural to assume that the natural parameterization of the
uncertain return rate is n = � + V�, ! = 1, . . . , 20. Under the
assumption of the uncertain returns, the chance constraint of
model (35) can be rewritten as follows:

Pr{ 20∑
=1

[(� + 1) + �V] � ≥ �} ≥ 1 − �, ∀� ∈ ℘. (36)

For the sake of presentation, we introduce symbol � which
is the summation of column vectors �0, �1, . . . , �20 with
dimension 20; i.e., � = �0 + ∑20=1 ��. 	us, model (35) is
equivalent to the following programming:

min �
s.t. Pr�∼�

{{{[�0 + 20∑
=1

��]� � ≥ �}}} ≥ 1 − �,
∀� ∈ ℘

20∑
=1

� = 1, � ≥ 0, ! = 1, . . . , 20,
(37)
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Table 2: Optimal results for di�erent parameters, � =1.02.
' 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0�1 0.002 0.001 0.002 0.004 0.373 − − − 0.070 0.079�2 0.001 0.001 0.001 0.009 0.028 0.002 0.011 0.127 0.002 0.002�3 0.002 0.001 0.002 0.006 − 0.015 0.002 0.001 0.002 0.001�4 − − 0.119 0.022 0.012 − − 0.116 − −�5 0.002 0.001 0.002 0.003 − 0.002 0.002 0.001 0.002 0.002�6 0.309 0.035 0.015 0.033 0.009 − − 0.105 0.041 0.094�7 0.001 0.001 0.002 0.007 − 0.002 0.002 0.001 0.002 0.001�8 0.044 0.071 0.066 0.069 − − − 0.063 0.074 0.064�9 0.040 0.142 0.058 0.061 0.058 0.166 0.168 0.055 0.066 0.056�10 0.042 0.076 0.062 0.064 0.082 0.176 0.193 0.059 0.070 0.060�11 0.049 0.016 0.028 0.095 0.009 − − 0.096 0.031 0.098�12 0.053 0.057 0.079 0.078 − − − 0.004 0.090 0.079�13 0.036 0.080 0.051 0.053 0.083 0.146 0.148 0.049 0.058 0.050�14 0.039 − 0.090 0.061 − − − − 0.017 −�15 0.050 0.015 0.101 0.101 0.008 − − 0.095 0.112 0.097�16 0.049 0.017 0.086 0.093 0.144 − − 0.002 0.099 0.085�17 0.115 0.124 0.045 0.047 0.073 0.151 0.130 0.043 0.051 0.043�18 0.051 0.070 0.074 0.080 − − − 0.071 0.083 0.072�19 0.043 0.160 0.064 0.059 0.033 0.186 0.188 0.062 0.071 0.063�20 0.072 0.133 0.054 0.057 0.088 0.155 0.157 0.052 0.062 0.053
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Figure 2: Impacts of parameter ' on the risk level, � =1.02.
where �0 = [1 + �1; 1 + �2; 1 + �3; . . . ; 1 + �19; 1 + �20] and� = V ⋅ [0−1,1; 1; 020−,1], 1 ≤ ! ≤ 20.
4.2. Numerical Results with Z = Box+ Generalized Budget.
We validate the RC approximation of model (37) with box
+ generalized budgeted perturbation set (8) for the portfo-
lio selection problem in this subsection. 	e resulting RC
approximation can be mathematically represented as

min �
s.t. − 20∑

=1

----J---- − √2 × 20 ln(1�) max
1≤≤20

----'M----
+ 20∑
=1

(� + 1) � ≥ �

J + M = V�,
20∑
=1

� = 1, � ≥ 0, ! = 1, . . . , 20.
(38)

For the sake of presentation, assume that the parameters' are equal for each ! inmodel (38). Solving the abovemodel,
the optimal investment proportion and minimum risk level
are shown in Table 2 and Figure 2 under the parameter �
=1.02.

By Table 2, if the parameter ' takes its value 1, which
corresponds to the usual box + budget uncertainty set,
the portfolio selection includes all the stocks except the
4th and 14th ones. If the parameter ' takes its value as
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Table 3: Optimal results for di�erent return, '=0.3.� 1.00 1.01 1.02 1.03 1.04 1.05 1.06�1 0.001 0.001 0.002 − − 0.010 −�2 0.001 0.001 0.001 − − − −�3 0.001 0.001 0.002 − − − 0.012�4 0.163 0.263 0.119 − − 0.142 0.052�5 0.002 0.001 0.002 − − − −�6 0.031 0.007 0.015 − − 0.006 0.007�7 0.001 0.001 0.002 − − − 0.001�8 0.077 0.075 0.066 0.154 0.148 0.079 0.098�9 0.073 0.070 0.058 0.135 0.132 0.076 0.078�10 0.078 0.074 0.062 0.143 0.141 0.081 0.091�11 0.040 − 0.028 − − 0.038 0.047�12 0.075 0.096 0.079 − − 0.100 0.099�13 0.065 0.062 0.051 0.119 0.105 0.067 0.075�14 0.017 0.002 0.090 − − 0.003 −�15 0.036 0.019 0.101 − − 0.035 0.044�16 0.050 0.034 0.086 − − 0.059 0.061�17 0.056 0.054 0.045 0.163 0.092 0.059 0.066�18 0.081 0.070 0.074 0.110 0.158 0.092 0.093�19 0.076 0.075 0.064 0.109 0.100 0.082 0.096�20 0.075 0.094 0.054 0.067 0.124 0.069 0.080
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Figure 3: Impacts of return � on the risk level, '=0.3.
0.1, 0.2, . . . , 0.9, respectively, the recommended investment
polices change evidently. For example, when the parameter' =0.1, the investment proportion in the asset 14 is 0.039,
while the investment proportions in asset 14 corresponding
to the parameters 0.3, 0.4, and 0.9 are 0.09, 0.061, and 0.017,
respectively. 	e assets 2 is always invested under di�erent
parameters. As a consequence, under di�erent parameters,
the recommended investment proportions are di�erent.With
di�erent parameters, even if some stocks are always invested,
the investment proportions are di�erent.

Under the undesired return �=1.02, the impacts of param-
eters on the risk level are plotted in Figure 2, where the
horizontal axis corresponds to the parameter and the vertical
axis corresponds to the risk level. From Figure 2, it is easily
found that the optimal value �may be larger or smaller under

box + generalized budget uncertainty set (' ̸= 1.0) than the
optimal value under box + budget uncertainty set (' = 1.0).
	is implies the box + generalized budgeted uncertainty set
is less conservative than box + budgeted uncertainty set.

Next we analyze the e�ects of the � on optimal invest-
ment proportion and risk level with given parameter '=0.3,! = 1, . . . , 20. 	e computational results are shown in
Table 3 and Figure 3. 	e computational results demonstrate
that the recommended investment proportions are di�erent
under di�erent return �. For example, the investor is not
recommended to invest the asset 16 under the return 1.03
and 1.04, while the asset 16 is recommended under the
return 1.00, 1.01, 1.02, 1.05, and 1.06.Moreover, the investment
proportions are di�erent even if the asset 16 is always
invested. As far as the minimum risk is concerned, it is a



10 Mathematical Problems in Engineering

0
0.008

0.034

0.05

0.074

0.1

0.117

0.15

0.187
0.2

ri
sk

 le
ve

l

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.1

parameter values

Figure 4: Impacts of parameter ' on the risk level, � =1.03.
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Figure 5: Impacts of return � on the risk level, '=0.5.
monotonic trend of the return. 	at is, with the reduction
of the minimum acceptable return, the minimum risk level
decreases.

4.3. Numerical Results with Z = Box + Ellipsoid. We discuss
the RC approximation of model (37) with box + ellipsoidal
perturbation set (25) for the portfolio selection problem
in this subsection. 	e resulting RC approximation can be
mathematically represented as

min �
s.t. − 20∑

=1

----J---- − √2 ln(1�)√ 20∑=1'2 M2 +
20∑
=1

(� + 1) �
≥ �
J + M = V�,

20∑
=1

� = 1, � ≥ 0, ! = 1, . . . , 20.

(39)

For simplicity, assume that the parameters ' are equal
for each ! in model (39). Solving the model, the impacts of
parameters on the risk levels are plotted in Figure 4 when
setting the undesired return � as 1.03. From Figure 4, if the
parameter ' takes its value 1, which corresponds to the usual
box + ball uncertainty set, the optimal risk level is 0.187. If the
parameter ' takes its value as 0.1, 0.2, . . . , 0.9, respectively,
the associated risk level increases evidently. 	is shows the
di�erent risk levels under di�erent parameters that in�uence
the size of the uncertainty set. At the same time, the optimal
risk levels under parameter ' = 0.1, 0.2, . . . , 0.9, respectively,
are less than the risk value of parameter '=1, ! = 1, . . . , 20,
which shows that box + ellipsoidal uncertainty set is less
conservative than box + ball uncertainty set. 	e impacts of
parameters on the risk level are plotted in Figure 5 under the
adjustable parameter' = 0.5. It is found that the risk level is a
monotonically increasing function of the return; i.e., a smaller
return leads to a smaller risk level.

	e optimal investment proportions for di�erent param-
eters are provided in Tables 4 and 5. Table 4 reports the
di�erent portfolio under parameter �=1.03 for di�erent '. It
is easily checked that the resulting portfolio selections are
also di�erent as we change �. Even if some stocks are always



Mathematical Problems in Engineering 11

Table 4: Optimal results for di�erent parameters, � =1.03.
' 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0�1 0.002 0.001 0.023 0.048 0.052 0.049 0.046 0.054 0.049 0.051�2 0.001 0.001 0.066 0.065 0.071 0.065 0.073 0.070 0.066 −�3 0.001 0.001 0.053 0.063 0.068 0.065 0.068 0.070 0.063 0.068�4 0.012 − 0.078 0.067 0.034 0.068 − − 0.068 0.072�5 0.002 0.001 0.019 0.053 0.055 0.052 0.044 0.060 0.051 0.057�6 0.010 − 0.056 0.053 0.057 0.053 0.058 0.055 0.053 0.056�7 0.001 0.001 0.058 0.063 0.068 0.064 0.068 0.070 0.063 0.067�8 0.008 0.058 0.050 0.047 0.051 0.047 0.052 0.050 0.047 0.050�9 0.007 0.105 0.047 0.044 0.046 0.043 0.048 0.046 0.044 0.047�10 0.007 0.165 0.049 0.046 0.049 0.046 0.050 0.049 0.046 0.049�11 0.009 0.005 0.059 0.050 0.026 0.050 0.054 0.053 0.050 0.054�12 0.009 0.037 0.056 0.053 0.057 0.053 0.058 0.056 0.053 0.056�13 0.007 0.136 0.044 0.041 0.042 0.041 0.045 0.044 0.041 0.044�14 0.006 − 0.033 0.033 0.035 0.032 0.038 0.034 0.033 0.035�15 0.009 0.005 0.057 0.047 0.051 0.047 0.051 0.050 0.047 0.051�16 0.008 0.010 0.053 0.046 0.049 0.046 0.050 0.048 0.046 0.049�17 0.102 0.135 0.043 0.039 0.040 0.038 0.042 0.041 0.039 0.042�18 0.009 0.052 0.060 0.053 0.057 0.052 0.057 0.056 0.053 0.056�19 0.008 0.058 0.052 0.046 0.050 0.046 0.051 0.049 0.047 0.050�20 0.782 0.229 0.046 0.043 0.044 0.043 0.047 0.046 0.043 0.046

Table 5: Optimal results for di�erent return, '=0.5.� 1.00 1.01 1.02 1.03 1.04 1.05 1.06�1 0.002 0.002 0.002 0.052 − − −�2 0.147 0.096 0.081 0.071 0.045 − −�3 0.002 0.002 0.096 0.068 − − −�4 − 0.097 0.079 0.034 − − −�5 0.002 0.002 0.002 0.055 − − −�6 0.098 0.089 0.065 0.057 0.048 − −�7 0.002 0.002 0.084 0.068 0.018 − −�8 0.055 0.050 0.042 0.051 0.078 0.104 0.099�9 0.047 0.048 0.041 0.046 0.075 0.110 0.123�10 0.049 0.047 0.044 0.049 0.078 0.110 0.118�11 0.085 0.079 0.057 0.026 0.054 − −�12 0.066 0.060 0.050 0.057 0.080 0.089 0.044�13 0.046 0.041 0.037 0.042 0.074 0.114 0.141�14 0.054 0.054 0.047 0.035 0.029 − −�15 0.085 0.070 0.055 0.051 0.051 − −�16 0.067 0.064 0.050 0.049 0.058 0.034 −�17 0.037 0.038 0.033 0.040 0.073 0.116 0.154�18 0.062 0.064 0.052 0.057 0.084 0.104 0.082�19 0.047 0.051 0.041 0.050 0.078 0.104 0.101�20 0.046 0.044 0.040 0.044 0.076 0.115 0.138

invested, the investment proportions are also di�erent. For
example, when the parameter ' is 0.1, the investment pro-
portion in asset 20 is 0.782, while the investment proportion
in asset 20 is 0.229 under the parameter '=0.2. Furthermore,
Table 5 displays the in�uence of � on optimal investment
proportions with given parameter '=0.5, ! = 1, . . . , 20, from

which it is observed that the resulting portfolio selections are
also di�erent as we change �. Although the asset 20 is always
invested, the investment proportions are di�erent.

	e numerical experiments demonstrate that ambiguous
P-model can provide diversi
cation resulting portfolios to
assets.When the parameter ' and undesired return � change,
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Table 6: Model comparison results under � = 1.02 and '=1.
� Nominal

solutions
Ellipsoidal
solutions

Generalized
budgeted
solutions

� Nominal
solutions

Ellipsoidal
solutions

Generalized
budgeted
solutions�1 0.08510695 0.08783705 0.07935254 �11 0.04711347 0.047479 0.09826442�2 0.06557282 0.06475769 0.00158102 �12 0.04262804 0.04291164 0.07936592�3 0.0800917 0.077931940 0.00145014 �13 0.02972075 0.0298708 0.04955437�4 0.06399392 0.06454947 − �14 0.03262398 0.03289855 −�5 0.1083665 0.1056714 0.00161524 �15 0.04465311 0.04500051 0.09664661�6 0.0521551 0.05258966 0.09423644 �16 0.04052862 0.04081349 0.08492115�7 0.06857892 0.06743896 0.00147484 �17 0.02739742 0.0275358 0.04346616�8 0.0361992 0.03638232 0.06421459 �18 0.04135364 0.04152863 0.07198850�9 0.03248739 0.03255628 0.05634589 �19 0.03554395 0.03586811 0.06316887�10 0.03454552 0.03473147 0.05981051 �20 0.03133897 0.03164698 0.05254279

respectively, the risk level and invested stocks vary accord-
ingly. Even if the invested stocks are the same, the invested
proportions to them are usually di�erent. As a result, the
results illustrate that RC approximations of the ambiguous
P-model constitute a new method for modeling portfolio
selection problem with the uncertain return rates, which can
provide diversi
cation investments for decision makers.

4.4. Comparison Study with Nominal Stochastic Model. In
order to evaluate the advantage of the proposed model, com-
parison study with nominal stochastic model is conducted.
Under (�1) and (�2), we consider that �, ! = 1, . . . , ",
are independent Gaussian random variables.	e expectation
and variance of the random variable � are & and ', which
was proved in [16]. Without loss of generality, we assume
the ' = 1 as well as & = 0 shown in (�2). 	erefore, the
uncertain return rate n = � +V� obeys a Gaussian distribu-
tion with expectation � and variance V, ! = 1, . . . , ". Based
on the above analysis, the nominal stochastic model can be
written as

min �
s.t. Pr{ 20∑

=1
(n + 1) � ≥ �} ≥ 1 − �,

20∑
=1

� = 1, � ≥ 0, ! = 1, . . . , 20.
(40)

By standardization of Gaussian distribution, model (40)
is equivalent to the following form:

min �
s.t. Φ(� − ∑20=1 (� + 1) �√∑20=1 �2 '2 ) ≤ �,

20∑
=1

� = 1, � ≥ 0, ! = 1, . . . , 20.
(41)

Since the standard normal distribution function Φ(⋅) in
model (41) is monotonic increasing, we only solve the
following equivalent model:

min
� − ∑20=1 (� + 1) �√∑20=1 �2 '2

s.t. 20∑
=1

� = 1, � ≥ 0, ! = 1, . . . , 20.
(42)

A�er that, we can obtain � according to Gaussian distribution
table.

As far as optimal solutions are concerned, the comparison
results with � = 1.02 and '=1 are shown in Table 6. It is
evident that stochastic solutions are di�erent from robust
solutions under the box + ellipsoidal and box + generalized
budgeted uncertainty sets. From Table 6, we can observe
that the invested assets and investment proportions are
both di�erent between nominal stochastic model and robust
model under box + generalized budgeted uncertainty set. For
example, the assets 4 and 14 are not invested for robust model
under the box + generalized budgeted uncertainty set, while
the assets 4 and 14 are invested for nominal stochastic model.
Furthermore, we can observe that the investment proportions
are di�erent even if the assets are always invested between
stochastic and robust models. For example, the investment
proportion in asset 2 is 0.06557282 for nominal stochastic
model, while the investment proportions in asset 2 are
0.06475769 and 0.00158102 for robust model under the box +
ellipsoidal and box + generalized budgeted uncertainty sets,
respectively. 	erefore, uncertain distribution can impact
the optimal strategies to a certain extent, which e�ectively
illustrates that uncertainty cannot be ignored.

With respect to optimal value, we further investigate the
comparison results on risk level between nominal stochastic
model and robust model. From Figure 6, it can be found
that risk level of nominal stochastic model is evidently
less than those of the robust models under the box +
ellipsoidal and box + generalized budgeted uncertainty sets.
	is phenomenon is perfectly consistent with the theoretical
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Figure 6: Robust risk level versus stochastic risk level, '=1.
facts. 	is is principally because of the existence of uncertain
distribution. Although the robust models incur higher risk
level, they can resist the uncertainty better than nominal
stochastic model. In real-world problem, the exact distribu-
tion information is o�en unavailable, which drives us to study
the robust optimization model.

5. Conclusions

In the present paper, a kind of ambiguous P-model was
addressed to cope with the uncertainty. We assumed that
the uncertain parameters possessed two special properties
and varied in the box + generalized budgeted and box +
ellipsoidal uncertainty sets. Due to computational challenge
of the ambiguous P-model, we built the safe tractable approx-
imations of the model under two re
ned uncertainty sets
by robust optimization approach. 	e original model thus
was transformed into the nonlinear programming, which can
be solved by the common so�ware such as Lingo. To verify
the power of ambiguous P-model, we considered a portfolio
selection problemwith uncertain return rates.	e numerical
experiments showed that ourmodel can e�ectively be applied
to portfolio selection problem under uncertain return rates
varying in the re
ned uncertainty sets. In addition, our
re
ned uncertainty sets were less conservative than the
unre
ned uncertainty sets when parameter ' took some
certain values, and provided more diversi
ed investment
decision for investors. By comparison study with nominal
stochastic model, it was proved that uncertain information
had a great in�uence on the optimal decisions. 	at is to
say, the uncertain information cannot be ignored and our
ambiguous P-model can resist the uncertainty better than the
nominal stochastic model.

Several extensions of this work are possible. For example,
the robust chance constraint model should further consider
the safe convex approximation under other conditions such
as known variance, asymmetry, and unimodality, as well as
known range, mean, and variance. In addition to portfolio
selection problem, we can apply further ambiguous P-model

to study other domains: emergency supplies prepositioning
and allocation problem [38], urban sustainable development
and management, water resource management, supply chain
network design problem [39], and so on.
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