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This paper proposes a methodology to generate a robust logistics plan that can mitigate demand uncertainty

in humanitarian relief supply chains. More specifically, we apply robust optimization (RO) for dynamically

assigning emergency response and evacuation traffic flow problems with time dependent demand uncertainty.

This paper studies a Cell Transmission Model (CTM) based system optimum dynamic traffic assignment

model. We adopt a min-max criterion and apply an extension of the RO method adjusted to dynamic opti-

mization problems, an Affinely Adjustable Robust Counterpart (AARC) approach. Simulation experiments

show that the AARC solution provides excellent results when compared to deterministic solution and sam-

pling based stochastic programming solution. General insights of RO and transportation that may have

wider applicability in humanitarian relief supply chains are provided.
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1. Introduction

Over the past three decades, the number of reported disasters have risen threefold. Roughly, 5

billion people have been affected by disasters with an estimated damages of about 1.28 trillion

dollars (Guha-Sapir et al. 2004). Although most of these disasters could not have been avoided,

significant improvements in death counts and reported property losses could have been made by

efficient distribution of supplies. The supplies here could mean personnel, medicine and food which

are critical in emergency situations. The supply chains involved in providing emergency services in
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the wake of a disaster are referred to as Humanitarian Relief Supply Chains. Humanitarian Relief

supply chains are formed within short time period after a disaster with the government and the

NGO’s being the major drivers of the supply chain. Clearly, emergency logistics is an important

component of humanitarian relief supply chains.

Most literature in emergency logistics focuses on generating transportation plans for rapid dis-

semination of medical supplies inbound to the disaster hit region (Sheu 2007, Ozdamar et al. 2004,

Lodree Jr and Taskin 2008). There is, however, another aspect of emergency logistics which is

often ignored - outbound logistics. The outbound logistics considers a situation where people and

emergency supplies (e.g. medical facilities and services for special need evacuees) need to be sent

from a particular location affected by disaster within a given time horizon.

In the outbound emergency logistics, the demand of traffic flows is usually highly uncertain

and depends on a number of factors including the nature of disaster (natural/ man-made) and

time of impact. This uncertainty in the demand causes disruptions in emergency logistics and

hence disruptions in humanitarian relief supply chains leading to severe sub-optimality or even

infeasibility which may ultimately lead to loss of life and property. In order to mitigate the risk of

uncertain demand, we study the problem of generating evacuation transportation plans which are

robust to uncertainty in outgoing demand. More specifically, we solve a dynamic (multi-period)

emergency response and evacuation traffic assignment problem with uncertain demand at source

nodes.

Researchers and practitioners in the field of transportation are concerned with multi-period man-

agement problems with an inherent time dependent information uncertainty. Traditional dynamic

optimization approaches for dealing with uncertainty (e.g. stochastic and dynamic programming )

usually require the probability distribution for the underlying uncertain data to obtain expected

objectives. However, in many cases, it may be very difficult to accurately identify the distribution

required to solve a problem. Especially, this is more likely true when we are considering an evac-

uation transportation problem due to the inherent complexity and uncertainty. In addition, the
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robust solution guaranteeing the feasible evacuation plan is important since infeasible solutions

may cause the potential loss of life and property in extreme events.

We explore the potential of robust optimization (RO) as a general computational approach to

manage uncertainty, feasibility, and tractability for complex transportation problems. RO approach

has been originally developed to deal with static problems formulated as linear programming (LP)

or conic-quadratic problems (CQP), using crude uncertainty with hard constraints. It means that

uncertainty is assumed to reside in an appropriate set and RO guarantees the feasibility of the

solution within the prescribed uncertainty set by adopting a min-max approach. The RO technique

has been successfully applied in some complex and large scale engineering design and optimization

problems similar as robust control in control theory. (Ben-Tal and Nemirovski 1999, 2002).

The original RO approach considers static problems. The underlying assumption of RO is “here

and now” decisions, and all decision variables need to be determined before any uncertain data are

realized. This is not typical in many transportation management problems that have the multi-

period nature. In multi-period transportation problems such as dynamic traffic assignment, “wait

and see” decisions are made, which means some decision variables are “adjustable” and affected

by part of the realized data. Recognizing the need to account for such dynamics, Ben-Tal et al.

(2004) have extended the RO approach and developed an Affinely Adjustable Robust Counterpart

(AARC) approach to consider “wait and see” decisions.

To demonstrate the use of AARC to emergency transportation management settings, in this

paper we consider a system optimum dynamic traffic assignment (SO-DTA) problem. The main

contributions of this paper are summarized as follows.

• This paper develops a robust optimization framework for system optimum dynamic traffic

assignment problems. The framework incorporates a linear programming (LP) formulation based

on the Cell Transmission Model (CTM) (Daganzo 1993, 1995, Ziliaskopoulos 2000) and the AARC

approach by considering dynamical adjustments to realizations of uncertainty with appropriate

uncertainty sets. The framework is converted to LP and hence computationally tractable.
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• This paper applies the proposed robust optimization framework to an emergency response and

logistics planning problem. Numerical examples are provided to illustrate the value of the robust

optimization in the context of emergency logistics and demonstrate the computational viability of

the developed framework. Simulation experiments show that the AARC solution provides excellent

results when compared to with the solutions of deterministic LP and Monte Carlo sampling based

stochastic programming.

• This paper obtains some general insights that may have wider applicability for transportation

managers: 1) A robust solution may improve both feasibility and performance when infeasibility

costs are significant. Intuitively, the usual nominal optimal solution may be not far from the robust

solution, but the usual optimal solution can perform much worse in the worst case. 2) An integration

of RO and transportation modeling will improve the generation, communication, and potential

use of uncertainty data in logistics transportation management. The intuition for this insight is

twofold. First, in many applications in transportation, the set-based uncertainty (used by RO) is

the most appropriate notion of data uncertainty. Second, computational tractability (resulting from

this set-based uncertainty and dynamic traffic flow modeling in LP formulations) lead to efficient

solutions for logistics transportation management under uncertainty.

The structure of the paper is as follows. In section 2, we provide a literature review. Section 3

presents a deterministic LP model for the CTM based SO-DTA problem. In section 4, AARC is

formulated by considering appropriate demand uncertainty sets. We study applications in evacua-

tion transportation and provide experiment results for two emergency logistics planning examples

in section 5. Section 6 concludes and discusses future work.

2. Literature Review

The DTA problem describes a traffic system with time-varying flow and has been studied substan-

tially since the seminar work of Merchant and Nemhauser (1978a,b). The main research can be

classified into four categories: mathematical programming, optimal control, variational inequality,

and simulation-based approach (see Peeta and Ziliaskopoulos (2001), Friesz and Bernstein (2000)

for a review).
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Daganzo (1993, 1995) proposed the CTM model, consisting of a set of linear difference equations,

to develop a theoretical framework to simulate network traffic. It was assumed that the best route

from origin to destination are already known to the travellers. Ziliaskopoulos (2000) relaxed this

assumption by formulating a single destination SO DTA problem as a linear program with the

decision variables being the route choices. Recently, the deterministic CTM based DTA model

has been applied to evacuation management (e.g., Tuydes (2005), Chiu et al. (2007), Xie et al.

(2010)). For example, Chiu et al. (2007) proposed a network transformation and demand modeling

technique for solving an evacuation traffic assignment planning problem using the CTM based

single destination SO DTA model.

Recognizing that deterministic demand or network characteristics are unrealistic in some set-

tings, another wave of research on DTA is modeling of stochastic properties and developing robust

solutions. Waller et al. (2001), Waller and Ziliaskopoulos (2006) addressed the impact of demand

uncertainty and the importance of robust solution. Peeta and Zhou (1999) used Monte Carlo simu-

lation to compute a robust initial solution for a real-time online traffic management system. Chance

constraint programming for the SO DTA problem is analyzed by Waller and Ziliaskopoulos (2006).

Yazici and Ozbay (2007) introduced probabilistic capacity constraint and solved the CTM based

SO DTA problem for a hurricane evacuation problem. Karoonsoontawong and Waller (2007) pro-

posed a DTA based network design problem formulated as a two stage stochastic programming and

a scenario-based robust optimization (Mulvey et al. 1995). Ukkusuri and Waller (2008) proposed

a two stage stochastic programming with recourse model to account for demand uncertainty.

Recently, robust optimization has witnessed a significant growth (Ben-Tal and Nemirovski 1998,

1999, 2000, El Ghaoui et al. 1997, 2003, Bertsimas and Sim 2003, 2004). For a summary of the state

of art in RO, please refer to Ben-Tal et al. (2009), Bertsimas et al. (2007) and references therein. RO

has been proposed to apply in network and transportation systems (Bertsimas and Perakis (2005),

Ordóñez and Zhao (2007), Atamturk and Zhang (2007), Mudchanatongsuk et al. (2008), Erera

et al. (2009), Yin et al. (2008, 2009) to name a few). Related to our work, Atamturk and Zhang

(2007) propose a robust optimization approach for two stage network flow and design. Erera et al.
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(2009) develop a two-stage robust optimization approach for repositioning empty transportation

resources. Both of the studies are in the spirit of Ben-Tal et al. (2004) where the second stage

variables are determined as recourse or recovery actions while maintaining feasibility after the

uncertain data is realized.

3. CTM for the DTA Problem

In this section, we summarize and reformulate the prior work on the deterministic linear program

(DLP) based on the traditional CTM model (Ziliaskopoulos 2000). The CTM, named by Daganzo

(1993, 1995), models freeway traffic flow using simple difference equations. It approximates the

kinematic wave model under the assumption of a piecewise linear relationship between flow and

density on the link. More formally, the following equation shows the relationship between traffic

flow, q, and density on a link, k, in a traffic network.

q = min (vk, qmax,w (kmax − k)) ,

where v is free flow velocity, kmax is maximum possible density, w is backward wave speed and

qmaxis maximum allowable flow on the link.

The LP based CTM model of Ziliaskopoulos (2000) is a simplification of the original CTM model.

In the CTM model, a segment of a freeway is decomposed into cells based on the free flow velocity

and length of discrete time step. By this division, vehicles can move only to adjacent cells in unit

time. The connectors between cells are dummy arcs indicating the direction of flow between cells.

The demand of the CTM model represents the vehicular trips for each OD pair. In other words,

each demand has its own origin and destination node in the network. The demand for each OD

pair is assumed to be known at the beginning and used as input data of the CTM model. However,

in our model, demand at the source node is uncertain.

We provide the reformulation of the deterministic LP based CTM model. The model includes

the characteristics of time-space dependent cost and an adjacent matrix. In the traditional CTM

research, it is assumed that the coefficient of cost is a constant value within the time-space network.
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Table 1 Notations

Symbol Description
=: set of time intervals, {1, .., T}
C: set of cells, {1, .., I}
CS: set of sink cells
CR: set of source cells
A: adjacency matrix representing transportation network connectivity.
ct

i: time-space dependent cost in cell i at time t
xt

i: number of vehicle contained in cell i at time t
yt

ij : number of vehicle flowing from cell i to cell j at time t
dt

i: demand generated in cell i at time t
N t

i : capacity of cell i at time t
Qt

i: inflow/outflow capacity of cell i at time t
δt

i : traffic flow parameter for cell i at time t
x̂i: initial occupancy of cell i

However, in this paper, the coefficient is assumed to be dependent on time horizon and demand

nodes. It is a more common situation and is necessary to study emergency logistics management.

An adjacency matrix A = [aij ] is defined for representing the connectivity of the cells. The value

of aij is equal to 1 if cell i is connected to cell j, otherwise aij=0.

Based on the notations in Table 1, we present the deterministic linear programming (DLP)

model:

min
x,y

∑

t∈=

∑

i∈C\Cs

ct
ix

t
i (M-DLP) (1)

subject to

xt
i −xt−1

i −
∑

k∈C

akiy
t−1
ki +

∑

j∈C

aijy
t−1
ij ≥ dt−1

i , ∀i∈C, t ∈= (2)

∑

k∈C

akiy
t
ki ≤Qt

i, ∀i∈C, t ∈= (3)

∑

k∈C

akiy
t
ki + δt

ix
t
i ≤ δt

iN
t
i , ∀i∈C, t∈= (4)

∑

j∈C

aijy
t
ij ≤Qt

i, ∀i∈C, t ∈= (5)

∑

j∈C

aijy
t
ij −xt

i ≤ 0, ∀i∈C, t ∈= (6)

x0
i = x̂i, ∀i∈C (7)

y0
ij = 0, ∀(i, j)∈C ×C (8)
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xt
i ≥ 0,∀i∈C, ∀t∈= (9)

yt
ij ≥ 0,∀(i, j)∈C ×C, ∀t∈= (10)

The cost parameter ct
i depends on time in order to give a penalty when any people cannot arrive

at the destination at the end of time horizon T. i.e.

ct
i =
{

1 i∈C\Cs, t 6= T
M i∈C\Cs, t = T,

where M is assumed to be a positive large number to represent the unsatisfied demand cost. By

using the time dependent cost parameter, the objective function measures the total cost incurred,

which consists of travel cost and penalty cost. The objective function of the LP based CTM model

(M-DLP) provides an optimistic estimate or lower bound of total cost as it simplifies the original

CTM model by Daganzo (1993, 1995) and allows vehicle holding.

The dynamics of the system is that the change of traffic level is determined by traffic flow and

demand at each node and in each time period. By letting demand be 0 everywhere except source

cells, the formulation can be generalized by Eq. (2). The total inflow into a cell is bounded by not

only the inflow capacity (Eq. (3)) but the remaining capacity of the cell (Eq. (4)). Similarly, total

output flow from a cell is limited by the outflow capacity (Eq. (5)) and the current occupancy of

the cell (Eq. (6)). It is assumed that the capacities of source and sink cells are infinite. The initial

conditions and non-negativity conditions are considered at the remaining constraints. Note that

Eq. (9) is a redundant constraint, since
∑

j∈C aijy
t
ij −xt

i ≤ 0,yt
ij ≥ 0 and aij ≥ 0 . It is evident that

0≤
∑

j∈C aijy
t
ij ≤ xt

i and the Eq.(9) can be eliminated.

4. Robust Optimization Formulation of CTM

The CTM based SO DTA problem is a generic multi-period linear programming problem. In this

section, we apply AARC methodology to deal with the uncertainty in demand and find a robust

solution for the multi-period emergency logistics problem.
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In RO approach, it is assumed that demand dt
i is unknown and it belongs to a prescribed

uncertainty set. In particular, a box uncertainty set is generally used.

dt
i ∈U b

d ≡ [dt
i, d̄

t
i] = [d̃t

i(1− θ), d̃t
i(1+ θ)],

where θ is uncertainty level and d̃t
i is nominal demand in cell i during time interval t.

In order to find a less conservative solution, we consider a joint constraint where the demands

are upper bounded. Let’s consider
∑

t∈T dt
i ≤Di,∀i∈CR, which refers to a joint budget for demand

uncertainty. This represents the situation that the total demand (
∑

t∈T dt
i) from a source node is

limited by an upper bound (Di). The box uncertainty set in conjunction with the budget uncertainty

set becomes a polyhedral uncertainty set, which can be a more realistic assumption in emergency

logistics management. Now, we have the following uncertain data set.

dt
i ∈Up

d ≡

{

dt
i : dt

i ≤ dt
i ≤ d̄t

i,
∑

t∈T

dt
i ≤Di

}

Next, a specific form of linear decision rules is assumed to convert M-DLP to AARC formula-

tion. The linear rules are used to derive a computationally tractable problem by approximating the

robust solution. We note that the solution from AARC is optimal in worst case from the predeter-

mined uncertainty set. However, there is no guarantee that the robust solution is close to optimal

in the other cases since the relationship between uncertain parameters and decision variables may

not be linear. Specifically, the adjustable control variables, yt
ij , can be represented as an affine

function of previously observed demand values, i.e., yt
ij = π−1

ijt +
∑

s∈CR

∑
τ∈It

πsτ
ijtd

τ
s , where π−1

ijt and

πsτ
ijtare non-adjustable variables and It = {0, .., t− 1}.

Along with the affine rule of control variables, the state variables also becomes a affine function

of the previously realized data, xt
i = η−1

it +
∑

s∈CR

∑
τ∈It

ηsτ
it dτ

s , by the linear structure of CTM

model.

By substituting the state and control variables, we have the following AARC formulation.

min
σ,π−1,π,η−1,η

z (M −AARC) (11)
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s.t.

∑

t∈=

∑

i∈C

ct
i(η

−1
it +

∑

s∈CR

∑

τ∈It

ηsτ
it dτ

s)≤ z, ∀dt
i ∈Ud

(η−1
it +

∑

s∈CR

∑

τ∈It

ηsτ
it dτ

s)− (η−1
it−1 +

∑

s∈CR

∑

τ∈It−1

ηsτ
it−1d

τ
s)−

∑

k∈C

aki(π
−1
kit−1 +

∑

s∈CR

∑

τ∈It−1

πsτ
kit−1d

τ
s)

+
∑

j∈C

aij(π−1
ijt−1 +

∑

s∈CR

∑

τ∈It−1

πsτ
ijt−1d

τ
s)≥ dt−1

i , ∀i∈C, t ∈=

∑

k∈C

aki(π
−1
kit +

∑

s∈CR

∑

τ∈It

πsτ
kitd

τ
s)≤Qt

i, ∀dt
i ∈Ud, i∈C, t ∈=

∑

k∈C

aki(π
−1
kit +

∑

s∈CR

∑

τ∈It

πsτ
kitd

τ
s)+ δt

i(η
−1
it +

∑

s∈CR

∑

τ∈It

ηsτ
it dτ

s)≤ δt
iN

t
i , ∀dt

i ∈Ud, i∈C, t∈=

∑

j∈C

aij(π−1
ijt +

∑

s∈CR

∑

τ∈It

πsτ
ijtd

τ
s)≤Qt

i, ∀dt
i ∈Ud, i∈C, t ∈=

∑

j∈C

aij(π−1
ijt +

∑

s∈CR

∑

τ∈It

πsτ
ijtd

τ
s)− (η−1

it +
∑

s∈CR

∑

τ∈It

ηsτ
it dτ

s)≤ 0, ∀dt
i ∈Ud, i∈C, t∈=

η−1
i0 = x̂i, ∀i∈C

π−1
ij0 = 0, ∀ (i, j)∈C ×C

π−1
ijt +

∑

s∈CR

∑

τ∈It

πsτ
ijtd

τ
s ≥ 0, ∀(i, j)∈C ×C, t∈=, dt

i ∈Ud

The formulation (M-AARC) is intractable since it is a semi-infinite program, and it can be refor-

mulated as a tractable optimization problem as shown in the Theorem 1. The minimum objective

value z, denoted as z∗
AARC , is a guaranteed upper bound value for all realization of uncertain data

under the assumption of linear dependency. The objective value, z∗
AARC , also can be interpreted as

the optimistic estimate of total travel cost in worst case, which can be lower than the optimistic

estimate from robust counterpart(RC), z∗
RC as AARC has a larger robust feasible region (Ben-Tal

et al. 2004). The decision variables of AARC are not adjustable control and state variables (yt
ij

and xt
i, respectively), but a set of coefficient of affine function of the control variables including

π−1
ijt ,π

sτ
ijt,η

−1
it and ηsτ

it . It means that the solution of AARC is the linear decision rule. Specific values

of yt
ij and xt

i are calculated after the realization of the demand at time t− 1.

Theorem 1. Given polyhedral uncertainty set, Up
d , the affinely adjustable robust counterpart of

the CTM based SO DTA problem becomes the following linear programming problem and thus

computationally tractable. Note that λ is a set of dual variables and the numerical indexes are

used for notational simplicity.



11

min
z,η,π,λ

z (M −AARC1) (12)

s.t

∑

τ∈=

∑

s∈CR

(d̄τ
sλ

11
sτ − dτ

sλ
12
sτ )+

∑

s∈CR

Dsλ
13
s ≤ z −

∑

t∈=

∑

i∈C\Cs

ct
iη

−1
it

λ11
sτ −λ12

sτ + λ13
s =

∑

t={τ+1...T}

∑

i∈C\Cs

ct
iη

sτ
it , ∀τ = {0, ..T − 1}, s∈CR

λ11
sτ −λ12

sτ + λ13
s = 0, ∀τ = {T}, s∈CR

λ11
sτ , λ

12
sτ , λ

13
s ≥ 0, ∀τ = {T}, s∈CR

∑

τ∈=

∑

s∈CR

(d̄τ
sλ

21
itsτ − dτ

sλ
22
itsτ )+

∑

s∈CR

Dsλ
23
its ≤ η−1

it − η−1
it−1 −

∑

k∈C

akiπ
−1
kit−1 +

∑

j∈C

aijπ
−1
ijt−1, ∀i∈C, t∈=

λ21
itsτ −λ22

itsτ + λ23
its = I{τ=t−1,s=i} − ηsτ

it +(ηsτ
it−1 +

∑

k∈C

akiπ
sτ
kit−1 −

∑

j∈C

aijπ
sτ
ijt−1)I{τ<t−1},

∀τ = {0...t− 1}, s∈CR, i∈C, t ∈=

λ21
itsτ −λ22

itsτ + λ23
its = 0, ∀τ = {t...T}, s∈CR, i∈C, t∈=

λ21
itsτ , λ

22
itsτ , λ

23
its ≥ 0, ∀τ = {t...T}, s∈CR, i∈C, t ∈=

∑

τ∈=

∑

s∈CR

(d̄τ
sλ

31
itsτ − dτ

sλ
32
itsτ )+

∑

s∈CR

Dsλ
33
its ≤Qt

i −
∑

k∈C

akiπ
−1
kit, ∀i∈C, t ∈=

λ31
itsτ −λ32

itsτ + λ33
its =

∑

k∈C

akiπ
sτ
kit, ∀τ = {0...t− 1}, s∈CR, i∈C, t ∈=

λ31
itsτ −λ32

itsτ + λ33
its = 0, ∀τ = {t...T}, s∈CR, i∈C, t∈=

λ31
itsτ , λ

32
itsτ , λ

33
its ≥ 0, ∀τ = {t...T}, s∈CR, i∈C, t ∈=

∑

τ∈=

∑

s∈CR

(d̄τ
sλ

41
itsτ − dτ

sλ
42
itsτ )+

∑

s∈CR

Dsλ
43
its ≤ δt

i(N
t
i − η−1

it )−
∑

k∈C

akiπ
−1
kit, ∀i∈C, t ∈=

λ41
itsτ , λ

42
itsτ , λ

43
its ≥ 0, ∀i∈C, t ∈=

∑

τ∈=

∑

s∈CR

(d̄τ
sλ

51
itsτ − dτ

sλ
52
itsτ )+

∑

s∈CR

Dsλ
53
its ≤Qt

i −
∑

j∈C

aijπ
−1
ijt , ∀i∈C, t∈=

λ51
itsτ −λ52

itsτ + λ53
its =

∑

j∈C

aijπ
sτ
ijt, ∀τ = {0...t− 1}, s∈CR, i∈C, t ∈=

λ51
itsτ −λ52

itsτ + λ53
its = 0, ∀τ = {t...T}, s∈CR, i∈C, t∈=

λ51
itsτ , λ

52
itsτ , λ

53
its ≥ 0, ∀τ = {t...T}, s∈CR, i∈C, t ∈=

∑

τ∈=

∑

s∈CR

(d̄τ
sλ

61
itsτ − dτ

sλ
62
itsτ )+

∑

s∈CR

Dsλ
63
its ≤ η−1

it −
∑

j∈C

aijπ
−1
ijt , ∀i∈C, t∈=

λ61
itsτ −λ62

itsτ + λ63
its =

∑

j∈C

aijπ
sτ
ijt − ηsτ

it , ∀τ = {0...t− 1}, s∈CR, i∈C, t∈=



12

λ61
itsτ −λ62

itsτ + λ63
its = 0, ∀τ = {t...T}, s∈CR, i∈C, t∈=

λ61
itsτ , λ

62
itsτ , λ

63
its ≥ 0 ∀τ = {t...T}, s∈CR, i∈C, t ∈=

∑

τ∈=

∑

s∈CR

(d̄τ
sλ

71
ijtsτ − dτ

sλ
72
ijtsτ )+

∑

s∈CR

Dsλ
73
ijts ≤ π−1

ijt , ∀ (i, j)∈C ×C, t∈=

λ71
ijtsτ −λ72

ijtsτ + λ73
ijts = −πsτ

ijt, ∀τ = {0...t− 1}, s∈CR, (i, j)∈C ×C, t ∈=

λ71
ijtsτ −λ72

ijtsτ + λ73
ijts = 0, ∀τ = {t...T}, s∈CR, (i, j)∈C ×C, t∈=

λ71
ijtsτ , λ

72
ijtsτ , λ

73
ijts ≥ 0, ∀τ = {t...T}, s∈CR, (i, j)∈C ×C, t ∈=

η−1
i0 = x̂i, ∀i∈C

π−1
ki0 = 0, ∀ (i, j)∈C ×C

Proof) By using the following relationship, we can reformulate each constraint affected by uncer-

tain data as an equivalent LP problem.

∑

τ∈It

ατ
i d

τ
i ≤ v ∀dt

i ∈Ud = {dt
i < dt

i < d
t

i,
∑

t∈T

dt
i ≤Di}

⇔max
dτ

i

(
∑

τ∈It

ατ
i d

τ
i )≤ v

Without loss of generality, the polyhedral uncertainty set is represented as Ad ≤ b and

Max
dτ

i

(
∑

τ∈It
ατ

i d
τ
i ) is written as (P). By applying strong duality property, we can derive an equiv-

alent constraint with dual problem (D) on the left hand side (Bertsimas and Sim 2004).

max αd≤ v (P ) ⇐⇒ min bλ≤ v (D)
s.t s.t
Ad≤ b AT λ = α
d≥ 0 λ≥ 0

Therefore, there exists λ satisfying bλ≤ v,AT λ = α and λ≥ 0 and the equivalent AARC of the

CTM based SO DTA becomes tractable.

5. Emergency Logistics Management

Emergency management is one of the best application areas for applying robust optimization due

to the uncertainty of human beings and disaster. Robust solution, especially AARC solution, can

play an important role for emergency logistics planning for several reasons. First of all, the role

of hard constraint is emphasized since the penalty cost for an infeasible solution is loss of life or
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property. Next, it is very difficult to estimate or forecast the demand model in the to-be-affected

areas due to unexpected human behavior and nature of disaster. Finally, we can take advantage

of updated or realized data on demand by employing AARC solution. When we solve M-AARC1,

the optimal coefficients of the Linear Decision Rule (LDR) are computed offline. Going online, the

actual decision variables (flows) are determined for period t by inserting the revealed uncertainties

from previous periods in the LDR. A fully online version of the method can be also implemented.

In such version, at period t only the t-period design variables are activated. The horizon is then

rolled forward and the problem is resolved after adjusting the state variables revealed in previous

periods.

In this section, an emergency logistics planning problem is considered and the meaning of demand

uncertainty sets is explained. Then, we present a summary of experiments to test the performance

of the AARC approach. The AARC solution is benchmarked against an ideal solution with com-

plete future information, deterministic LP, and sampling based stochastic programming. Two test

networks are chosen from Chiu et al. (2007) and Yazici and Ozbay (2007) for the numerical analysis.

5.1. Demand modeling

In an emergency logistics problem, a general approach to model time-varying evacuee demand is

captured by the following steps: The first step of demand modeling is calculation of total demand.

Next, demand arrival or vehicle departure rate is determined for describing a dynamic environ-

ment. For example, S-shape curve can be used for representing cumulative percentage of demand

arrival. In most studies, it is assumed that the parameters (e.g. slope) of S-curve are unknown

but deterministic value. Since the parameters can be estimated with empirical data or simulation

results, different research showed different values (Radwan et al. 1985, Lindell 2008). However, in

real world, both total number of demand and departure rate are uncertain. By considering box

uncertainty or polyhedral uncertainty set, we can overcome the limitation of deterministic S-curve

and cover infinite number of S-curve including fast, medium and slow response. Figure 1 shows the

S-curve with upper and lower bound defined by box uncertainty. In Figure 2, polyhedral uncertainty
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Figure 1 S-curve: box uncertainty

Figure 2 S-curve: polyhedral uncertainty

set (box uncertainty & budget uncertainty) is shown and the upper bound of S-curve is limited by

total demand.

5.2. Small Network Example

In the first numerical experiment, a small network configuration is drawn in Figure 3 to verify

the performance of AARC from the illustrative example of Chiu et al. (2007). The network consists

of 14 nodes including 3 source nodes (1,5, and 9) and 1 super sink cell (14).

The data of the transportation network is adopted from Chiu et al. (2007) except demand data

since deterministic demand was used in the original model. Also, we assume that the penalty
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Figure 3 CTM Example (Chiu et al. 2007)

Table 2 Time Invariant Cell Properties

Cell 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Ni 8 20 20 20 8 20 20 20 8 20 20 20 20 8
Qi 12 12 * 12 12 12 12 12 12 12 12 12 12 12
x̂i 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3 Time Dependent Data

Time 0 1 2 3 4 5 6 7 8 9 10
Qt

3 12 6 6 0 0 0 12 12 12 12 12

cost(M) for unmet demand is 100. Table 2 and 3 show time invariant data and time dependent

data, respectively. In the example, the flow capacity of node 3 is time dependent and changes from

time 1 to 6.

As mentioned before, we consider uncertain multi-period demand. In particular, the following

mathematical formulation of S-curve (Radwan et al. 1985) is adopted for demand loading.

P (t) = 1/(1+ exp(−α(t−β))), (13)

where P (t)is the cumulative distribution with α = 1, the slope of curve, and β = 3, the median

departure time. In both box and polyhedral uncertainty set, nominal demand at time t is calculated

by multiplying (P (t) − P (t − 1)) with expected total demand. Also, the joint budget of demand

uncertainty is assumed one and half times of the sum of expected total demand.

5.2.1. AARC vs. DLP Based on the nominal data, uncertain demand in a polyhedral set

is generated and tested. The uncertainty level θ is increased from 2.5% to 30%. First, objective

values are calculated and emergency logistics plans are generated using M-DLP and M-AARC.
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Next, given the uncertainty level and evacuation plan, simulated (or realized) objective value from

Eq.(1) is computed by generating random demand in the specified uncertainty set. Average values,

standard deviation and worst case solution of 1000 simulated objective values are used to compare

the traffic assignment solutions.

Our first object of experiments is comparison of AARC and DLP under a polyhedral uncertainty

set. Objective values of robust optimization approaches, which measure the worst case solution of

the vehicle control plan, are computed and compared at Table 4 by changing uncertainty level.

DLP solution shows the cost when only deterministic nominal demand is dealt with. It is natural

that the objective value of AARC with larger uncertainty level is bigger. Also, the objective value

of DLP is smaller since it is equivalent to AARC with zero uncertainty level.

In simulation, the emergency logistics plan from inequality flow constraints has to be adjusted in

some way since we relaxed the constraint in Eq. (2). We assumed that if there are fewer vehicles in

a node than the vehicle flow plan, proportionate flow is allocated to each path. Also, any vehicles

exceeding the plan will remain at the node and pay penalty for not planning them. Table 4 shows

the simulated objective value of ideal DLP, DLP, and AARC. Ideal DLP is the case where perfect

future demand information is known at the beginning of planning horizon. It is the lower bound

of simulated objective value. The average improvement of AARC over DLP is significant at higher

uncertainty level.

The AARC problem with 14 nodes and 15 planning horizon has 36,600 constraints and 190,428

variables. It is solved in about 44 seconds on a PC with Intel processor 1.87 Ghz and 2GB of

memory.

5.2.2. AARC vs. Sampling Based Stochastic Programming Sampling based stochastic

programming (SSP), or Monte Carlo sampling method, is an important approximation approach.

Stochastic problems are solved by generating random samples and solving a deterministic problem

to optimize sample average objective value (Shapiro 2003). For comparison with stochastic pro-

gramming, beta distribution is assumed, and if the sum of the sampling demand is bigger than
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Table 4 Objective Value – Polyhedral Uncertainty

obj avg sd worst
θ DLP AARC Ideal DLP AARC Ideal DLP AARC Ideal DLP AARC
0.025 350.10 358.18 354.35 417.13 355.34 1.08 15.14 0.91 356.54 452.33 357.17
0.05 350.10 366.27 358.59 484.25 359.70 2.16 30.19 1.76 362.97 554.56 363.27
0.075 350.10 375.24 362.85 551.49 364.88 3.26 45.10 2.97 369.83 656.80 370.73
0.1 350.10 384.35 367.33 618.81 370.72 4.57 59.95 3.78 377.14 759.03 378.44
0.15 350.10 402.57 376.78 753.49 381.79 7.20 89.63 5.35 391.76 963.49 393.29
0.2 350.10 420.80 386.35 888.23 397.50 9.70 119.29 6.14 406.38 1167.95 410.64
0.25 350.10 439.03 395.95 1023.00 410.17 12.17 148.94 7.90 421.00 1372.42 427.02
0.3 350.10 457.25 405.55 1157.77 420.57 14.63 178.59 10.12 435.61 1576.88 441.57

the upper bound of total demand, it is ignored and re-sampled. The following equation represents

SSP.

Min
x,y

1
L

∑

l∈Λ

∑

t∈=

∑

i∈C\Cs

ct
ix

t
il (14)

s.t

xt
il −xt−1

il −
∑

k∈C

akiy
t−1
ki +

∑

j∈C

aijy
t−1
ij ≥ dt−1

il , ∀l ∈Λ, i∈C, t ∈=

∑

k∈C

akiy
t
ki ≤Qt

i, ∀i∈C, t ∈=

∑

k∈C

akiy
t
ki + δt

ix
t
il ≤ δt

iN
t
i , ∀l ∈Λ, i∈C, t ∈=

∑

j∈C

aijy
t
ij ≤Qt

i, ∀i∈C, t ∈=

∑

j∈C

aijy
t
ij −xt

il ≤ 0, ∀l ∈Λ, i∈C, t ∈=

x0
il = x̂i, ∀i∈C, l ∈Λ

y0
ij = 0, ∀ (i, j)∈C ×C

xt
il ≥ 0, ∀i∈C, t ∈=, l ∈Λ

yt
ij ≥ 0, ∀ (i, j)∈C ×C, t ∈=

where independent sampling scenario l ∈ Λ = {1,2, ...,L}, xt
il is the number of vehicles contained

in cell i at time t for sampling scenario l, dt
il is demand generated in cell i at time t for sampling

scenario l.
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Table 5 AARC vs. SSP when θ changes. (Beta(5,2), L=50, M=100)

obj avg gap sd worst
θ AARC SSP AARC SSP AARC SSP AARC SSP AARC SSP
0.025 358.18 350.50 355.34 368.84 0.28% 4% 0.91 9.02 357.17 392.49
0.05 366.27 350.91 359.70 387.57 0.31% 8% 1.76 18.04 363.27 434.88
0.075 375.24 351.31 364.88 406.31 0.56% 12% 2.97 27.06 370.73 477.27
0.1 384.35 351.71 370.72 425.04 0.92% 16% 3.78 36.08 378.44 519.66
0.15 402.80 352.58 381.79 463.30 1.33% 23% 5.35 54.30 393.29 605.5
0.2 420.80 353.82 397.50 501.69 2.89% 30% 6.14 72.44 410.64 691.37
0.25 439.03 355.59 410.17 540.09 3.95% 36% 7.90 90.59 427.02 777.27
0.3 457.25 357.74 420.57 578.50 3.70% 43% 10.12 108.72 441.57 863.15

Table 6 AARC vs. SSP when θ changes. (Beta(1,1), L=50, M=100)

obj avg gap sd worst
θ AARC SSP AARC SSP AARC SSP AARC SSP AARC SSP
0.025 358.18 350.20 350.86 352.51 0.41% 0.88% 2.16 6.13 356.04 357.97
0.05 366.27 350.30 350.68 354.93 0.55% 1.77% 4.15 12.26 361.62 401.84
0.075 375.24 350.40 350.29 357.34 0.63% 2.65% 6.39 18.40 367.70 427.71
0.1 384.35 350.50 360.15 359.75 3.66% 3.54% 7.12 24.53 377.49 453.59
0.15 402.80 350.74 362.09 364.78 4.61% 5.38% 10.39 36.99 389.53 505.90
0.2 420.80 351.34 364.82 370.16 5.75% 7.30% 14.43 48.78 403.76 560.14
0.25 439.03 352.80 376.34 375.96 9.37% 9.26% 15.80 60.93 419.08 618.25
0.3 457.25 354.63 380.24 381.92 10.71% 11.20% 20.33 73.06 433.76 677.22

For the comparison, at first, 50 samples are generated using beta distribution function, Beta(1,2).

Next, Beta(5,2) and Uniform distribution (i.e. Beta(1,1)) are used for generating uncertain demand

for simulation. This may be reasonable when we do not have exact information on the distribution.

The objective value of SSP is lower than AARC since it finds the average of minimum cost with

given sample data. It has different meaning from the RO approach generating best worst case

solution. However, the simulated objective values can be compared since they show the performance

of emergency logistics plan. When Beta(5,2) is used for simulation, we can see that AARC is better

than SSP in terms of the average of the simulated objective value in Table 5. The gap between

AARC and the ideal solution is very small even with higher uncertainty, e.g. it is less than 4%

when the uncertain level is 30 %! In contrast for SSP, the gap is increased drastically. As shown in

Table 6, the average values of the simulated objective value from AARC and SSP are comparable

with the random demand from Beta (1,1).

Under both demand scenarios, AARC provides more stable and robust solution than SSP in
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Table 7 AARC vs. SSP when M changes. (Beta(5,2), L=50, θ=0.1)

obj avg gap sd worst
M AARC SSP AARC SSP AARC SSP AARC SSP AARC SSP
25 384.35 345.04 370.48 435.43 0.86% 18.54% 3.91 19.88 379.35 474.46
50 384.35 347.63 370.27 474.35 0.80% 29.17% 4.22 31.82 379.13 539.28
75 384.35 349.46 371.06 470.81 1.02% 28.18% 3.87 36.19 379.61 552.61
100 384.35 350.50 373.69 430.37 1.73% 17.16% 3.34 37.03 380.42 524.02

Table 8 Cell Properties

Nodes 11-16 The others
N t

i 600 450
Qt

i 1440 1080
x̂i 0 0

the aspect of standard deviation and worst case solution. In all cases,the worst case costs of SSP

exceed the worst case value of AARC. Moreover, the AARC solution guarantees the feasibility

and provides a guaranteed upper bound on the optimal cost. The SSP solution does not guarantee

neither of the above.

Next, we test and summarize the effect of penalty value on the performance of each approach.

Table 7 shows that as the value of M changes, AARC always provides more stable and robust

solution than SSP in the aspect of standard deviation and worst case solution, and provides an

evacuation solution that leads to small gap from the ideal solution and can meet all the demand.

5.3. Cape May County Network Example

We select another network from Yazici and Ozbay (2007) to increase the size of the problem.

Official evacuation routes of Cape May county, New Jersey are considered in Figure 4, which is

composed of 27 nodes including 3 origin nodes (1, 2, and 3) and 1 super destination node (27).

All data except the uncertain demand set are adopted from Yazici and Ozbay (2007) and listed at

Table 8. For departure time distribution function, Eq. (13) is used with α = 1 and β = 6. Also, the

penalty cost(M) for unmet demand is set to be 100.

Tables 9 - 10 show similar results as the pervious small example. AARC approach improves the

transportation solution compared to the deterministic model. Also, we can observe that AARC

solution provides better results than SSP in terms of the worse case solution as well as solution

stability.



20

               

Figure 4 CTM Example (Yazici and Ozbay 2007)

Table 9 objective value – Polyhedral uncertainty

obj simulation avg simulation sd simulation worst
θ DLP AARC Ideal DLP AARC Ideal DLP AARC Ideal DLP AARC
0.025 360901 370641 366938 387104 368196 1041 4367 598 369062 395998 369472
0.05 360901 379965 373144 413517 375368 2131 8769 1437 377521 431356 378343
0.075 360901 389686 379451 439826 382618 3222 13154 2143 386006 466584 387086
0.1 360901 399438 385697 466134 389101 4306 17538 3307 394492 501812 396030
0.15 360901 419351 398391 518751 403235 6533 26307 5449 411802 572267 414668
0.2 360901 439908 411315 571368 417660 8844 35077 7731 429603 642723 433757
0.25 360901 460738 424475 623985 432095 11218 43846 10066 447677 713178 452758
0.3 360901 511177 437901 676602 456290 13700 52615 17039 467532 783633 497991

The AARC problem with 27 nodes and 45 planning horizon has 4,096,941 constraints and

9,079,890 variables. It is solved in about 4 hours on a PC with Intel processor 3.0 Ghz and 32 GB

of memory.

6. Conclusion and Future Work

This paper applied the RO methodology to the CTM based SO DTA model under demand uncer-

tainty. In particular, AARC was formulated for dealing with a multi-period transportation problem

to find an robust and uncertainty immunized solution, which is especially important in an emer-

gency logistics problem. Two S-shaped curves with upper and lower bound was introduced by

considering uncertainty sets, which are appropriate for modeling uncertain demand. With the lin-
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Table 10 AARC vs. SSP when θ changes. (Beta(5,2), L=50, M=100)

obj avg gap sd worst
θ AARC SSP AARC SSP AARC SSP AARC SSP AARC SSP
0.025 370641 356996 368196 387661 0.34% 6% 598 4363 369472 396562
0.05 379965 353143 375368 414563 0.60% 11% 1437 8761 378343 432436
0.075 389686 349344 382618 441409 0.84% 16% 2143 13141 387086 468218
0.1 399438 345584 389101 468254 0.88% 21% 3307 17522 396030 503999
0.15 419351 338247 403235 521959 1.22% 31% 5449 26282 414668 575578
0.2 439908 331121 417660 575665 1.54% 40% 7731 35043 433757 647151
0.25 460738 324304 432095 629294 1.79% 48% 10066 43805 452758 718651
0.3 511177 317763 456290 682927 4.20% 56% 17039 52565 497991 709139

ear decision rule for an approximated solution and the appropriate reformulation technique, AARC

becomes a linear programming problem and hence computationally tractable. The objective value

obtained is guaranteed upper bound within a prescribed uncertainty set. Although the AARC

solution does not guarantee optimality, we find that the AARC approach leads to high quality

solutions compared to the deterministic problem and the sampling based stochastic problem.

However, we do not argue that AARC approach always outperforms the stochastic program-

ming. The proposed AARC method is favorable when either reliable information on probability

distribution of uncertain parameter is not available or decision makers want to find a strongly

guaranteed performance without facing infeasible solution even in extreme case. In those cases, RO

can outperform the traditional stochastic programming approach. Also, the purpose of RO is quite

different from sensitivity analysis with variation of parameters. RO finds uncertainty immunized

solution for pre-described uncertainty set, while sensitivity analysis is a post-optimization tool to

test the stability or perturbation of optimal solution (Ben-Tal and Nemirovski 2000).

Our work has focused on the CTM based SO-DTA problem by using affine control rule for

uncertain demand. The reason for using the linear decision rule is to derive computational tractable

problem. However, theoretically, we do not know how the approximation makes the robust solution

be deviated from the optimal solution. The approximation approach is used based on the belief that

it is important to provide a solvable problem in emergency logistics field (Shapiro and Nemirovski

(2005), Remark 2). The scope of future work could be extended to consider control beyond linear

decision rule and to explore large scale examples. Moreover, robust optimization approach can
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be applied to different uncertainty sources (e.g. capacity uncertainty or cost uncertainty) and

alternative transportation problems like dynamic network design.

There are other issues raised from this paper. One of these issues is that LP based CTM model

allows vehicle holding, which may be unrealistic. RO approach can be applied to alternative deter-

ministic mathematical formulations (e.g. Nie (2010)) to overcome this issue. Extension to consider-

ing unbounded uncertainty set with globalized robust optimization (Ben-Tal et al. 2006) is another

interesting research direction.
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