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ABSTRACT The increase in extreme weather affects the distribution system, leading to system collapse

and interruption power supply to loads. Island partition is a resilient solution when major faults happen in

the distribution system. This paper proposes an island partition model considering load forecasting error.

Specifically, a two-stage robust optimization island partition program is formulated to restore as many

loads as possible, while satisfying operation and topology constraints. Ellipsoidal uncertainty set is built

to describe the uncertainty of load forecasting error and take the temporal correlation of it into account. The

two-stage robust optimization problem is transformed into a mixed integer second order cone problem to

make it computationally tractable. The formed island can be more reliable and avoid secondary collapse

when facing loads fluctuation, and uncertainty budget is set to control the degree of conservatism of the

robust optimization result. The numerical results based on IEEE 33-node distribution system demonstrate

the effectiveness of the developed model.

INDEX TERMS Distribution system, island partition, two-stage robust program, load forecasting error,

resilience.

NOMENCLATURE

A. SETS

υ Set of nodes.

{DG} Set of distributed generations.

ε Set of branches.

π (j) Set of all parents of node j.

δ(j) Set of all children of node j.

� Ellipsoidal uncertainty set of load forecasting

error.

η Set of nodes in islands

B. PARAMETERS

PL,j,t Expected active load demand at node j in time

period t .

SDG,j,t Capacity of DG at node j in time period t .

ej,t Proportion of DG active power output to DG

capacity at node j in time period t .

The associate editor coordinating the review of this manuscript and
approving it for publication was Mohammed Jahangir Hossain.

QL,j,t Reactive load demand at node j in time period t .

Smax
ij The maximum capacity of branch ij.

rij Resistance of branch ij.

xij Reactance of branch ij.

M A large number, which is assigned to 33 in this

paper.

U0 Reference voltage.

Cconf Uncertainty budget.

R−1
j Covariance matrix of load forecasting error at

node j.

αRO Confidence coefficient of uncertainty set.

C. VARIABLES

PL,j,t Forecasted value of active load demand at node

j in time period t .

1PL,j,t Load forecasting error at node j in time period t .

bj Binary variables that is equal to 1 if node j is

included in an island, being 0 otherwise.

PDG,j,t Active power output of DG at nodej in time

period t .
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QDG,j,t Reactive power output of DG at nodej in time

period t .

Hjs,t Active power from node j to node s in time

period t .

QSVC,j,t Reactive power output of SVC at nodej in time

period t .

Gjs,t Reactive power from node j to node s in time

period t .

cij Binary variables that is equal to 1 if branch ij is

closed, being 0 otherwise.

Uj,t Voltage of node j in time period t .

Fij Fictitious power of branch ij.

Hj Power supplied by fictitious source at node j in

an island.

N The number of islands.

I. INTRODUCTION

Today’s power systems are facing a series of natural disas-

ters, such as hurricanes, floods, thunderstorms and blizzards.

Extreme weather may result in financial loss and system

collapse. To defense against the catastrophe of system-wide

blackout, the resiliency of power system should be thought

highly of. As defined in [1], resiliency is ‘‘the ability to

prepare for and adapt to changing conditions and withstand

and recover rapidly from disruptions.’’ Distribution system

islanding is scenario-based backup plans designed to reduce

the impact of disaster, if any, and recover from disruptions

as quickly as possible. IEEE encourages power supplier and

users to achieve the islanding operation instead of island ban,

so it has gradually become a research highlight [1]–[13].

A lot of researches of islanding problemmainly focused on

search methods. A heuristic approach is introduced to solve

the post-disturbance microgrid formation problem in [3].

In [4], Li et al. applied spanning tree search algorithms to find

the candidate restoration strategies bymodelingmicrogrids as

virtual feeders and representing the distribution system as a

spanning tree. As for the mathematic model of the islanding

optimization, the objective functions mainly contain the max-

imum recovery of the important loads [5]–[7], an optimum

amount of load to be shed in a fully distributed manner under

large disturbances [13], the minimum of switching opera-

tions [4], [8], the number of islands as few as possible [9],

and the comprehensive confidence of strategies as much as

possible [8], [9].

Many studies take other factors into account because of

the development of distribution system and the increased

penetration of distribution generations (DGs). Reference [1]

proposed amodel to deal with multiple-fault scenarios, which

consider the stability of microgrid and dynamic performance

of DGs during the restoration process. The model developed

in [10] is aimed at dealing with radial and meshed topologies

of future distribution grids, in which the flows are expected

to be undirected. And the model also allowed for possible

mobile and fixed DGs. Hou et al. [2] pointed that the ac

microgrid can operate in grid-connected (GC) mode and

island (IS) mode as well as mode transitions, a distributed

hierarchical control was applied to these modes. The fre-

quency/voltage recovery and accurate power sharing in IS

mode were achieved. Most distribution networks have unbal-

anced configurations that are not represented in sufficient

detail by single-phase models, the work in [11] proposed

a microgrid formation plan that adopts a three-phase net-

work model to represent unbalanced distribution networks.

Besides, the uncertainty of outage duration [8], the hybrid

energy storage system, including the battery and the super-

capacitor during islanded operation [12], and a novel dis-

tributed coordination load shedding (DCLS) approach using

sub-gradient algorithm of multi-agent system [13] are also

considered.

Island partition is a strategy based on the load forecasting,

the works above all neglect the impact of load forecasting

error, so the islands they formatted are exposed to secondary

collapse. In this paper, we focus on the forecasting error of

load to prevent the secondary collapse. In [3], [6], and [7],

the uncertainty of load demands was modelled in microgrid

formation, they were all solved as a stochastic mixed-integer

linear program. Stochastic programming is the well-known

and popular modeling method that deal with data uncer-

tainty. But this approach has some practical limitations in the

application to large scale power systems. Firstly, stochastic

programming assumes accurate probability distributions of

uncertainty, which is difficult to get. Secondly, stochastic

programming finds the optimal solution relying on sampling

a series of scenarios of the uncertainty realizations. It will take

a long time in such a huge power system. Besides, the optimal

solution the stochastic programming finds can’t guarantee the

best performance in any of the worst cases [14].

In order to deal with these limitations, Ben-Tal and

Nemirovski [15]–[17] proposed the robust optimization.

Robust optimization is an appropriate framework to model

optimization problems where the optimal solution must

remain feasible for some parameter variations in a given

user-defined set (also called ‘‘uncertainty set’’). According

to this definition, robust optimization can also deal with

data uncertainty. Different from stochastic programming,

it only requires information about uncertainty set of random

parameters, such as the mean and the extreme, instead of

assuming probability distribution of uncertainty data. And

robust optimization searches the best result in the worst

case, so the developed model can provide feasible solution

for all the scenarios. Because of these advantages, much

of research along this vein, including [14], [18], [19], has

focused on robust optimization for unit commitment. In [20],

Yi et al. proposed a multi-objective robust scheduling model

considering renewable energy and demand response (DR)

uncertainty based on the method, which utilizes multitype

DR resources to smooth fluctuations in renewable energy on

different timescales. The work in [21] applied robust opti-

mization to AC/DC hybrid microgrids.

The uncertainties associated with the real-time market

price signal (buying and selling), renewable power sources
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and forecasted load values were considered. Robust optimiza-

tion based optimal DG placement in microgrid under the

uncertainties of power output of wind turbines and photo-

voltaics as well as load consumptions was analyzed in [22].

In this paper, the island partition of distribution system

based on the two-stage robust optimization (RO) model is

presented, which takes the uncertainty of load forecasting

into account. However, two-stage RO model is NP-hard,

it is very difficult to compute it. The comparison between

a column-and-constraint generation algorithm with existing

Benders-style cutting plane methods was proposed in [23].

The number of iterations in the C&CG algorithmwas reduced

if the second-stage decision problem is an LP, such a reduc-

tion is very significant in application. Reference [24] pro-

posed an approach to address data uncertainty for discrete

optimization and network flow problems that allows control-

ling the degree of conservatism of the solution. Bertsimas and

Sim [24] discussed two different cases, one was that both the

cost coefficients and the data in the constraints of an integer

programming problem were subject to uncertainty, the other

was that only the cost coefficients were subject to uncertainty,

cases were proved to be computationally tractable both prac-

tically and theoretically.

This paper firstly builds a mixed integer linear model of

island partition, aiming at a maximum coverage of loads.

In order to avoid the secondary collapse, a two-stage robust

optimization programming taking the uncertainty of load

forecasting error into account is proposed. The ellipsoidal

uncertainty set is built to describe the error of load fore-

casting, and the two-stage robust optimization problem is

transformed into a mixed integer second order cone problem

for its computational tractability. The contributions of the

proposed method are:

1) The uncertainty of load forecasting error is considered

in the island partition model. In order to describe the tempo-

ral correlation of the uncertainty parameters, the covariance

matrix is found to build the ellipsoidal uncertainty set.

2) Two-stage robust optimization is applied to the island

partition model. The island strategy formulated based on

the model can restore the maximum loads in the worst

case, so the island can be surely reliable under the fluc-

tuation of loads. Besides, adjustable uncertainty budget is

set to prevent the over-conservative of robust optimization

result.

3) The two-stage robust optimization problem is trans-

formed into amixed integer second order cone problem. It can

be computationally tractable to solve it.

The remainder of this paper is organized as follows.

In Section II the island partition problem to restore loads

after major faults is presented. Section III describes theMILP

for the island partition optimization. Section IV transforms

the island partition problem into a two-stage robust formu-

lation and proposes the solution methodology. In Section V,

the computational results are provided. Finally, some relevant

conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

Generally speaking, distribution systems are configured as a

radial topology. So, in this paper, a radial distribution system

is considered with N nodes and L lines, the set of nodes is

υ = {1, 2, . . . ,N }, and each line represented by the set of

edges ε = {(i, j)} ⊆ υ × υ. Loads of the distribution system

demand for active and reactive power. There are several DGs

(photovoltaics and wind turbine generators in this paper) in

distribution system, providing both active and reactive power.

Static var compensators (SVCs) are also installed to provide

reactive power. When a section of the distribution system is

under attack and has a breakdown, it should be isolated from

the main grid. The downstream of the fault area will no longer

be energized. In order to reduce the economic losses, DGs are

supposed to restore as many loads as possible and formulate

one or several reliable islands before the restoration of the

main grid. The assumptions of this paper are proposed as

follows:

1) Energy storage systems are installed in distribution

system to provide instant power support when a con-

tingency event happens, such as wide fluctuation of

DG output or a DG trip, preventing a cascade faults

on the grid to make frequency stable. But in nor-

mal operation, the island is powered by DGs, so the

models proposed in following text do not contain the

energy storage system for making it computationally

tractable.

2) The penetration of DGs increases rapidly, so the DGs

installed in distribution system can provide energy to

multiple loads. The islands in the proposed strategies

can be one or several, which depends on the constraints

they satisfy. Each island contains one or more DGs.

3) Each load can be energized by one island at most, and

some of loads can even be discarded and not be restored

at the proposed strategies. If one load is restored by

two different islands, they will be coalesced as a larger

island.

4) Under the situation that the remotely controlled auto-

matic switch devices are widely applied in distribution

system, the switches are installed in all lines and nodes.

That means, lines can be opened or closed, and loads

can also be connected or disconnected to form islands.

In particular, a load can be disconnected even the lines

transformed energy to it are closed.

III. MODEL FOR ISLAND PARTITION

The objective of island partition is to maximize the sum of

loads picked up by DGs before fault removed, while satisfy-

ing a series of constraints. In this section, the operation con-

straints and topology constraints are proposed based on [25],

and island partition model is formulated without forecasting

error. The problem taking load forecasting error into account

and the application of robust optimization will be presented

in next section.
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A. OBJECTIVE FUNCTION

The objective function is proposed as follows:

max
bj

∑

j∈υ,t

bjPL,j,t (1)

The islands formulated should operate stably during

restoration process, so the objective function contains the

total loads restored before faults removed.

B. CONSTRAINTS OF DISTRIBUTED GENERATIONS

Loads can be supplied by distributed generations (DGs) after

component outages. In this paper, photovoltaics (PVs) and

wind turbine generators (WTGs) are regarded as generators

to supply power. The combination of PVs and WTGs will

supply power more reliable in the long-term operation for

wind-photovoltaic complementarity. (2)-(3) refer to the DGs

output limitations.

PDG,j,t ≤ ej,tSDG,j,t , j ∈ {DG} (2)

P2DG,j,t + Q2
DG,j,t ≤ S2DG,j,t , j ∈ {DG} (3)

The maximum active power output of DGs is revealed

in (2). Reactive power output of DGs is constrained in (3).

C. OPERATION CONSTRAINTS

It gives operation constraints in (4)-(9), which based on the

linearized DistFlow model.

PDG,j,t − PL,j,t ∗ bj =
∑

S∈δ(j)

Hjs,t −
∑

i∈π (j)

Hij,t , ∀j ∈ υ (4)

QDG,j,t + QSVC,j,t − QL,j,t ∗ bj =
∑

s∈δ(j)

Gjs,t −
∑

i∈π (j)

Gij,t ,

∀j ∈ υ (5)

−Smax
ij cij ≤

∑

S∈δ(j)

Hjs,t −
∑

i∈π (j)

Hij,t ≤ Smax
ij cij, ∀(i, j) ∈ ε

(6)

−Smax
ij cij ≤

∑

s∈δ(j)

Gjs,t −
∑

i∈π (j)

Gij,t ≤ Smax
ij cij, ∀(i, j) ∈ ε

(7)

−M (1 − cij) + 2(rijHij,t + xijGij,t )/U0 ≤ Uj,t − Ui,t

≤ M (1 − cij) + 2(rijHij,t + xijGij,t )/U0, ∀(i, j) ∈ ε (8)

H2
ij,t + G2

ij,t ≤ Smax2

ij cij, ∀(i, j) ∈ ε (9)

Specifically, (4)-(5) imply active and reactive power con-

straints of each node, as shown in Fig. 1 (take active power as

an example), bj denotes whether load j is connected to islands.

(6)-(7) are the input power limits of each node, cij is the status

of line ij, if line ij is closed, the input of node j is limited by

the maximum capacity of line ij, otherwise, it equals to zero.

(8) gives the DistFlow equation. If line ij is closed, the voltage

FIGURE 1. DistFlow model for radial distribution network.

difference of this line is limited by power flow; otherwise, it is

arbitrary. (9) refers to the branch capacity limits.

D. TOPOLOGY CONSTRAINTS

Different from the transmission systems, the topology of

distribution system should be radial. According to [26],

the graph is radial when the following two conditions are

satisfied: (i) each sub-graph is a connected graph; (ii) the

number of branches equals to the number of nodes minus

the given number of sub-graphs. And topology constraints

are presented as follows. Specifically, (10) and (11) are the

virtual flow equation; (12) limits the power injected by ficti-

tious sources. (13) denotes the bound of the fictitious power

on each line; (14) limits the number of fictitious network

branches.

∑

s∈δ(j)

Fjs −
∑

i∈π (j)

Fij = −bj, j ∈ υ\ {DG} (10)

∑

s∈δ(j)

Fjs −
∑

i∈π (j)

Fij = Hj, j ∈ {DG} (11)

bj ≤ Hj ≤ M ∗ bj, j ∈ {DG} (12)

−M ∗ cij ≤ Fij ≤ M ∗ cij, ∀ij ∈ ε

(13)
∑

ij∈ε

cij =
∑

j

bj − N (14)

In order to achieve the connectivity and radiality, a ficti-

tious network with the same topology structure as distribution

system is designed. Each island is regarded as a sub-graph,

where DGs are chosen as the fictitious sources and all other

nodes have unit load demand.

Constraints (10)-(13) guarantee the first condition. The

input fictitious power of each node (except the source nodes)

equals to 1 if the node is connected to an island, otherwise,

it equals to 0. Each source nodes provides fictitious power

if it is connected to an island. It means that there is at least

one path between source nodes and the other nodes in the

fictitious network.

Constraints (14) guarantees the second condition. Assump-

tion in section II mentioned that there will be more than one

DGs in an island, so the number of sub-graphs equals to the

number of islands. Thus, the number of connected branches

equals to the number of connected nodes minus the number

of islands.
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In general, the model of island partition is formulated as

follows, which is a MILP problem

Objective Function: (1) (15-a)

s.t. DG Constraints: (2)-(3) (15-b)

Operation Constraints: (4)-(9) (15-c)

Topology Constraints: (10)-(14) (15-d)

IV. TWO-STAGE ROBUST OPTIMIZATION

A. UNCERTAINTY SET OF LOAD FORECASTING ERROR

Actually, it is difficult to forecast the load accurately in

existing studies. The load forecasting is described as follows:

PL,j,t = PL,j,t + 1PL,j,t (16)

The prediction of load is divided into two parts, load

forecasting expectation and load forecasting error, the latter is

uncertain. It can be difficult to get the probability distribution

of load forecasting error, so the uncertainty set is used to

describe it. In robust optimization, uncertainty set often takes

the form of a finite discrete set, a polytope, or an ellipsoid.

In order to prevent over-conservative of the result and con-

sider temporal correlation of load forecasting error in each

node, the ellipsoidal uncertainty set is proposed as follows:

� = {1PL,j,t : 1PTL,j,tR
−1
j 1PL,j,t ≤ Cconf } (17)

The expected value of the uncertainty parameter deter-

mines the center of the ellipsoid, and it is set to zero in this

paper. 1PL,j,t represents any vector in the ellipsoid. Rj is the

covariance matrix of uncertainty parameters. It is a positive

definite matrix, which determines the expansion extent of

the ellipsoid from the center in all directions. Ellipsoidal

uncertainty set can describe the temporal correlation of load

forecasting error at node j using Rj, which can acquire from

historical data [27]. Cconf is related to the confidence coeffi-

cient, which can adjust the size of the uncertainty set.

The degree of conservatism of robust optimization result

can be easily controlled by changing the uncertainty budget

Cconf . The larger Cconf is, the more conservative the result

will be. Cconf can be decided by the confidence coefficient

of uncertainty set, and confidence coefficient represents the

probability of an uncertain quantity falling into the uncer-

tainty set. In general,1PL,j,t conforms tomultivariate normal

distribution, the relationship between Cconf and confidence

coefficient is proposed as follows [28]:

Cconf = χ2
1−αRO

(24) (18)

TABLE 1. Corresponding Values of αRO and Cconf .

where χ2
1−αRO

(24) represents 1 − αRO quantile of chi-square

distribution with 24 degrees of freedom. Table 1 reveals the

value of Cconf corresponding to each αRO.

B. TWO-STAGE ROBUST OPTIMIZATION MODEL AND

SOLUTION METHODOLOGY

In order to consider load forecasting error, the optimal prob-

lem is formulated as a two-stage robust optimization pro-

gram. The first stage is to optimize the base island partition

strategy based on the expected load forecasting, and the sec-

ond stage is to adjust the result according to the uncertainty

set of load forecasting error. The island proposed will stay

reliable even loads demand fluctuates. The model proposed

in Section III is transformed in this part.

Constraint (4) changes as follows when load forecasting is

described as equation (16)

PDG,j,t − (PL,j,t + 1PL,j,t ) ∗ bj =
∑

S∈δ(j)

Hjs,t −
∑

i∈π (j)

Hij,t

(19)

Constraint (19) is robust because of the uncertainty param-

eters 1PL,j,t , it can be written as follows:

PL,j,t ∗ bj + max
1PL,j,t

{1PL,j,t ∗ bj}

= PDG,j,t − (
∑

S∈δ(j)

Hjs,t −
∑

i∈π (j)

Hij,t ) (20)

Constraint (4) is replaced with constraint (20), so the island

partition model in Section III is changed to be a two-stage

robust optimization model when considering load forecasting

error. The decision variables in each stage are different, so,

it is difficult to solve the robust optimization model. For com-

putational tractability, the two-stage model is transformed

into the certainty robust counterpart as followings.

Firstly, 1PL,j,t in constraint (20) can be replaced with the

ellipsoidal uncertainty set. Define that L = R
1/2
j , ξ is the

variable substitution of1PL,j,t ,� can be written equivalently

as

� = {1PL,j,t : 1PL,j,t =
√

Cconf Ljξ, ‖ξ‖2 ≤ 1} (21)

where ‖ ‖2 is the 2-norm. Thus, constraint (20) can be

changed into

PL,j,tbj + max
‖ξ‖2≤1

{
√

Cconf Ljbjξ}

= PDG,j,t − (
∑

S∈δ(j)

Hjs,t −
∑

i∈π (j)

Hij,t ) (22)

In constraint (22), the uncertainty budget Cconf can be set

in advance, covariance matrix Rj can acquire from historical

data, and decision variables bj are decided in the first stage of

robust optimization program. Therefore, ξ is the only uncer-

tainty decision variables in the second stage. Constraint (22)
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TABLE 2. Load demand of 33 nodes and maximum active power output
of all DGs at each time period.

TABLE 3. Statuses for nodes and lines in two island partition models.

can be transformed as follows [29]:

max
‖ξ‖2≤1

{

√

(√

Cconf Ljbjξ
)2

}

=

√

√

√

√

√



PDG,j,t−(
∑

S∈δ(j)

Hjs,t−
∑

i∈π (j)

Hij,t )−PL,j,tbj





2

(23)

‖ξ‖2 ≤ 1, constraint (23) is transformed into a second

order cone robust counterpart as follows:

PL,j,tbj +
∥

∥

√

Cconf Ljbj
∥

∥

2

= PDG,j,t − (
∑

S∈δ(j)

Hjs,t −
∑

i∈π (j)

Hij,t ) (24)

Two-stage robust optimization model, which contains the

uncertainty parameters, is transformed into deterministic

optimization model, and a mixed-integer second order cone

robust optimization model is proposed through above trans-

formation.

In general, robust optimization model of island partition

considering load forecasting error is formulated as follows:

Objective Function: (1) (25-a)

s.t. DG Constraints: (2)-(3) (25-b)

Operation Constraints: (5)-(9), (24) (25-c)

Topology Constraints: (10)-(14) (25-d)

V. CASE STUDIES

Results from several case studies are presented in this section.

The proposed approach has been applied to an IEEE 33-node

test system. Two PVs and two WTGs are located at nodes

FIGURE 2. IEEE 33-node system with four DGs.

FIGURE 3. Island partition result based on MILP model.

2,17,5,15, respectively. and capacity of these DGs is 6 MW.

Energy storage systems are connected to the same nodes

as DGs to provide instant power support. Load demand of

the whole 33 nodes and maximum active power output of

all DGs in different time period are listed in Table 2. The

interruption is happened between node 1 and node 2, and the

distribution system is disconnected to grid before the fault

removed. IEEE 33-node text system with four DGs is shown

in Fig. 2. All studies are tested on a PC with an Intel Core

i5-8250U CPU@1.6GHz and 8GB RAM. GAMS is used to

formulate the models and link the CPLEX solver.

In order to evaluate the effectiveness of the robust opti-

mization model, the MILP model without considering load

forecasting error in reference [25] is comparedwith themodel

proposed in this paper.

For better comparison, assumptions listed in Section II are

applied to both the twomodels. Island partition strategy based

on the MILP model proposed in reference [25] (for ease of

description, we use ‘‘MILP model’’ in the following text) is

shown in Fig. 3, and Fig. 4 shows the island boundary based

on the robust optimization model proposed in Section IV (for

ease of description, we use ‘‘robust model’’ in the following

text). In Fig. 3, Cconf = 33.20. Table 3 represents closed

lines and connected nodes in two models. Both of the two

64252 VOLUME 7, 2019



W. Lin et al.: Robust Optimization for Island Partition of Distribution System Considering Load Forecasting Error

FIGURE 4. Island partition result based on robust model.

TABLE 4. Data for DGs and restored loads in two models at each time
period.

models can restore loads after faults happened in main grid.

But the boundary of two models is different, and it is worth

remarking that there are less loads in island when considering

load forecasting error.

We assume that islands will operate for 24 hours, it insures

the boundary of island will remain unchanged before restora-

tion of the main grid, output of DGs and demand of restored

loads at each time period in two different models are con-

trasted in Table 4. It can be observed that the output of

DGs is equal to the demand of restored loads at each time

period in MILP model. While the output of DGs is larger

than the demand of restored loads in robust model. In the

actual situation, load demand often fluctuates, and will be

over the expected value sometimes. Therefore, island based

TABLE 5. Data for DGs and restored loads in 24 hours of different
uncertainty budget.

FIGURE 5. Variation trend of DGs output and restored loads demand
in 24 hours of different uncertainty budget.

on MILP model will face the secondary collapse, especially

in T18 and T20 when the demand of restored loads reaches

themaximum active power output of DGs. It means, DGsmay

not satisfy the demands of restored loads in T18 and T20, and

island based onMILPmodel may not operate normally if load

demand fluctuates. Different from it, the demand of restored

loads doesn’t reach the maximum active power output of

DGs at each time period in island based on robust model.

It means, island will operate normally even if load demand

fluctuates. If the secondary collapse happens in distribution

system, it will suffer serious economic losses. By contrast,

it is more reliable and economical for island based on robust

model, it will operate stably even if some of loads fluctuate.

Cconf is defined as the uncertainty budget to control the

degree of conservatism of robust model. Total output of DGs

and demand of restored loads in 24 hours of different Cconf
are revealed in Table 5, and Fig. 5 shows variation trend of

them. When Cconf decreases, the difference value between

output of DGs and demand of restored loads decreases. The

difference value represents the output margin reserved by

DGs for load fluctuation. The smaller the difference value,

the less conservative the result will be. Table 6 shows statuses

of each line and node of different uncertainty budget.

Islands boundary of each Cconf changes in order to satisfy

different conservatism. It can be proved thatCconf can control

the conservatism of two-stage robust optimization result. The

over-conservative result will be economically damaging by

losing some important loads. Therefore, it is necessary to

choose a suitable value of Cconf .
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TABLE 6. Statuses for nodes and lines of different uncertainty budget.

VI. CONCLUSION

This paper proposed a two-stage robust optimization model

for island partition problem, which takes load forecasting

error into account. It satisfies operation and topology con-

straints while aiming at restoring as many loads as possible.

Then the two-stage model is transformed into a mixed-

integer second order cone robust optimization model for

computational tractability. Comparing the island boundary

as well as output of DGs and restored load demand of the

model proposed in this paper with existing model, it can

be proved that the model in this paper is more reliable and

can avoid the secondary collapse when loads fluctuate. The

degree of conservatism of the robust optimization result can

be controlled by adjusting the uncertainty budget. The robust

island partition model can be applied to reliability assessment

or planning of distribution network in the future work.

This paper only focuses on load forecasting error, actually,

there is forecasting error in output of DGs too. And this paper

assumes that the priority of loads in distribution system are all

the same. Future work should further consider the forecasting

error of DGs output as well as take different priority of loads

into account to improve the reliability of critical loads. It is

mentioned at the end of Section V that it is necessary to

choose a suitable value of Cconf . However, this paper doesn’t

concentrate on it. Choosing a suitable uncertainty budget to

balance the economy and reliability of the island operation

will be an issue deserved to study in the future work.
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