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Abstract

Many existing fairness criteria for machine learning involve equalizing some metric
across protected groups such as race or gender. However, practitioners trying to
audit or enforce such group-based criteria can easily face the problem of noisy or
biased protected group information. First, we study the consequences of naïvely
relying on noisy protected group labels: we provide an upper bound on the fairness
violations on the true groups G when the fairness criteria are satisfied on noisy
groups Ĝ. Second, we introduce two new approaches using robust optimization that,
unlike the naïve approach of only relying on Ĝ, are guaranteed to satisfy fairness
criteria on the true protected groups G while minimizing a training objective. We
provide theoretical guarantees that one such approach converges to an optimal
feasible solution. Using two case studies, we show empirically that the robust
approaches achieve better true group fairness guarantees than the naïve approach.

1 Introduction

As machine learning becomes increasingly pervasive in real-world decision making, the question of
ensuring fairness of ML models becomes increasingly important. The definition of what it means to
be “fair” is highly context dependent. Much work has been done on developing mathematical fairness
criteria according to various societal and ethical notions of fairness, as well as methods for building
machine-learning models that satisfy those fairness criteria [see, e.g., 21, 32, 49, 41, 54, 14, 25, 51].

Many of these mathematical fairness criteria are group-based, where a target metric is equalized or
enforced over subpopulations in the data, also known as protected groups. For example, the equality
of opportunity criterion introduced by Hardt et al. [32] specifies that the true positive rates for a binary
classifier are equalized across protected groups. The demographic parity [21] criterion requires that a
classifier’s positive prediction rates are equal for all protected groups.

One important practical question is whether or not these fairness notions can be reliably measured
or enforced if the protected group information is noisy, missing, or unreliable. For example, survey
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participants may be incentivized to obfuscate their responses for fear of disclosure or discrimination,
or may be subject to other forms of response bias. Social desirability response bias may affect
participants’ answers regarding religion, political affiliation, or sexual orientation [40]. The collected
data may also be outdated: census data collected ten years ago may not an accurate representation for
measuring fairness today.

Another source of noise arises from estimating the labels of the protected groups. For various image
recognition tasks (e.g., face detection), one may want to measure fairness across protected groups
such as gender or race. However, many large image corpora do not include protected group labels,
and one might instead use a separately trained classifier to estimate group labels, which is likely to be
noisy [12]. Similarly, zip codes can act as a noisy indicator for socioeconomic groups.

In this paper, we focus on the problem of training binary classifiers with fairness constraints when
only noisy labels, Ĝ ∈ {1, ..., m̂}, are available for m true protected groups, G ∈ {1, ...,m}, of
interest. We study two aspects: First, if one satisfies fairness constraints for noisy protected groups
Ĝ, what can one say with respect to those fairness constraints for the true groups G? Second, how
can side information about the noise model between Ĝ and G be leveraged to better enforce fairness
with respect to the true groups G?

Contributions: Our contributions are three-fold:

1. We provide a bound on the fairness violations with respect to the true groups G when the
fairness criteria are satisfied for the noisy groups Ĝ.

2. We introduce two new robust-optimization methodologies that satisfy fairness criteria on
the true protected groups G while minimizing a training objective. These methodologies
differ in convergence properties, conservatism, and noise model specification.

3. We show empirically that unlike the naïve approach, our two proposed approaches are able
to satisfy fairness criteria with respect to the true groups G on average.

The first approach we propose (Section 5) is based on distributionally robust optimization (DRO)
[19, 8]. Let p denotes the full distribution of the data X,Y ∼ p. Let pj be the distribution of the
data conditioned on the true groups being j, so X,Y |G = j ∼ pj ; and p̂j be the distribution of
X,Y conditioned on the noisy groups. Given an upper bound on the total variation (TV) distance
γj ≥ TV (pj , p̂j) for each j ∈ {1, ...,m}, we define p̃j such that the conditional distributions
(X,Y |G̃ = j ∼ p̃j) fall within the bounds γi with respect to Ĝ. Therefore, the set of all such p̃j is
guaranteed to include the unknown true group distribution pj ,∀j ∈ G. Because it is based on the
well-studied DRO setting, this approach has the advantage of being easy to analyze. However, the
results may be overly conservative unless tight bounds {γj}mj=1 can be given.

Our second robust optimization strategy (Section 6) uses a robust re-weighting of the data from
soft protected group assignments, inspired by criteria proposed by Kallus et al. [37] for auditing
the fairness of ML models given imperfect group information. Extending their work, we optimize
a constrained problem to achieve their robust fairness criteria, and provide a theoretically ideal
algorithm that is guaranteed to converge to an optimal feasible point, as well as an alternative practical
version that is more computationally tractable. Compared to DRO, this second approach uses a more
precise noise model, P (Ĝ = k|G = j), between Ĝ and G for all pairs of group labels j, k, that
can be estimated from a small auxiliary dataset containing ground-truth labels for both G and Ĝ.
An advantage of this more detailed noise model is that a practitioner can incorporate knowledge
of any bias in the relationship between G and Ĝ (for instance, survey respondents favoring one
socially preferable response over others), which causes it to be less likely than DRO to result in an
overly-conservative model. Notably, this approach does not require that Ĝ be a direct approximation
of G—in fact, G and Ĝ can represent distinct (but related) groupings, or even groupings of different
sizes, with the noise model tying them together. For example, if G represents “language spoken at
home,” then Ĝ could be a noisy estimate of “country of residence.”

2 Related work

Constrained optimization for group-based fairness metrics: The simplest techniques for enforc-
ing group-based constraints apply a post-hoc correction of an existing classifier [32, 52]. For example,
one can enforce equality of opportunity by choosing different decision thresholds for an existing
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binary classifier for each protected group [32]. However, the classifiers resulting from these post-
processing techniques may not necessarily be optimal in terms of accuracy. Thus, constrained
optimization techniques have emerged to train machine-learning models that can more optimally
satisfy the fairness constraints while minimizing a training objective [27, 13, 14, 54, 2, 17].

Fairness with noisy protected groups: Group-based fairness notions rely on the knowledge of
protected group labels. However, practitioners may only have access to noisy or unreliable protected
group information. One may naïvely try to enforce fairness constraints with respect to these noisy
protected groups using the above constrained optimization techniques, but there is no guarantee that
the resulting classifier will satisfy the fairness criteria with respect to the true protected groups [30].

Under the conservative assumption that a practitioner has no information about the protected groups,
Hashimoto et al. [33] applied DRO in the context of fairness. In contrast, here we assume some
knowledge of a noise model for the noisy protected groups, and are thus able to provide tighter results
with DRO: we provide a practically meaningful maximum total variation distance bound to enforce
in the DRO procedure. We further extend Hashimoto et al. [33]’s work by applying DRO to problems
equalizing fairness metrics over groups, which may be desired in some practical applications [39].

Kallus et al. [37] considered the problem of auditing fairness criteria given noisy groups. They
propose a “robust” fairness criteria using soft group assignments and show that if a given model
satisfies those fairness criteria with respect to the noisy groups, then the model will satisfy the fairness
criteria with respect to the true groups. Here, we build on that work by providing an algorithm for
training a model that satisfies their robust fairness criteria while minimizing a training objective.

Lamy et al. [42] showed that when there are only two protected groups, one need only tighten the
“unfairness tolerance” when enforcing fairness with respect to the noisy groups. When there are
more than two groups, and when the noisy groups are included as an input to the classifier, other
robust optimization approaches may be necessary. When using post-processing instead of constrained
optimization, Awasthi et al. [4] showed that under certain conditional independence assumptions,
post-processing using the noisy groups will not be worse in terms of fairness violations than not
post-processing at all. In our work, we consider the problem of training the model subject to fairness
constraints, rather than taking a trained model as given and only allowing post-processing, and we do
not rely on conditional independence assumptions. Indeed, the model may include the noisy protected
attribute as a feature.

Robust optimization: We use a minimax set-up of a two-player game where the uncertainty is
adversarial, and one minimizes a worst-case objective over a feasible set [7, 11]; e.g., the noise is
contained in a unit-norm ball around the input data. As one such approach, we apply a recent line of
work on DRO which assumes that the uncertain distributions of the data are constrained to belong to
a certain set [46, 19, 44].

3 Optimization problem setup

We begin with the training problem for incorporating group-based fairness criteria in a learning setting
[27, 32, 17, 2, 14]. Let X ∈ X ⊆ RD be a random variable representing a feature vector, with a
random binary label Y ∈ Y = {0, 1} and random protected group membership G ∈ G = {1, ...,m}.
In addition, let Ĝ ∈ Ĝ = {1, ..., m̂} be a random variable representing the noisy protected group
label for each (X,Y ), which we assume we have access to during training. For simplicity, assume
that Ĝ = G (and m̂ = m). Let φ(X; θ) represent a binary classifier with parameters θ ∈ Θ where
φ(X; θ) > 0 indicates a positive classification.

Then, training with fairness constraints [27, 32, 17, 2, 14] is:

min
θ

f(θ) s.t. gj(θ) ≤ 0,∀j ∈ G, (1)

The objective function f(θ) = E[l(θ,X, Y )], where l(θ,X, Y ) is any standard binary classifier
training loss. The constraint functions gj(θ) = E[h(θ,X, Y )|G = j] for j ∈ G, where h(θ,X, Y ) is
the target fairness metric, e.g. h(θ,X, Y ) = 1

(
φ(X; θ) > 0

)
−E[1

(
φ(X; θ) > 0

)
] when equalizing

positive rates for the demographic parity [21] criterion (see [14] for more examples). Algorithms have
been studied for problem (1) when the true protected group labels G are given [see, e.g., 22, 2, 14].
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4 Bounds for the naïve approach

When only given the noisy groups Ĝ, one naïve approach to solving problem (1) is to simply re-define
the constraints using the noisy groups [30]:

min
θ

f(θ) s.t. ĝj(θ) ≤ 0, ∀j ∈ G, (2)

where ĝj(θ) = E[h(θ,X, Y )|Ĝ = j], j ∈ G.

This introduces a practical question: if a model was constrained to satisfy fairness criteria on the
noisy groups, how far would that model be from satisfying the constraints on the true groups? We
show that the fairness violations on the true groups G can at least be bounded when the fairness
criteria are satisfied on the noisy groups Ĝ, provided that Ĝ does not deviate too much from G.

4.1 Bounding fairness constraints using TV distance

Recall thatX,Y |G = j ∼ pj andX,Y |Ĝ = j ∼ p̂j . We use the TV distance TV (pj , p̂j) to measure
the distance between the probability distributions pj and p̂j (see Appendix A.1 and Villani [50]).
Given a bound on TV (pj , p̂j), we obtain a bound on fairness violations for the true groups when
naïvely solving the optimization problem (2) using only the noisy groups:
Theorem 1. (proof in Appendix A.1.) Suppose a model with parameters θ satisfies fairness criteria
with respect to the noisy groups Ĝ: ĝj(θ) ≤ 0, ∀j ∈ G. Suppose |h(θ, x1, y1)− h(θ, x2, y2)| ≤ 1
for any (x1, y1) 6= (x2, y2). If TV (pj , p̂j) ≤ γj for all j ∈ G, then the fairness criteria with respect
to the true groups G will be satisfied within slacks γj for each group: gj(θ) ≤ γj , ∀j ∈ G.

Theorem 1 is tight for the family of functions h that satisfy |h(θ, x1, y1)− h(θ, x2, y2)| ≤ 1 for any
(x1, y1) 6= (x2, y2). This condition holds for any fairness metrics based on rates such as demographic
parity, where h is simply some scaled combination of indicator functions. Cotter et al. [14] list many
such rate-based fairness metrics. Theorem 1 can be generalized to functions h whose differences
are not bounded by 1 by looking beyond the TV distance to more general Wasserstein distances
between pj and p̂j . We show this in Appendix A.2, but for all fairness metrics referenced in this
work, formulating Theorem 1 with the TV distance is sufficient.

4.2 Estimating the TV distance bound in practice

Theorem 1 bounds the fairness violations of the naïve approach in terms of the TV distance between
the conditional distributions pj and p̂j , which assumes knowledge of pj and is not always possible
to estimate. Instead, we can estimate an upper bound on TV (pj , p̂j) from metrics that are easier to
obtain in practice. Specifically, the following lemma shows that shows that if the prior on class j is
unaffected by the noise, P (G 6= Ĝ|G = j) directly translates into an upper bound on TV (pj , p̂j).

Lemma 1. (proof in Appendix A.1.) Suppose P (G = j) = P (Ĝ = j) for a given j ∈ G. Then
TV (pj , p̂j) ≤ P (G 6= Ĝ|G = j).

In practice, an estimate of P (G 6= Ĝ|G = j) may come from a variety of sources. As assumed by
Kallus et al. [37], a practitioner may have access to an auxiliary dataset containing G and Ĝ, but not
X or Y . Or, practitioners may have some prior estimate of P (G 6= Ĝ|G = j): if Ĝ is estimated by
mapping zip codes to the most common socioeconomic group for that zip code, then census data
provides a prior for how often Ĝ produces an incorrect socioeconomic group.

By relating Theorem 1 to realistic noise models, Lemma 1 allows us to bound the fairness violations
of the naïve approach using quantities that can be estimated empirically. In the next section we
show that Lemma 1 can also be used to produce a robust approach that will actually guarantee full
satisfaction of the fairness violations on the true groups G.

5 Robust Approach 1: Distributionally robust optimization (DRO)

While Theorem 1 provides an upper bound on the performance of the naïve approach, it fails to
provide a guarantee that the constraints on the true groups are satisfied, i.e. gj(θ) ≤ 0. Thus, it
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is important to find other ways to do better than the naïve optimization problem (2) in terms of
satisfying the constraints on the true groups. In particular, suppose in practice we are able to assert
that P (G 6= Ĝ|G = j) ≤ γj for all groups j ∈ G. Then Lemma 1 implies a bound on TV distance
between the conditional distributions on the true groups and the noisy groups: TV (pj , p̂j) ≤ γj .
Therefore, any feasible solution to the following constrained optimization problem is guaranteed to
satisfy the fairness constraints on the true groups:

min
θ∈Θ

f(θ) s.t. max
p̃j :TV (p̃j ,p̂j)≤γj

p̃j�p

g̃j(θ) ≤ 0, ∀j ∈ G, (3)

where g̃j(θ) = EX,Y∼p̃j [h(θ,X, Y )], and p̃j � p denotes absolute continuity.

5.1 General DRO formulation

A DRO problem is a minimax optimization [19]:

min
θ∈Θ

max
q:D(q,p)≤γ

EX,Y∼q[l(θ,X, Y )], (4)

where D is some divergence metric between the distributions p and q, and l : Θ × X × Y → R.
Much existing work on DRO focuses on how to solve the DRO problem for different divergence
metrics D. Namkoong and Duchi [46] provide methods for efficiently and optimally solving the DRO
problem for f -divergences, and other work has provided methods for solving the DRO problem for
Wasserstein distances [44, 23]. Duchi and Namkoong [19] further provide finite-sample convergence
rates for the empirical version of the DRO problem.

5.2 Solving the DRO problem

An important and often difficult aspect of using DRO is specifying a divergence D and bound γ
that are meaningful. In this case, Lemma 1 gives us the key to formulating a DRO problem that is
guaranteed to satisfy the fairness criteria with respect to the true groups G.

The optimization problem (3) can be written in the form of a DRO problem (4) with TV distance
by using the Lagrangian formulation. Adapting a simplified version of a gradient-based algorithm
provided by Namkoong and Duchi [46], we are able to solve the empirical formulation of problem
(4) efficiently. Details of our empirical Lagrangian formulation and pseudocode are in Appendix B.

6 Robust Approach 2: Soft group assignments

While any feasible solution to the distributionally robust constrained optimization problem (3) is
guaranteed to satisfy the constraints on the true groups G, choosing each γj = P (G 6= Ĝ|G = j) as
an upper bound on TV (pj , p̂j) may be rather conservative. Therefore, as an alternative to the DRO
constraints in (3), in this section we show how to optimize using the robust fairness criteria proposed
by Kallus et al. [37].

6.1 Constraints with soft group assignments

Given a trained binary predictor, Ŷ (θ) = 1(φ(θ;X) > 0), Kallus et al. [37] proposed a set of robust
fairness criteria that can be used to audit the fairness of the given trained model with respect to the
true groups G ∈ G using the noisy groups Ĝ, where G = Ĝ is not required in general. They assume
access to a main dataset with the noisy groups Ĝ, true labels Y , and the features X , as well as access
to an auxiliary dataset containing both the noisy groups Ĝ and the true groups G. From the main
dataset, one can obtain estimates of the joint distributions (Ŷ (θ), Y, Ĝ); from the auxiliary dataset,
one can obtain estimates of the joint distributions (Ĝ,G) and a noise model P (G = j|Ĝ = k) for all
j ∈ G, k ∈ Ĝ.

These estimates are used to associate each example with a vector of weights, where each weight
is an estimated probability that the example belongs to the true group j. Specifically, suppose
that we have a function w : G × {0, 1} × {0, 1} × Ĝ → [0, 1], where w(j | ŷ, y, k) estimates
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P (G = j|Ŷ (θ) = ŷ, Y = y, Ĝ = k). We rewrite the fairness constraint E[h(θ,X, Y )|G = j] =
E[h(θ,X,Y )P (G=j|Ŷ (θ),Y,Ĝ)]

P (G=j) (derivation in Appendix C.1), and estimate this using w. We also show
how h can be adapted to the equality of opportunity setting in Appendix C.2.

Given the main dataset and auxiliary dataset, we limit the possible values of the function w(j | ŷ, y, k)
using the law of total probability (as in [37]). The set of possible functions w is given by:

W(θ) =

{
w :

∑
ŷ,y∈{0,1} w(j|ŷ,y,k)P (Ŷ (θ)=ŷ,Y=y|Ĝ=k)=P (G=j|Ĝ=k),∑m
j=1 w(j|ŷ,y,k)=1,w(j|ŷ,y,k)≥0 ∀ŷ,y∈{0,1},j∈G,k∈Ĝ

}
. (5)

The robust fairness criteria can now be written in terms ofW(θ) as:

max
w∈W(θ)

gj(θ, w) ≤ 0, ∀j ∈ G where gj(θ, w) =
E[h(θ,X, Y )w(j|Ŷ (θ), Y, Ĝ)]

P (G = j)
. (6)

6.2 Robust optimization with soft group assignments

We extend Kallus et al. [37]’s work by formulating a robust optimization problem using soft group
assignments. Combining the robust fairness criteria above with the training objective, we propose:

min
θ∈Θ

f(θ) s.t. max
w∈W(θ)

gj(θ, w) ≤ 0, ∀j ∈ G, (7)

where Θ denotes the space of model parameters. Any feasible solution is guaranteed to satisfy the
original fairness criteria with respect to the true groups. Using a Lagrangian, problem (7) can be
rewritten as:

min
θ∈Θ

max
λ∈Λ
L(θ, λ) (8)

where the Lagrangian L(θ, λ) = f(θ) +
∑m
j=1 λj maxw∈W(θ) gj(θ, w), and Λ ⊆ Rm+ .

When solving this optimization problem, we use the empirical finite-sample versions of each expecta-
tion. As described in Proposition 9 of Kallus et al. [37], the inner maximization (6) over w ∈ W(θ)
can be solved as a linear program for a given fixed θ. However, the Lagrangian problem (8) is not as
straightforward to optimize, since the feasible setW(θ) depends on θ through Ŷ . While in general
the pointwise maximum of convex functions is convex, the dependence ofW(θ) on θ means that
even if gj(θ, w) were convex, maxw∈W(θ) gj(θ, w) is not necessarily convex. We first introduce a
theoretically ideal algorithm that we prove converges to an optimal, feasible solution. This ideal
algorithm relies on a minimization oracle, which is not always computationally tractable. Therefore,
we further provide a practical algorithm using gradient methods that mimics the ideal algorithm in
structure and computationally tractable, but does not share the same convergence guarantees.

6.3 Ideal algorithm

The minimax problem in (8) can be interpreted as a zero-sum game between the θ-player and λ-player.
In Algorithm 1, we provide an iterative procedure for solving (8), where at each step, the θ-player
performs a full optimization, i.e., a best response over θ, and the λ-player responds with a gradient
ascent update on λ.

For a fixed θ, the gradient of the Lagrangian L with respect to λ is given by ∂L(θ, λ)/∂λj =
maxw∈W(θ) gj(θ, w), which is a linear program in w. The challenging part, however, is the best
response over θ; that is, finding a solution minθ L(θ, λ) for a given λ, as this involves a max over
constraints W(θ) which depend on θ. To implement this best response, we formulate a nested
minimax problem that decouples this intricate dependence on θ, by introducing Lagrange multipliers
for the constraints inW(θ). We then solve this problem with an oracle that jointly minimizes over
both θ and the newly introduced Lagrange multipliers. We provide the details in Algorithm 3 in
Appendix D.

The output of the best-response step is a stochastic classifier with a distribution θ̂(t) over a finite set
of θs. Algorithm 1 then returns the average of these distributions, θ = 1

T

∑T
t=1 θ̂

t, over T iterations.
By extending recent results on constrained optimization [13], we show in Appendix D that the output
θ is near-optimal and near-feasible for the robust optimization problem in (7). That is, for a given
ε > 0, by picking T to be large enough, we have that the objective Eθ∼θ [f(θ)] ≤ f(θ∗) + ε, for any
θ∗ that is feasible, and the expected violations in the robust constraints are also no more than ε.
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Algorithm 1 Ideal Algorithm

Require: learning rate ηλ > 0, estimates of P (G = j|Ĝ = k) to specifyW(θ), ρ, ρ′
1: for t = 1, . . . , T do
2: Best response on θ: run the oracle-based Algorithm 3 to find a distribution θ̂(t) over Θ s.t.

Eθ∼θ̂(t)

[
L(θ, λ(t))

]
≤ minθ∈Θ L(θ, λ(t)) + ρ.

3: Estimate gradient∇λL(θ̂(t), λ(t)): for each j ∈ G, choose δ(t)
j s.t.

δ
(t)
j ≤ Eθ∼θ̂(t)

[
maxw∈W(θ) gj(θ, w)

]
≤ δ

(t)
j + ρ′

4: Ascent step on λ: λ̃(t+1)
j ← λ

(t)
j + ηλ δ

(t)
j , ∀j ∈ G; λ(t+1) ← ΠΛ(λ̃(t+1))

5: end for
6: return θ = 1

T

∑T
t=1 θ̂

(t)

6.4 Practical algorithm

Algorithm 1 is guaranteed to converge to a near-optimal, near-feasible solution, but may be computa-
tionally intractable and impractical for the following reasons. First, the algorithm needs a nonconvex
minimization oracle to compute a best response over θ. Second, there are multiple levels of nesting,
making it difficult to scale the algorithm with mini-batch or stochastic updates. Third, the output is a
distribution over multiple models, which can be be difficult to use in practice [47].

Therefore, we supplement Algorithm 1 with a practical algorithm, Algorithm 4 (see Appendix E)
that is similar in structure, but approximates the inner best response routine with two simple steps: a
maximization over w ∈ W(θ(t)) using a linear program for the current iterate θ(t), and a gradient
step on θ at the maximizer w(t). Algorithm 4 leaves room for other practical modifications such as
using stochastic gradients. We provide further discussion in Appendix E.

7 Experiments

We compare the performance of the naïve approach and the two robust optimization approaches
(DRO and soft group assignments) empirically using two datasets from UCI [18] with different
constraints. For both datasets, we stress-test the performance of the different algorithms under
different amounts of noise between the true groups G and the noisy groups Ĝ. We take l to be the
hinge loss. The specific constraint violations measured and additional training details can be found in
Appendix F.1. All experiment code is available on GitHub at https://github.com/wenshuoguo/
robust-fairness-code.

Generating noisy protected groups: Given the true protected groups, we synthetically generate
noisy protected groups by selecting a fraction γ of data uniformly at random. For each selected
example, we perturb the group membership to a different group also selected uniformly at random
from the remaining groups. This way, for a given γ, P (Ĝ 6= G) ≈ P (Ĝ 6= G|G = j) ≈ γ for all
groups j, k ∈ G. We evaluate the performance of the different algorithms ranging from small to large
amounts of noise: γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

7.1 Case study 1 (Adult): equality of opportunity

We use the Adult dataset from UCI [18] collected from 1994 US Census, which has 48,842 examples
and 14 features (details in Appendix F). The classification task is to determine whether an individual
makes over $50K per year. For the true groups, we use m = 3 race groups of “white,” “black,” and
“other.” As done by [14, 25, 55], we enforce equality of opportunity by equalizing true positive rates
(TPRs). Specifically, we enforce that the TPR conditioned on each group is greater than or equal to
the overall TPR on the full dataset with some slack α, which produces m true group fairness criteria,
{gTPR
j (θ) ≤ 0} ∀j ∈ G (details about the constraint function h in Appendix B.3 and C.2).

7.2 Case study 2 (Credit): equalized odds

We consider another application of group-based fairness constraints to credit default prediction.
Fourcade and Healy [24] provide an in depth study of the effect of credit scoring techniques on
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the credit market, showing that this scoring system can perpetuate inequity. Enforcing group-based
fairness with credit default predictions has been considered in a variety of prior works [32, 10, 51,
3, 9, 28, 25, 6]. Following Hardt et al. [32] and Grari et al. [28], we enforce equalized odds [32] by
equalizing both true positive rates (TPRs) and false positive rates (FPRs) across groups.

We use the “default of credit card clients” dataset from UCI [18] collected by a company in Tai-
wan [53], which contains 30,000 examples and 24 features (details in Appendix F). The classification
task is to determine whether an individual defaulted on a loan. We use m = 3 groups based on
education levels: “graduate school,” “university,” and “high school/other” (the use of education
in credit lending has previously been studied in the algorithmic fairness and economics litera-
ture [26, 9, 43]). We constrain the TPR conditioned on each group to be greater than or equal to the
overall TPR on the full dataset with a slack α, and the FPR conditioned on each group to be less
than or equal to the overall FPR on the full dataset. This produces 2m true group-fairness criteria,
{gTPR
j (θ) ≤ 0, gFPR

j (θ) ≤ 0} ∀j ∈ G (details about the constraint functions h can be found in
Appendix B.3 and C.2).
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Figure 1: Case study 1 (Adult): maximum true group constraint violations on test set for the Naive,
DRO, and soft assignments (SA) approaches for different group noise levels γ on the Adult dataset
(mean and standard error over 10 train/val/test splits). The black solid line represents the performance
of the trivial “all negatives” classifier, which has constraint violations of 0. A negative violation
indicates satisfaction of the fairness constraints on the true groups.
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Figure 2: Case study 2 (Credit): maximum true group constraint violations on test set for the Naive,
DRO, and soft assignments (SA) approaches for different group noise levels γ on the Credit dataset
(mean and standard error over 10 train/val/test splits). This figure shows the max constraint violation
over all TPR and FPR constraints, and Figure 6 in Appendix F.2 shows the breakdown of these
constraint violations into the max TPR and the max FPR constraint violations.

7.3 Results

In case study 1 (Adult), the unconstrained model achieves an error rate of 0.1447± 0.0012 (mean
and standard error over 10 splits) and a maximum constraint violation of 0.0234± 0.0164 on test set
with respect to the true groups. The model that assumes knowledge of the true groups achieves an
error rate of 0.1459± 0.0012 and a maximum constraint violation of −0.0469± 0.0068 on test set
with respect to the true groups. As a sanity check, this demonstrates that when given access to the
true groups, it is possible to satisfy the constraints on the test set with a reasonably low error rate.

In case study 2 (Credit), the unconstrained model achieves an error rate of 0.1797± 0.0013 (mean
and standard error over 10 splits) and a maximum constraint violation of 0.0264 ± 0.0071 on
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Figure 3: Error rates on test set for different group noise levels γ on the Adult dataset (left) and the
Credit dataset (right) (mean and standard error over 10 train/val/test splits). The black solid line
represents the performance of the trivial “all negatives” classifier, which has error rate 0.239. The
soft assignments (SA) approach achieves lower error rates than DRO, and as the noise level increases,
the gap in error rate between the naive approach and each robust approach increases.

the test set with respect to the true groups. The constrained model that assumes knowledge of
the true groups achieves an error rate of 0.1796 ± 0.0011 and a maximum constraint violation of
−0.0105 ± 0.0070 on the test set with respect to the true groups. For this dataset, it was possible
to satisfy the constraints with approximately the same error rate on test as the unconstrained model.
Note that the unconstrained model achieved a lower error rate on the train set than the constrained
model (0.1792± 0.0015 unconstrained vs. 0.1798± 0.0024 constrained).

For both case studies, results in Figure 1 and 2 show that the robust approaches DRO (center) and soft
group assignments (SA) (right) satisfy the constraints on average for all noise levels. As the noise
level increases, the naïve approach (left) has increasingly higher true group constraint violations. The
DRO and SA approaches come at a cost of a higher error rate than the naïve approach (Figure 3). The
error rate of the naïve approach is close to the model optimized with constraints on the true groups G,
regardless of the noise level γ. However, as the noise increases, the naïve approach no longer controls
the fairness violations on the true groups G, even though it does satisfy the constraints on the noisy
groups Ĝ (see Figure 4, Figure 7 in Appendix F.2). DRO generally suffers from a higher error rate
compared to SA (Figure 1 and 2). This illustrates the conservativeness of the DRO approach and
perhaps the looseness of the TV bound.

8 Conclusion

We explored the practical problem of enforcing group-based fairness for binary classification given
noisy protected group information. In addition to providing new theoretical analysis of the naïve
approach of only enforcing fairness on the noisy groups, we also proposed two new robust approaches
that guarantee satisfaction of the fairness criteria on the true groups. For the DRO approach, we
gave a theoretical bound on the TV distance to use in the optimization problem using Lemma 1. For
the soft group assignments approach, we provided a theoretically ideal algorithm and a practical
alternative algorithm for satisfying the robust fairness criteria proposed by Kallus et al. [37] while
minimizing a training objective. We empirically showed that both of these approaches managed to
satisfy the constraints with respect to the true groups, even under difficult noise models generated by
realistic proxy features.

One avenue of future work would be to empirically compare the robust approaches when the noisy
groups have different dimensionality from the true groups. We discuss this setup in Appendix B.4.
Second, we note that the looseness of the bound in Lemma 1 can lead to over-conservativeness
of the DRO approach, and future work would benefit from methods to better calibrate the DRO
neighborhood. Finally, further study of the impact of distribution mismatch between the main dataset
and the auxiliary dataset would be valuable future work.
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Broader Impact
As machine learning is increasingly employed in high stakes environments, any potential application
has to be scrutinized to ensure that it will not perpetuate, exacerbate, or create new injustices.
Aiming to make machine learning algorithms themselves intrinsically fairer, more inclusive, and more
equitable plays an important role in achieving that goal. Group-based fairness [32, 25] is a popular
approach that the machine learning community has used to define and evaluate fair machine learning
algorithms. Until recently, such work has generally assumed access to clean, correct protected group
labels in the data. Our work addresses the technical challenge of enforcing group-based fairness
criteria under noisy, unreliable, or outdated group information. However, we emphasize that this
technical improvement alone does not necessarily lead to an algorithm having positive societal impact,
for reasons that we now delineate.

Choice of fairness criteria

First, our work does not address the choice of the group-based fairness criteria. Many different
algorithmic fairness criteria have been proposed, with varying connections to prior sociopolitical
framing [48, 35]. From an algorithmic standpoint, these different choices of fairness criteria have
been shown to lead to very different prediction outcomes and tradeoffs [25]. Furthermore, even
if a mathematical criterion may seem reasonable (e.g., equalizing positive prediction rates with
demographic parity), Liu et al. [45] show that the long-term impacts may not always be desirable,
and the choice of criteria should be heavily influenced by domain experts, along with awareness of
tradeoffs.

Choice of protected groups

In addition to the specification of fairness criteria, our work also assumes that the true protected
group labels have been pre-defined by the practitioner. However, in real applications, the selection of
appropriate true protected group labels is itself a nontrivial issue.

First, the measurement and delineation of these protected groups should not be overlooked, as “the
process of drawing boundaries around distinct social groups for fairness research is fraught; the
construction of categories has a long history of political struggle and legal argumentation” [31].
Important considerations include the context in which the group labels were collected, who chose
and collected them, and what implicit assumptions are being made by choosing these group labels.
One example is the operationalization of race in the context of algorithmic fairness. Hanna et al.
[31] critiques “treating race as an attribute, rather than a structural, institutional, and relational
phenomenon.” The choice of categories surrounding gender identity and sexual orientation have
strong implications and consequences as well [29], with entire fields dedicated to critiquing these
constructs. Jacobs and Wallach [36] provide a general framework for understanding measurement
issues for these sensitive attributes in the machine-learning setting, building on foundational work
from the social sciences [5].

Another key consideration when defining protected groups is problems of intersectionality [15, 34].
Group-based fairness criteria inherently do not consider within-group inequality [38]. Even if we are
able to enforce fairness criteria robustly for a given set of groups, the intersections of groups may still
suffer [12].

Domain specific considerations

Finally, we emphasize that group-based fairness criteria simply may not be sufficient to mitigate prob-
lems of significant background injustice in certain domains. Abebe et al. [1] argue that computational
methods have mixed roles in addressing social problems, where they can serve as diagnostics, formal-
izers, and rebuttals, and also that “computing acts as synecdoche when it makes long-standing social
problems newly salient in the public eye.” Moreover, the use of the algorithm itself may perpetuate
inequity, and in the case of credit scoring, create stratifying effects of economic classifications that
shape life-chances [24]. We emphasize the importance of domain specific considerations ahead of
time before applying any algorithmic solutions (even “fair” ones) in sensitive and impactful settings.
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