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ABSTRACT 

The uncertainties such as manufacturing errors and 

environmental variations are inevitably encountered in 

engineering design, therefore in order to find robust solutions 

which keep high performance over a wide range, a mean-

variance multi-objective robust optimization (RO) 

framework was proposed. Specifically, a kriging-based 

uncertainty quantification (UQ) formulation was proposed, 

which formulates uncertainty parameters and optimization 

design variables in product form, thereby the optimization 

search and UQ are conducted simultaneously in RO. Before 

RO, the sequential sampling strategies were employed to 

build high-accurate surrogate, which was shown effective by 

our five-variable engineering problem. Through aero-thermal 

design of vortex generators (VG) in U-bend channel of high-

temperature blades, some issues such as constraints selection 

and knowledge mining in RO space were addressed. The RO 

of VG was carried out with one Gaussian-distributed and one 

uniformly-distributed uncertainty parameter, and three 

optimization design variables. One deterministic 

optimization (DO) process at the nominal condition and 

several RO process with different constraints were 

conducted. It was shown that the proposed RO was able to 

find robust solutions that have high-performance and are not 

sensitive to uncertainty fluctuations; which were validated by 

CFD. Meanwhile, the solution of DO was found helpful to 

exclude variance-dominated solutions which have much 

worse performance. But some constraints based on solution 

of DO would make the RO solution set to be null, therefore 

the RO can be an iterative process, in this regard, it is 

attractive to build high-accurate surrogates before RO. From 

another perspective, the several RO with different constraints 

are useful to group the solutions and get a insight into black-

box design space like VG, which is valuable to select the 

final solution from many Pareto solutions. 

INTRODUCTION 

The uncertainties are always encountered in engineering 

design, which can come from various sources such as 

manufacturing error, environmental variation (e.g. the 

change of operational condition that different from design 

condition) and etc.[1]. The designs optimized purely for 

nominal performance may suffer from significantly degraded 

performance when uncertainty propagates, e.g., Bunker [2] 

showed that the geometric uncertainties can lead to a 

temperature increase of 40K at most for high-temperature 

blades, which should reduce the life of aero-engines by 30%. 

D’Ammaro and Montomoli [3] investigated the effects of 

fluctuations of operation condition on film-cooling 

effectiveness of a gas turbine blade; he showed that a 20% 

stochastic variation of the inlet total pressure gave a variation 

of the adiabatic effectiveness of about 80%. Therefore, 

extensive attentions [1, 4] have been drawn to the robust 

design, which seeks to obtain solutions that keep high 

performance over a wide range.  

Both the probabilistic approaches and deterministic 

methods (which incorporate non-statistical indices such as 

gradients [5] or sensitivities [6]) are developed for robust 

design. Our focus is on probabilistic robust optimization 

(RO), then the following four issues such as (a) uncertainty 

quantification (UQ), (b) dealing with uncertainty and 

optimization variables, (c) robustness measurement and (d) 

surrogate accuracy management in RO needs to be 

considered. As for UQ, the Monte Carlo simulation (MCS) 

[7] is most commonly used which is straightforward. 

However, the MCS requires hundreds of thousands and even 

millions of function calls, which is a prohibitive cost for 
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expensive problems if only direct simulations (e.g. CFD) 

were used for the performance evaluation. Therefore, some 

efforts were drawn to use surrogates (e.g. hierarchal kriging 

[8]) instead of direct simulations for MCS or directly build 

surrogates [9, 10] of mean and variance. Alternatively, 

people resort to develop formulations of mean and the 

variance directly by polynomial chaos expansion [11, 12] 

and kriging [13-15] as well. 

Concerning the problem as how to deal with 

optimization design variables and uncertainty parameters, 

they are often merged as uncertainty variables in most 

references [11-18], and doubled loop optimization strategies 

are frequently adopted, i.e., the variables are searched in a 

large space to obtain better nominal performance in an outer 

loop. Then, by varying corresponding variables of optimized 

solution in its neighborhood of small range, UQ was 

conducted in an inner loop. Most of the UQ methods [8, 9, 

11, 13-15] shown in the previous paragraph are designed for 

the uncertainty variables, which doesn’t distinguish between 

optimization variables and uncertainty parameters.  

On the other hand, there exists situation when 

optimization design variables and uncertainty parameters 

cannot be merged, e.g. for RO of drag coefficient of wing 

RAE 2822 in [12], the shape parameters of the airfoil was to 

be optimized,  while the uncertainties that come from 

fluctuation of operation conditions such Mach number and 

attack angle are considered for design robustness. Our 

proposed UQ formulation is aimed for such situations, 

instead of taking uncertainty fluctuations as latent parameters 

in stochastic kriging [10]or using polynomials chaos[12], we 

use ordinary kriging to formulate optimization design 

variables and uncertainty parameters in product form, which 

help to conduct the optimization search and UQ 

simultaneously in RO.  

When it comes to the robustness measurement, it can be 

divided into two issues. The first issue is the RO objectives 

and corresponding optimization strategies. The mean and 

variance are most frequently used for probabilistic 

optimization framework; both the strategies of multi-

objective optimization [9, 10, 16-18] and weighted forms of 

mean and variance in single-objective optimization [11-15] 

were reported in the references. By comparing to some 

single-objective RO, Ryan et al. [18] stated that the multi-

objective strategy was able to cover the solutions of single-

objective RO while capturing tradeoffs within the design 

space.  

The second issue related to robustness measurement is 

the selection of constraints, which is rarely discussed in 

publications. As will be shown in the design of vortex 

generator (VG) in U-bend channel, when using mean-

variance multi-objective strategy to conduct RO, some 

variance dominated “inferior” solutions can be obtained: 

these solutions are significantly less sensitive to the 

uncertainty fluctuations, but their design performance are 

much worse. To exclude these “inferior” solutions, 

constraints should be imposed for RO. However, most 

engineering problems we encountered are black box [19], 

i.e., the relations between variables and objectives cannot be 

explicitly expressed; we do not have much prior knowledge 

on what kind of constraints should be effective. Then the 

following problems would occur: on one hand, the 

constraints set by original design may not be able to filter out 

the “inferior” solutions. Actually, we can add uncertainty 

information from solution of deterministic optimization (DO) 

to exclude RO solutions that not competitive to the solution 

of DO. However, on the other hand, the constraints imposed 

by solution of DO may be too strong to make the set of RO 

solutions to be null. Then, the RO has to iterate several times 

when null solution set was encountered. Further, as will be 

addressed in our engineering example, for design space of 

black-box, doing the RO several times with different 

constraints is beneficial, the solutions can be clustered by 

comparing the RO models (with different constraints), which 

is of great value to get insights into the design space [19, 21] 

and help to select the final solution from many Pareto 

solutions.   

Finally, regarding to surrogate accuracy management in 

RO, Arendt et al. [13] and Sun et al.[15] propose to 

adaptively infill samples and update surrogate accuracy 

during the RO process, which was shown effective for one-

short RO. Alternatively, for expensive black-box problems, it 

is also attractive to build high-accurate surrogate before RO, 

as the RO would be conducted several times to gain more 

knowledge of black-box design space. With high-accurate 

surrogate before RO, we can efficiently conduct RO with 

different constraints without worrying large increase on 

computational cost. Further, recalling the strategies for 

efficient global optimization (EGO), the adaptive sequential 

sampling by using expected improvement (EI) function [22] 

and etc. is effective to tradeoffs between improving surrogate 

accuracy and searching optimal solutions. By infilling 

multiple points at each iteration as proposed by Viana et al. 

[23] and Zhan et al.[24] , the global search performance of 

classic EGO algorithm [22] becomes significantly better, and 

one reason behind such great improvement in search 

performance is that, the corresponding surrogate accuracy is 

greatly improved. In this regard, we can use these multiple 

adaptive sampling methods purely to build high-accurate 

surrogate before RO, which will be discussed in this paper. 

In addition to addressing the issues of RO, the 

engineering purpose of RO of VG is to develop novel 

structures in U-bend internal cooling channel, in order to 

enhance heat transfer there and thus improve the cooling 

performance of high-temperature blades. The following 

sections are organized as follows: The kriging-based UQ and 

flowchart of RO were introduced in Section II, the adaptive 

infill sampling strategy to build high-accurate surrogate and 

multi-objective evolution algorithm were illustrated. Then, 

the parameterization and CFD model of VG were introduced 

in Section III. Next, upon building high-accurate surrogate 

for the space of both uncertainty parameters and optimization 

variations, DO of VG was conducted at nominal condition in 

Section IV. And RO of VG and was carried out in Section V, 

some RO issues were addressed. Finally, conclusions were 

made in Section VI. 
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UNCERTAINTY QUANTIFICATION AND ROBUST 
OPTIMIZATION PROCESS 

UQ for Input Uncertainties of Arbitrary Continuous 
Probability Distributions 

The kriging is one of the most popular surrogates, whose 

prediction Y at unknown site w is built as a trend function 

( )f w  plus a normal random process ( )Z w as:  

( ) ( ) ( )w w wY f Z   (1) 

where, ( )f w is often taken as a constant as 
0 , and ( )Z w  

describes the local features of Y around the n sample points 

 (1) ( ), nX  x x , which has zero mean and a covariance 

function, which usually of the form: 

2
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where, k denotes the number of variables, σ
2
 is the process 

variance of samples, and θh represents the curve bumpiness 

hyper-parameter along dimension h [21,22].The kriging 
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1

0 0 0

1 ( )

0 0

1 1

y( ) Z( ) ( ) ( )

( )exp

w w r w y l

y l

t

n k
i

i h h h

i h

R

R w x

  

  





 

    

 
     

 
 

 (3) 

1 2
2 2 1

1

(1 ( ))
( ) [1 ( )R ( ) ]

l r x
x r x r x

l l

t t
t t

z t

R
s

R








  

 

(4) 

where, y denotes the function vector of given samples X, l is 

vector of ones, which is of the same size as y . More details 

of kriging and its implementations can be found in [21][21].  

When both (non-probabilistic) design variables (denoted 

by o = [o1, o2, … om]) and probabilistic uncertainty 

parameters (denoted by u = [u1, u2, …ul]) are considered to 

build surrogate, the kriging prediction as Eq.(3) can be 

reformulated as Eq. (5). Then, at a design variable location o , 

the mean performance (denoted by μ) and corresponding 

variance (denoted by σ
2
) can be calculated by Eqs.(6) and (7), 

when the probability distributions of uncertainty parameters 

is given as P(u).  
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Table 1 Calculation of Integrals for μ and σ2 with different probability distribution functions 
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Further, Table 1 lists the details for input uncertainties 

of various probability distributions. When the uncertainty 

parameters are independently distributed (as often assumed 

in UQ problems [25]) the high-dimensional integral in Eqs. 

(6) and (7) can be simplified to as product of the single-

variable integral for each uncertainty parameter. Specific 
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probability distribution function (abbreviated as PDF) can be 

assigned to each uncertainty parameter. 

In addition, concerning the joint effects of uncertainty 

parameters, joint PDFs would be assigned, as seen in the 

second column; then it is obvious that the dimension of 

integral calculation that needs to be conducted depends on 

the dimension of the joint PDFs for uncertainty parameters. 

On the other hand, according to the research of Schonlau and 

Welch [26], the joint effects of three or more parameters are 

often weak for most well-defined systems, which is also 

observed in the applications of analysis of variance[21,25]. 

In other words, usually only the two-variable joint effects 

should be considered in well-defined applications, and hence 

the dimension of integral calculation can research to 2 at 

most. In other words, the high-dimensional integral can be 

avoided by using Eqs. (6) and (7). The techniques such as 

Gauss-Legendre quadrature and Simpson’s rule were 

employed to calculate these one- and two-dimensional 

integrals. Comparing to MCS, the mean and variance 

calculated by Eqs. (6) and (7) should be much more efficient. 

Multi-Objective Robust Optimization Process 

Figure 1 shows the flowchart of the robust optimization 

process. It consists of four stages. First of all, a surrogate of 

high-accuracy will be built, by combing intelligent adaptive 

sampling and space-filling sampling strategies, the details 

will be illustrated through 1D toy problems. Secondly, by 

fixing uncertainty parameters, deterministic global 

optimization will be conducted at the nominal condition, and 

then UQ will be conducted for the solution of DO, which 

intends to exclude “insensitive” RO solutions which actually 

have much worse performance. The importance of statistical 

UQ information of DO solutions for RO will be discussed in 

detail in optimization design for VG in Section V.   

 
Fig.1  Framework of robust optimization process for vortex 

generators in U-bend channel 

Thirdly, the mean-variance multi-objective RO will be 

conducted after DO. In this work, the uncertainty factors 

such as fluctuations of operation condition and 

manufacturing errors are considered, which are separable 

from design optimization variables. Therefore, as shown in 

Fig.2, the optimization and uncertainty quantification are 

conducted simultaneously in a single loop, by using Eqs. (6) 

and (7). This is different from conventional RO process, 

which usually has inter- and outer-loop for optimization and 

uncertainty quantification, successively. Finally, to 

demonstrate the effectiveness of RO, the better performance 

of optimal Pareto solutions w.r.t. reference design and 

optimal solution of DO as well will be validated using CFD 

simulations. 

To build accurate kriging for UQ and optimization 

process, two strategies are considered. First, the vertices of 

hyper-rectangle space are included, which is effective to 

reduce the probabilities of extrapolation, as shown in Fig.3. 

However, it should be noted that, with the increase of 

dimensions (denoted by n), the number of vertices will be 

dramatically increased by 2
n
, therefore the strategy to include 

vertices is most useful for the design space with the number 

of variables less than 10.  

  
(a) Not all vertices included (b) Including vertices 

Fig.2 Including vertices to reduce the probability of extrapolation 

Second, in order to adaptively improve the surrogate 

accuracy in local areas, several intelligent infill criterions 

such as generalized expected improvement (GEI), mean 

squared error of surrogate (s
2
) and best solution of current 

surrogate ( minf̂ ) are combined. Equation (8) shows the 

expression of expected improvement (EI), which calculates 

the possibilities of function value at unknown sites to be 

better than current optimal solution. By adding a global 

factor g, a generalized form of EI (GEI) function was 

proposed by Schonlau [26], as shown in Eq. (9). Then, a 

combination of such infill criterions is proposed in paper for 

multi-points sampling over space, as seen in Eq. (10).  
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(10) 

To be noted, the EI (g=1) and GEI functions are 

originally used for surrogate-based efficient global 

optimization. However, the EI and GEI functions are 

formulated by taking a balance between surrogate accuracy 

uncertainties and current optimal solution; they are effective 

in improving the surrogate accuracy at unknown areas, as 
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shown in improved version of EGO [23, 24]. Ponweiser et al. 

[27] point out that, the GEI with larger g will put much 

emphasize on unknown regions with few samples, so does s
2
. 

On the contrary, the EI and minf̂ are likely to infill samples 

near the surrogate optimum and thus improve the surrogate 

accuracy there. Thereby, it can be expected that a high-

accurate surrogate over space can be obtained simultaneously 

while finding optimal solutions. Such favorable features are 

employed for UQ and RO process here, aiming to build high-

accuracy kriging.  

Figure 3 shows the effectiveness of sequential sampling. 

In Fig.3 (a), the dash-dotted lines are curves of infill 

criterions in (10). For easy observation, two typical of them 

are bolded to show their ability to take care of both unknown 

areas as (a) regions with relatively fewer samples (and thus 

in bad accuracy) and (b) regions near the surrogate optimum. 

The overlapped infill points are filtered out by setting a 

distance threshold. Then, by adding the adaptive infill points, 

the accuracy of updated kriging is observed significantly 

improved in Fig.3 (b). 

 

 
(a) Initial kriging and potential infill samples 

 
(b) Updated kriging 

Fig.3 Intelligent sequential sampling to improve surrogate accuracy 

over space 

For the multi-objective robust optimization, a self-

adaptive multi-objective evolution algorithm named as 

SMODE, was employed in this work. More details can be 

found in Ref. [28]. 

PARAMETERIZATION AND CFD SIMULATION OF 
VG IN U-BEND CHANNEL 

Geometric Model and Parameterization of VG for 
Optimization 

Figure 4 shows the computational model of Delta-Shaped 

VG in U-bend channel, and Fig. 5 and Table 2 define the 

geometric specifications by referring to [29]. The cross-

sectional aspect ratio of the channel (W/H) is 1:2; thereby the 

corresponding hydraulic diameter of the cross section is 

16.93mm. In order to improve the thermal performance, 10 

delta-shaped VG are equipped in both in- and out-flow path 

of the U-bend channel. The distance from the channel inlet to 

the leading edge of the first VG (denoted by d) is 6.35mm, 

and the distance between each VG (denoted by p) is 14.00 

mm, these distances will be fixed during the optimization.  

 
Fig.4 Computational model of the U-bend Channel equipped with 

delta-shaped vortex generators 

 
Fig. 5 Geometry of U-bend channel equipped with delta-shaped 

vortex generators 

Table 2  Geometric specifications of the U-bend channel 

Geometric 

 Parameters uL  
uW  

uH  
uR  S  

Values/mm 152.4 12.7 25.4 6.35 12.7 

For the optimization, the height (H), length (L) and width 

(W) of the VG will be adjusted as optimization variables to 

improve the aero-thermal performance of U-bend channel, 

while the size of 10 VGs will keep in the same size. The 

variable range of H, L and W in optimization will be given in 

Section IV. For robust optimization, the dimensional 

tolerance of edge fillet (abbreviated as r) is considered, and 

the fillet radius is set to be 0.3mm at nominal condition 

according to [30]. In addition, the Reynolds number 

(abbreviated as Re) is taken as another uncertainty parameter, 

the fluctuation ranges of r and Re are given in Section V, 

where the robust optimizations are carried out.  

CFD Method and Numerical Validation 

The commercial software, ANSYS CFX 14.5, is used for 

the aero-thermal performance evaluation of U-bend channel. 

The Reynolds-Averaged Navier-Stokes (RANS) solver is 

employed. Figure 4 shows the computational domain of the 

U-bend channel. The boundary conditions are set in 

accordance with the experimental test [29]. Specifically, a 

uniform velocity profile is imposed at the channel inlet. The 

inlet velocity is calculated according to the inlet Reynolds 

number, and the inlet temperature is fixed at 298.15K, while 

the inlet turbulence intensity is set as 5%. The non-slip wall 

with a constant temperature of 338.15K is given at the 
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channel heated wall surface. Considering the symmetry of 

the U-shaped channel along the span, a symmetric condition 

is imposed at the channel mid-span (see Fig. 4). An averaged 

static pressure is imposed at outlet. To ensure computational 

convergence, the residuals for continuity, energy, and the 

area-averaged wall temperature are set as less than 10
-5

, 10
-5

, 

and 10
-3

, respectively. Concerning for the mesh grids, the C-

type grids are used for the regions around the channel turn 

and the Y-type grids are generated for the surface of delta-

shaped VG. The distance of the first cell to the wall is set to 

be 0.002mm correspondingly, the dimensionless distance of 

the first cell to the wall [31], which is often denoted by y
+
, is 

less than 1.  

The Mesh sensitivity analysis is conducted at the 

nominal Reynolds number of 25000 with four different mesh 

sizes as 2.4 million, 3.1 million, 3.9 million and 4.6 million, 

and the performance is evaluated with the most popular 

turbulence model, SST k  . As shown in the last column of 

Table 3, the deviation of two critical performance indicators 

as the area-averaged Nusselt number augmentation ratio 

(
0Nu / Nu ) and the friction ratio (

0f / f ) are less than 0.5%. 

It indicates that the grids size of 4.6 million is sufficient to 

get rid of the influence of mesh dependence for the 

evaluation. Therefore, the 4.6 million-mesh is adopted for the 

optimization process, and a grid template is set up to ensure 

similar mesh topology and mesh quality in design process.  

Table 3  Mesh sensitivity analysis 

Mesh /million 2.4 3.1 3.9 4.6 

0Nu / Nu  1.842 1.885 1.907 1.916 

Difference/% 3.86 1.62 0.46 Baseline 

0f / f  3.21 3.165 3.136 3.131 

Difference/% 2.53 1.08 0.12 Baseline 

Further, the turbulence model is validated against Han’s 

test data [29]. Three different turbulence models as the 

standard k  model, the RNG k  model, and the SST 

k   model are chosen, which were conducted with 4.6- 

million-mesh.  

 
Fig. 6 Numerical Validation of Turbulence models against 

experimental test 

Figure 6 compares the regional area-averaged Nusselt 

number augmentation ratio on the ribbed wall with the data 

from [29]. Obviously, the trend and values predicted by SST 

k   model is most close to experimental data. Meanwhile, 

the largest discrepancy between the numerical results and test 

data is less than 8.9%. Therefore, the accuracy of SST k   

model is confirmed and selected for performance evaluation 

in optimization. 

SURROGATE MODELING AND DETERMINISTIC 
OPTIMIZATION FOR VG 

Surrogate Modeling and Cross Validation 

As discussed in Section III.A, the height (H), width (W) 

and length (L) of delta-shaped VG will be used as 

optimization variables to improve the aero-thermal 

performance of U-bend channel, while the dimensional 

tolerance of fillet radius(r) and the fluctuation of Reynolds 

number (Re) will be taken as uncertainty parameters, 

therefore there are five variables in total to build the kriging 

surrogate. The objective is the overall thermal performance 

(abbreviated as TP), which measures the heat-transfer 

performance of U-bend channel by trading off the 

aerodynamic loss.   

For the five-variable space, there are 68 samples in total. 

Where, 29 of them are generated by using a space-filling 

technique, uniform design, which are shown in circles in 

Fig.7. Meanwhile, the 32 (2
5
) vertices are shown in diamonds. 

In addition, 6 samples (denoted by deltas) are successively 

generated by sequential sampling in three iterations. Note 

that circles are initial space-filling samples, squares are 

vertices and deltas are generated by intelligent sequential 

sampling 

  
Fig.7 Projection of samples in 

normalized 2D space 

Fig. 8 Cross validation of 

kriging predictions 

To validate the accuracy of kriging prediction, the leave-

one-out cross validation was conducted as shown in Fig.8. 

Obviously, the scatters which consists of true and predicting 

values as (Predict y, y) distributed closely to the 45deg line, 

it means the thermal objective of U-bend channel, TP, can be 

well predicted by kriging. In addition, the cross-validation 

based RMSE and R
2
 of the kriging are 0.01314 and 0.9871, 

which confirms the high-accuracy of TP kriging. The 

effectiveness of intelligent adaptive sampling will be further 

discussed by CFD validation in Section VI. Using this 

kriging, the deterministic optimization and robust 

optimization will be carried out in following sections.  

Deterministic Optimization at Nominal Condition 

The kriging-based EGO algorithm is used for the 

deterministic optimization. The objective of deterministic 

optimization is conducted for the maximization of overall 

thermal performance, which is defined as below: 
1

3
0 0( / ) / ( / )TP Nu Nu f f  (11) 
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The range of optimization variables are shown in Table 4, 

while the uncertainty parameters, Re and r, are fixed at the 

nominal condition, as shown in the last two columns.  

Table 4 The range of optimization variables at nominal condition 

Variables 1x  
2x  

3x  u1 u2 

Geometric 

parameters 
L /mm W /mm H /mm Re r/mm 

Reference 

design 
6 6 3 25000 0.3 

variable range 4~9 4~9 2~5 -- -- 

After optimization and validation by CFD, the TP of the 

(deterministic) optimal solution at nominal condition is 

1.4969, which is 10.1% higher than that of the reference 

design (TP of reference design is 1.3595).  

Figure 9 compares the 
0/Nu Nu (see Apendix D) 

contours on the heated surface (see Fig.6) of U-bend channel 

at nominal condition. Obviously, the heat transfer 

performance of optimal solution was greatly enhanced, as the 

0/Nu Nu of the optimal solution is much larger in outflow 

path of U-bend channel. The covering range of high 

0/Nu Nu  is also increased in y direction at both in- and out-

flowpath, as seen in Fig.9.  

 

 
(a) Reference design 

 
(b) Deterministic optimal solution 

Fig. 9 Comparison of 
0/Nu Nu contours on heated surface at 

nominal condition 

Further, the thermal performance and the flow resistance 

in U-bend channel are separately analyzed in Fig.10. 

Obviously, there should have some tradeoffs on the way to 

improve the overall thermal performance (TP), the Nu of 

optimal solution was increased (see Fig.10 (a), but it also 

need more mechanical work to against the increased flow 

resistance (see Fig.10 (b)). When compared to the classic 

heat-transfer-enhanced structures such as the angled ribs in 

Han’s work[29], the heat transfer performance of our optimal 

solution is better while the flow resistance is also smaller at 

different Re conditions. It indicates that the VGs we 

proposed in U-bend channel should be a competitive internal 

cooling structure to resolve the cooling problem of high-

temperature blades.  

  
(a) Average 

0/Nu Nu  (b)  Average 
0/f f  

Fig.10 Thermal and aerodynamic performance comparison 

ROBUST OPTIMIZATION FOR VG 

As already noted in previous sections, the dimensional 

tolerance of fillet radius (r) on VG (see Fig.5) and the 

operational fluctuation of Re are considered as uncertainty 

parameters, the objective of RO is to maximize the mean of 

TP, and to minimize the corresponding variance when 

uncertainties propagates. The uncertainty information of the 

solution obtained by DO (denoted as DO_Opt) is taken as a 

reference to inspect the advantage of RO w.r.t DO. Several 

RO process were conducted to gain an insight into the RO 

design space. 

Table 5 shows the range of optimization variables and 

uncertainty parameters. The optimization variables keep the 

same as in DO process (see Table 5). The fluctuation range 

of Re is given by referring to [3], while the range of r is set 

according to [2]. Both the Re and r varies around 20% of 

its nominal value, and they follow uniform (abbreviated as U 

in Table 5) and normal distribution (abbreviated as N), 

respectively. 

 

Table 5 Range of optimization variables and uncertainty parameters in robust optimization process 

Variables 
Optimization variables Uncertainty parameters 

x1 x2 x3 u1 u2 

Geometric parameters L /mm W /mm H /mm Re r/mm 

Reference design at nominal condition 6 6 3 25000 0.30 

Variable range 4~9 4~9 2~5 U[20000,30000] N(0.3,0.02) 

Basic RO Process 

First, supposing that the DO was not conducted; we 

directly employ the RO algorithm to explore robust solutions 

of VG that can enhance the heat transfer performance of U-

bend channel. In addition, the RO design space is a “black-

box” at this initial stage, we basically assume that both the 

mean and variance values of optimized RO solutions should 

be better than the reference design in Section III. The 

corresponding RO model is as follows: 

    2 2

1 2 3 1 2

2 2

max , min [ ( , )], ( , )

[ , , ], [ , ]

( , ) ( )

( , ) ( )

x u x u

x u

x u

x u

TP TP

x x x u u

Ref

Ref

   

 

 

  

 





 (12) 
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For RO of VG, the population size and the generations of 

SMODE algorithm are set as 100 and 300, respectively. 

Figures 11 show the Pareto front of basic RO, both the mean 

and variance of the optimal Pareto solutions are far better 

than those of the reference design, it implies that the 

constraints based on reference design can be easily met. 

 
Fig.11 Pareto front of basic RO process 

In Fig.12, the parallel axes (PA) was used to visualize the 

variable space of optimal solutions [21]. The PA has one 

horizontal axis and several vertical axes. The points in each 

vertical axis show the value distributions of each component 

variable (x1, x2, x3) and the performance indicators (μ, σ
2
) as 

well, the polyline that connects the points show the value 

distribution of each solution. Further, the polylines are 

colored according to the the mean value (μ) of solutions to 

shows the combined effects of variables more clearly.  

As shown in Fig. 12, the solutions of optimal Pareto front 

are basically divided into two groups, with very different 

distributions of W and H. This explains why the Pareto fronts 

in Fig.11 are distributed in two clusters. In other words, the 

variable space of optimal solutions is multi-island, similar to 

the multi-modal problem in single-objective optimization, in 

order to fetch all potential good solutions, it requires the 

optimization algorithms has excellent global search 

performance .  

 
Fig. 12 Variable space of optimal Pareto solutions of basic RO 

process 

  
(a) Validation for kriging with 

adaptive sampling 

(b) Kriging with/without 

adaptive sampling 

Fig.13  CFD Verification of the best, worst and nominal 

performance of typical designs  

Further, several typical optimal solutions as Designs A~E 

in Fig.11 are selected to validate their performance w.r.t. 

those of the reference design. Obviously, the prediction of 

the kriging with adaptive sampling (using Eq. (10)) agrees 

well with CFD results, as shown in Fig.13 (a), the largest 

relative prediction error is 0.84%. On the other hand, the 

accuracy of kriging without adaptive sampling was shown 

much worse in Fig.13 (b). It confirms that the adaptive 

sampling is effective to improve the surrogate accuracy.  

Then, the solutions of DO and RO are compared through 

Figs. 11 and 13. As shown in Fig. 11, the DO_Opt has 

largest variance, though its mean performance is also the best. 

From Fig.13, we further observe that the TP of DO_Opt 

fluctuates in a very large range as [1.4369, 1.5534], the best 

TP of DO_Opt is increased by 8.47% w.r.t. its worst TP, 

while the TP increment of 5% should be considerable in 

design practice [29, 30]. It means that, in order to find 

solutions that are not so sensitive to uncertainty fluctuates, 

the RO is demanded.  

Regarding the design robustness, Designs A and B in 

Fig.13 should be the desirable RO solutions, as their 

performance fluctuations are small. However, when 

comparing the TP of Design A and DO_Opt at different 

uncertainty conditions, the worst TP of DO_Opt is even 

better than the best TP of Design A, i.e., the TP Design A is 

inferior to DO_Opt over the uncertainty fluctuation range. 

Then, the designers may hesitate, whether or not to use 

instead of DO_Opt? As a contrast, the performance of 

Design B is much more competitive, in addition to 

robustness. 

Then, the question arise, could we automatically filter out 

“inferior” RO solutions like Design A? The constraints set 

based on information of DO_Opt may do the help, which 

will be discussed in detail in the next subsection.   

RO Strategies by Considering Solution of DO 

Before the discussions on adding constraints based on 

information of DO_Opt, we first discuss which kind of RO 

solutions should be most favorable.  

 
Fig.14 Desirable solutions of RO in kernel density plot 

Figure 14 shows the kernel density plot of the reference 

design and DO_Opt, it presents the possibilities (or 

frequencies) of each TP appeared in a solution when the 

uncertainties propagates. Considering design robustness to 

uncertainties that come from manufacturing error or 

environmental variation, the solution curve with narrower 

width with higher peaks is most desirable. In addition, to 

have competitive TP, we should also impose constraints on 
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the worst, mean and best TP of the solution candidates, i.e. 

the mean, worst and best TP of the solution canidate should 

be better than a certain value, and the larger is better. Then, 

Table 6 lists the information of DO_Opt and the reference 

design, where Q1 and Q3 are the first and the third quartile 

of the performance datasets, these values of DO_Opt are 

used as constraints to inspire better solutions. 

Table 6 Statistical information of reference design and DO_Opt 

 μ ϭ Min Max Q1 Q3 

Ref 1.3359 0.0325 1.2521 1.4299 1.3127 1.3661 

DO_Opt 1.4968 0.0250 1.4369 1.5534 1.4797 1.5231 

By taking the information of DO_Opt as constraints, 

Table 7 lists nine RO strategies; however, not all of them can 

obtain solutions, i.e., the solution set can be null as shown in 

the last column. To be noted, the RO space is a black-box, 

few prior knowledge can be obtained on whether the 

imposed constraints is too strong, therefore out of the nine 

RO models in Table.7, null solution sets were encountered 

three times (e.g. Strategy 2a,4a and 5a)  It means, the RO 

would be an iteration process, we cannot guarantee the 

proposed RO model can always found solutions, i.e., we may 

have to conduct RO process several times, therefore it is 

attractive to build high-accurate surrogate before RO , which 

can efficiently handle RO models with different constraints. 

Table 7  RO strategies by considering solution of DO 
Strategies No. Fomulations of RO models Results 

Constraints on 

the mean 

design 
performance 

1 

2min{ ( , ), ( , )}

. . ( , ) 1( _ )

x u x u

x us t Q DO Opt

 






 Fig.17(a) 

Constraints on 

the worst 

performance 

2a 

2
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min{ ( , ), ( , )}

. . ( , ) 1( _ )

x u x u

x us t f Q DO Opt
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x u x u

x us t f DO Opt

 


 Fig.17(b) 

Constraints on 

the best 

performance 

3 

2

max

min{ ( ( , )), ( ( , ))}

. . ( , ) 3( _ )

x u x u

x u

f f

s t f Q DO Opt

 


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For the nine RO strategies shown in Table 7, four 

different Pareto solutions were finally found as shown in 

Fig.15. Where, the optimal solutions in Fig.15 (a) (Strategy 1) 

were obtained by setting the threshold that the mean value of 

candidate RO solutions should be better than Q1 of DO_Opt 

(see Table 6). The optimal solutions in Fig.15 (b) (Strategy 

2b) were achieved by requiring that the worst performance of 

candidate RO solutions should be better than the worst 

performance of DO_Opt. The optimal solutions in Fig.15(c) 

(Strategy 2c) were selected by filtering out the solutions 

whose best performance worse than Q3 of DO_Opt. And 

finally, the solutions in Fig.15 (d) can be obtained by the 

strategies 4b, 5b and 6; they impose requirements on the both 

the worst and best and even the mean performance of 

candidate RO solutions. 

  
(a) Strategy 1 (b) Strategy 2b 

  
(c)Strategy 3 (d) Strategy 4b/5b/6 

Fig.15 Optimal Pareto solutions of different RO strategies 

In addition to finding desirable RO solutions, the 

solutions of RO models with different constraints also 

provide a way to get an insight into the variable space of 

optimal solutions, which are illustrated by combining Figs.15 

to 17. The optimal solutions of basic RO can actually be 

divided into four clusters as shown in Fig.16, and Fig.17 

presents the performance of typical solutions in each cluster. 

The solutions in Cluster IV are obtained by Strategy 3, their 

features can be observed by comparing Fig.15 (a), (c) and (d), 

these solutions have good mean performance but large 

performance fluctuations as well, their worst performance is 

even worse than the worst performance of DO_Opt, as seen 

by the typical solution IVD in Fig.17.  

The solutions in Cluster III are obtained by Strategy 4b, 

they should be most desirable our problem in basic RO space. 

As shown by the solution IIIC in Fig.17, their mean and 

worst performance are competitive to those of DO_Opt, and 

the performance fluctuations are also small. The solutions in 

Cluster II can be competitive to those in Cluster III, their best 

performance is inferior to those in Cluster III (comparing 

Strategy 2b and 4b), however, their performance are less 

sensitive to the uncertainties propagates, as shown by 

solution IIB.  

Mean Performance()

S
ta

n
d

a
rd

d
e

v
ia

ti
o

n
(

)

1.35 1.4 1.45 1.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Ref

Opt of DO

Pareto Front of Basic RO

Strategy 1

=1.48

Mean Performance()

S
ta

n
d

a
rd

d
e

v
ia

ti
o

n
(

)

1.35 1.4 1.45 1.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Ref

Opt of DO

Pareto Front of Basic RO

Strategy 2b

=1.48

Mean Performance()

S
ta

n
d

a
rd

d
e

v
ia

ti
o

n
(

)

1.35 1.4 1.45 1.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Ref

Opt of DO

Pareto Front of Basic RO

Strategy 3

=1.48

Mean Performance()

S
ta

n
d

a
rd

d
e

v
ia

ti
o

n
(

)
1.35 1.4 1.45 1.5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Ref

Opt of DO

Pareto Front of Basic RO

Strategy 4b/5b/6

=1.48



10 

The solutions in Cluster I may be not so competitive, 

though their performance is most insensitive to the 

uncertainties, the performance values are much lower, the 

best TP can be even worse than the worst of DO_Opt.  

 
Fig.16 Clustering of the Pareto Solutions in basic RO space 

 
Fig. 17  Boxplot of performance fluctuations of typical designs in 

each clusters with uncertainty variations 

Finally, by referring to the variable space shown by 

parallel axis in Fig.12, we found the solutions in Cluster IV 

belongs to Group B, characterized by larger mean and 

variance values. The solutions in Clusters I, II and III 

belongs to Group A, of which performance are less sensitive 

to the uncertainty fluctuates but have worse TP values. 

Regarding to geometric features of VG, the desirable 

solutions in Cluster III should have large L and W, while the 

H seems crucial to determine the overall thermal 

performance of VG, as seen in Fig.12. For the VGs in Group 

B (Cluster IV), the W also plays an important role in addition 

to H.  More technical investigations on the flow mechanism 

behind the geometric features of VGs will be discussed in 

our future work. 

CONCLUSION 

By combining a kriging-based uncertainty quantification 

(UQ) formulation for the mean and variance and a self-

adaptive multi-objective optimization (SMODE) algorithm, a 

multi-objective robust optimization (RO) platform was 

proposed, which aimed for the situation when uncertainty 

parameters and optimization design variables cannot be 

merged as uncertainty variable. The RO platform was used 

for the optimization of vortex generators (VG)) to enhance 

the overall heat transfer performance of U-bend channel for 

high-temperature blades, with one Gaussian-distributed and 

one uniformly-distributed uncertainty parameters, and three 

optimization design variables. Several conclusions were 

made as follows: 

The kriging-based mean-variance UQ formulation 

formulates the uncertainty parameters and optimization 

design variables in product form, and thus optimization 

search and UQ are conducted simultaneously in RO. The 

product form makes the UQ formula can assign different 

probability distribution functions to each uncertainty 

parameter; it also makes the integral dimension to be low and 

thus can be efficiently calculated. 

For the RO platform, a high-accurate surrogate is built 

before RO. The sequential sampling strategies, which 

originally used in efficient optimization, were employed to 

improve the surrogate accuracy, which was shown effective 

in the five-variable VG problem. Since the RO process may 

have to iterate several times as shown in the VG design, it is 

attractive to build high-accurate surrogate before RO.  

For the robust design of VG, one deterministic 

optimization (DO) and several RO were conducted. When 

compared to DO, the RO was shown able to find robust 

solutions, which have high performance and is not sensitive 

to the uncertainty fluctuations. Meanwhile, the uncertainty 

information of the solution of DO provides good reference to 

exclude insensitive solutions which actually have much 

lower design performance. Alternatively, we may use other 

performance thresholds as required by engineering products 

to select solutions with favorite design performance. 

The RO can be an iterative process for black-box 

problems, as some strong constraints may be imposed to 

make the solution set to be null. From another perspective, 

the solutions of RO models with different constraints also 

provide a way to get insights into the black-box design space, 

which is helpful to select the final solution for engineering 

use. 

Finally, from the perspective of enhancing the heat 

transfer performance in U-bend channel of high-temperature 

blades, the optimized VG was shown have better overall 

thermal performance than classic cooling structures such as 

angled ribs. We summarized the geometric features of 

desirable VGs by parallel axis, the related flow mechanism 

behind will be analyzed in our future work.  
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