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ROBUST OPTIMIZATION IN PORTFOLIO SELECTION BY m-

MAD MODEL APPROACH 
 

Abstract: The portfolio selection problem is one of the main investment 
management problems. In the portfolio selection problem, robustness is sought 

against uncertainty or variability in the value of the parameters of the problem. In 

this paper, an extended mean absolute deviation model named the m-MAD model 
is applied to construct a new robust portfolio selection model that is solvable to 

real-world problems. The m-MAD model is a linear programming model and 

allows us to measure risk using downside deviations with the ability to penalize 

larger downside deviations. It also has a better performance of risk-averse 
priorities. The results of the performance analysis of the model show that the 

solutions of the m-MAD model are compatible with respect to second-degree 

stochastic dominance.  
      Keywords: Portfolio Optimization, Linear Programming, Downside Risk, 

Stochastic Dominance, Robust Optimization. 

 

JEL Classification: C61, G11   

1. Introduction  

     Portfolio optimization is the process of analyzing a portfolio and managing the 

assets within it. Markowitz (1952) has presented the Modern Portfolio Theory 

(MPT) and tried to maximize the return and control risk through the minimization 
of the variance of the portfolio return as a risk measure. In spite of some 

advantages, the Markowitz model has two difficulties: (a) quadratic programming 

problems are more difficult to solve, and (b), for practical markets, the size of the 

covariance matrix for solving the model is very large and difficult to estimate. To 
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overcome these difficulties, many researchers have tried to present linear 
programming for the portfolio selection problem. Konno and Yamazaki (1991) 

suggested the mean absolute deviation (MAD) for risk measure as a linear model. 

Absolute deviation in the MAD model is sensitive against any upward or 

downward movement of the mean. An investor who uses the MAD model is 
assumed to have a constant trade-off: a unit deviation from the mean rate of return. 

This assumption does not allow for the distinction of risk associated with larger 

losses. It can be argued that the variability of the rate of return above the mean 
should not be penalized. Since the investors are concerned with the 

underperformance of a portfolio rather than the over performance of a portfolio, 

Markowitz (1959) proposed downside risk measures. Subsequently, Michalowski 

and Ogryczak (2001) suggested the m-MAD model. The m-MAD model is a true 
downside risk measure that can distinguish larger losses. Researchers such as 

(Kellerer et al  2000, Mansini et al 2003, Chiodi et al 2003, Papahristodoulou and 

Dotzauer 2004, and Rockafellar and Uryasev 2000) extended the models by 
presenting similar ideas on the risk measure for a linear programming formulation. 

The parameters on the mentioned models are defined with their nominal value and 

it is assumed that all parameters are constant. However in the real world, we deal 
with the problems where robustness is sought against uncertainty or variability in 

the value of parameters of the problem. 

     In the recent years, a body of the literature is developing under the name of 

robust optimization to consider uncertainty in the value of parameters of the model. 
Soyster (1973) proposed a linear optimization model to construct a solution that is 

feasible for all data that belong in a convex set. The solutions of the Soyster model 

are too conservative in the sense and it causes to give up too much of optimality for 
the nominal problem in order to ensure robustness. The second step forward for 

developing a theory for robust optimization was taken independently by Ben-Tal 

and Nemirovski (2000) and El-Ghaoui et al (1998). They use ellipsoidal 

uncertainty set. This model can adjust the conservatism. However, this model is 
not linear which can be problematic in the real world problems. Another 

development on robust optimization has been done by Bertsimas and Sim (2004). 

This model is linear, applicable and extendable to discrete optimization and can 
flexibly adjust the level of conservatism of the robust solutions in terms of 

probabilistic bounds of constraint violations. In this paper, we use Bertsimas and 

Sim methodology for development of our model.  
     There are some practical models of robust optimization in finance. El-Ghaoui et 

al (2003) proposed a robust portfolio model under an uncertainty of covariance 

matrix witch is developed by semi-definite programming (SDP) and considers 

worst case value-at-risk. Tutuncu and Koenig (2004) developed a robust portfolio 
optimization problem formulated in a quadratic program (QP). Kawas and Theile 

(2008) developed a log robust portfolio model to consider the heavy tailed property 

of stock prices. Moon and Yao (2011) developed a robust mean absolute deviation 
model for portfolio optimization. Quaranta and Zaffaroni (2008) developed a 

robust optimization of conditional value at risk. Chen and Tan (2009) developed 
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robust portfolio selection based on asymmetric measures of variability of stock 
returns. In this paper we develop a robust model for the m-MAD model. The m-

MAD model is a linear and downside risk measure. The results of the m-MAD 

model are second order stochastic dominance (SSD).  

     The rest of the paper is organized as follows. In Section 2, we explain the MAD 
and m-MAD models. We propose robust optimization of m-MAD model in Section 

3. The computation results of empirical study based on historical data are discussed 

in Section 4. Finally, the conclusion comes in Section 5. 

2. m-MAD model  

     Let  n,...,2,1J   denotes a set of securities considered for investment. The 

rate of return for each security Jj is represented by a random variable 
j

R with 

a given mean )R(E jj  . 

     Further, let )x,...,x,x(X n21 denotes a vector of securities weights (decision 

variables) defining a portfolio. The weights must satisfy a set of constraints that 

form a feasible set Q. The weights must sum to one and there is not short selling:  

(1)      














 



n,...,1j ;0x,1x:)x,...,x,x(X j

n

1j

j
T

n21
      

Each portfolio X defines a corresponding random variable 



n

1j

jjX xRR  that 

represents a portfolio rate of return. The mean rate of return for portfolio X is given 
as:  





n

1j

jjX)X( x)R(E     

     2.1. MAD model 

     Konno and Yamazaki (1991) tried to represent a linear risk measure. They 

define the mean absolute deviation from a mean as follows.  

(2)      )d(PRE)x( x)x()x(x  



    

Where XP  denotes a probability measure induced by the random variable XR .  

Many authors (Konno, 1999; Fienstein and Thapa, 1993; Zenios and Kang, 1993) 
have pointed out that the MAD model opens up opportunities for more specific 

modeling of the downside risk, because absolute deviation may be considered as a 

measure of downside risk. Namely, the mean absolute deviation )X( equals twice 

the (downsides) absolute semi deviation. 
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(3)       )0,R)x((maxE)x( x    

According to (Konno, 1999), the following parametric optimization problem is 

called the MAD model;  

(4)          QX:)x()x( max   

     The proposed extension to the MAD model allows one to differentiate between 

downside and upside risk, and to penalize larger downside deviations. It thus 

provides for better modeling of risk adverse preferences. Note that such an 

extension is in some ways equivalent to replacing )X( with )x(u defined as:  

(5)            }))0,R)x((max{u(E)x( xu   

Where, u is some convex penalty function.  

     It is assumed that jtr is the realization of the random variables jR during the 

period t (where t=1,…,T) that is available from historical data. It is also assumed 

that the expected value of jR  can be approximated by:  

    



T

1t

jtj r
T

1
 

Therefore, model (4) for a discrete set of realizations jtr  can be rewritten as the 

following LP model (Fienstein and Thapa, 1993): 

(6)                  



T

1t

tT

n

1j

jj dxmax  

Subject to  

(7 )            QX  

(8)                             T,...,1t;x)r(d j

n

1j

jtjt 


 

(9)                      T,...,1t;0dt  

     If the rate of return is normally distributed multivariate, then the MAD model is 

equivalent to the Markowitz model (Konno, 1999). 

     Recently, the MAD model was further validated by Ogryczak and Ruszcynski 

(1999). They demonstrated that if the trade-off coefficient   is bounded by 1, then 

the MAD model is partially consistent with second degree stochastic dominance 

(Whitmore and Findlay, 1978).  

      2.2. Extended MAD Model  

     The extended MAD model is to differentiate between the various levels of 

downside deviations, and to penalize the larger ones. Konno (1999) has already 

proposed such an extension of the MAD model for portfolio optimization. He 
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considered additional mean deviations from some target rate of return predefined 
as being proportional to the means rate of return:  

(10      )                    1k0for)0,R)x(k(maxE)x( xk   

    If k=1 then )x()x(1    and this model is like absolute semi deviation used 

in the original MAD model. One may attempt to augment the downside risk 

measure by penalizing additional deviations for several k<1. In terms of penalty 

function (5), this approach is equivalent to introducing a convex piecewise linear 

function with break points proportional to the mean of xR . Konno (1999) 

developed MAD model with additional downside deviation as follow:  

(11)                 QX:)x()x()x(max kk   

    Where, 0 is the basic trade-off parameter and 0k   is an additional 

parameter. We refer to this model as k-MAD. 

Assuming that   has value T1. Mean surplus deviation 

  0,R)x()x(maxE x  needs to be penalized by a value, let's say T2, of a 

trade-off between the surplus deviation and a mean deviation, which leads to 

maximization of the following equation:  

(12)        ))0,R)x()x((maxET)x((T)x( x21   

One might wish to penalize second level surplus deviation exceeding that mean.  

(13)              












 
 

QX:)x()T()x(max
m

1i

i

i

1k

k  

Where, 0T,...,0T m1   are the assumed known trade-off coefficients.  Trade-off 

coefficients are measured as follow:  

(14)                m,...,1i ;T
i

1k

ki 


        

The model formulated as follow:  

(15)              















QX:)x()x(max
m

1i

ii 

We will refer to model (15) as the recursive m-level MAD model (Michalowski 
and Ogryczak, 2001).  

If trade-off coefficients are positive and not greater than one and satisfying:  

(16)             0...1 m1   

Then the results of the m-MAD model will be SSD (Michalowski and Ogryczak, 
2001). In addition, the m-MAD model with m=2 is formulated as an LP problem.  

(17)                   
 


n

1J

T

1t

2t
2

T

1t

1t
1

jj d
T

d
T

xmax


 



 

 

 

 
 

 
Alireza Ghahtarani, Amir Abbas Najafi 

__________________________________________________________________ 

284 

 

DOI: 10.24818/18423264/52.1.18.17 

 

 

Subject to  

(18)            QX  

(19)         T,...,1t ;x)r(d
n

1j

jjtj1t 


      

(20)        T,...,1t ;d
T

1
x)r(d

T

1L
1L

n

1j

jjtj2t  


 

(21)                                   T,...,1t ;0d,0d
2t1t

          

A general m-MAD model can be formulated as a LP model.  

(22)                 



m

1i

ii0 wwmax   

Subject to 

(23)                        QX  

(24)                   



n

1j

jj0 0xw  

(25)                       m,...,1i  ;0dTw
T

1t
iti 



 

(26)                m,...,1i,T,...,1t;0xrwd
n

1j

jjt

1i

0k

kit  






 

(27)                               m,...,1i,T,...,1t;0d
it         

In the above formulation )x( and )x(i are explicitly represented using 

additional variables 0w and
iw . 

      3. Robust m-MAD model 

     This section develops a robust reformulation of the m-MAD model. There are 
three kinds of robust optimization based on uncertainty sets. Soyster (1973), Ben-

Tal and Nemirovski (2000), and Bertsimas and Sim (2004) developed Robust 

Optimization. The result of Soyster model produces solutions that are too 

conservative. Ben-Tal and Nemirovski (2000) assumed that the uncertainty sets are 
ellipsoid. With this uncertainty set the robust counterparts are nonlinear; the last 

model of robust was developed by Bertsimas and Sim (2004). The robust 

counterparts of Bertsimas and Sim are linear.In m-MAD model, the expected 

return j , of asset j is approximated by 



T

1t

jtj r
T

1
 , which means that an actual 
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return cannot be exactly obtained and has uncertainty. Let J the set of coefficients 

Jj,j  that are subject to parameter uncertainty. 0j Jj,~  take values 

according to symmetric distribution with mean equal to the nominal value j  in 

the interval ]ˆ,ˆ[ jjjj   . We introduce a parameter 0 , not necessary 

integer that takes values in the interval  0j,0 . The role of the parameter 0  is to 

adjust the robustness of the proposed model against the level of conservatism of 

the solution. For the chosen 0 , consider a subset 0S satisfying the conditions 

00 JS   and  00S  .  

     For the given set 0S  and a coefficient r̂ , where, 00 J\S  we like to allow a 

certain level of deviations in constraints. It is clear by the construction of robust 

formulation that if up to  0  of the 0J coefficients j  change within their 

bounds, and up to one coefficient 


̂  changes by    ˆ)( 00  , and then the 

solution of problem will remain feasible and flexible. In other words, we stipulate 

that nature will be restricted in its behavior, in that only a subset of the coefficients 

will change in order to adversely effect on solution (Bertsimas and Sim, 2004).  

     There are two places in the m-MAD model that j  exists. At first we should 

change objective function to constraint. The form of constraints has to be like 

bax   so the m-MAD model changes to: 

(28)               k  max 

Subject to 

(29)            QX  

(30)                  kwx
m

1i

ii

n

1j

jj  


 

(31)                          m,...,1i;0dTw
T

1t
iti 



 

(32)               m,...,1i,T,...,1t;dxrwx
n

1j
itjjt

1i

1k

k

n

1j

jj  






 

(33)                                   m,...,1i,T,...,1t;0d
it  

 

We use the following formulation for (32). This formulation is exactly used for 

(30). 
 

(34)              k  max 

Subject to 
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(35)         QX     

(36 )                

    

  kyˆ)(yˆ

maxwx

j00

sj

jj

s\j,s,js|s

m

1i

ii

n

1j

jj

0

0000000





































 

(37)                         m,...,1i;0dTw
T

1t
iti 



 

(38)         

    

  m,...,1i,T,...,1t;dyˆ)(yˆ

maxxrwx

tij00

sj

jj

n

1j
s\j,s,js|s

jjt

1i

1k

k

n

1j

jj

0

0000000









































 

(39)                         m,...,1i,T,...,1t;0d
it     

Note that j  in (36) and (38) are same and we can use just one 0  for both of 

them. 

If 0  is chosen as an integer:  

(40)                
 

 


 jj
|s|,Js|s

00 xˆmax),x(B
00000




 

     We need the follow proposition that reformulated (34) to (39) as a linear 

constraint. For given vector
*x : 

(41)
    

 













 




0
0000000 sj

*
j00

*
jj

s\J,s,Js|s
0

*
0 xˆ)(xˆmax),x(B 





  

The above formulation is equal to following linear optimization problem:  

(42)                         




0Jj

j
*
jj0

*
0 zxˆmax),x(B  

 subject to:  

(43)              




0Jj

0jZ   

(44)          0j Jj1Z0  

We consider dual formulation of above linear optimization problem as follow:  
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(45)                




0Jj

00j zPmin  

Subject to: 

(46)                         0
*
jjj0 JjxˆPZ   

(47)                                  0j Jj0P  

(48)            0Z0  

     By strong duality, since problems (42) to (44) are feasible and bounded for all 

 00 J,0 , the dual problems (45) to (48) are also feasible and bounded and 

their objective values coincide.  In addition, ),x(B 0
*

0   is equal to (36) and (38). 

Therefore we can reformulate the robust m-MAD model based on Bertsimas and 

Sim (2004) as follow: 

(49)              k  max 

Subject to  

(50)            QX  

(51)                kPzwx
m

i

n

j

jii

n

j

jj   
  1 1

00

1

 

(52  )            m,...,1i;0dTw
T

1t
iti 



 

53))      miTtdPzxrwx
n

j
it

n

j

jjjt

i

k

k

n

j

jj ,...,1,,...,1;
1 1

00

1

11

  
 





 

(54 )        jjj0 yR̂Pz                 

55))                                  m,...,1i,T,...,1t;0d
it  

(56)                       m,...,1i;T,...,1t;0d
it  

(57)                  0Z,Jj0P 00j  

(58)                N,...,1j0y,yxy jjjj  

      4. Computational result  

     In this section, we show how robust optimization approach can be implemented 
to the m-MAD model. We show that the robust optimization of the m-MAD model 

can measure down side mean absolute deviation with uncertainty coefficients. We 

use real data from New York financial market. The data comes from New York 
stock exchange between April, 2012 and April 1, 2013 for 10 stocks. 

The stocks that we use in this case study is as follow: 
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Amazon, bank of America, bank of Montreal, Exxon Mobil, face book, FedEx, 
ford, general electric, general motors and yahoo 

X1 to X10 respectively refer to above stocks. 

Summary of data is in table 1: 

 

Table1: Summary of Data from New York stock exchange
 
 

X10 

 

X9 X8 X7 X6 X5 X4 X3 X2 X1 T  

0.047 

 

-0.034 -0.025 -0.063 0.01 0 -0.083 -0.001 -0.091 -0.081 1 

0.005 

 

-0.111 0.101 -0.092 0.029 0.05 0.088 0.035 0.111 0.072 2 

0.051 

 

-0.0005 -0.004 -0.036 -0.014 -0.301 0.015 0.048 -0.101 0.021 3 

-0.097 

 

0.083 -0.001 0.016 -0.029 -0.168 0.011 0.022 0.087 0.064 4 

0.062 

 

0.065 0.104 0.055 -0.032 0.199 0.047 0.009 0.106 0.024 5 

0.032 

 

0.12 -0.072 0.137 0.087 -0.025 -0.002 0.013 0.055 -0.084 6 

0.126 

 

0.014 0.003 0.026 -0.025 0.032 -0.027 0.015 0.058 0.082 7 

0.018 

 

0.113 0.002 0.131 0.024 -0.049 -0.018 0.021 0.178 -0.004 8 

0.003 

 

-0.025 0.061 0.006 0.106 0.163 0.039 0.043 -0.025 0.058 9 

0.083 

 

-0.033 0.05 -0.026 0.039 -0.12 0.001 -0.015 -0.007 -0.004 10 

0.152 

 

0.024 -0.004 0.042 -0.067 -0.061 0.006 0.011 0.084 0.008 11 

-0.03 

 

0.051 -0.076 -0.006 -0.058 0.015 -0.022 -0.026 0.037 -0.011 12 

0.038 0.022 0.011 0.015 0.005 0.002 0.055 0.006 0.041 0.012 

j  

 

  

 We want to share investment between these 10 stocks. The penalty parameters are 
calculated as follow:  

2
21 and    

We consider 5.0 and then we have 5.01   and 25.02  .  

     We coded the robust m-MAD model by lingo software as a linear programming 

then we solved that with different robust price parameter. For uncertainty 

parameter we consider 20 percent volatility for each j . We summarize the results 

of objective function in Table 2. In this table we show the value of the objective 
function and the price of robustness and the value of decision variables.  
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Table 2: The value of the objective function for various price of robustness  
Objective 

Function 
 

X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 

i  

0.02224 

 

0.15 0.15 0.05 0.05 0.05 0 0.2 0.05 0.015 0.15 0 

0.02209 

 

0.15 0.15 0.05 0.05 0.05 0 0.2 0.05 0.015 0.15 0.1 

0.02181 
 

0.15 0.15 0.05 0.05 0.05 0 0.2 0.05 0.015 0.15 0.2 

0.02160 
 

0.15 0.15 0.05 0.05 0.05 0 0.2 0.05 0.015 0.15 0.3 

0.02139 
 

0.15 0.15 0.05 0.05 0.05 0 0.2 0.05 0.015 0.15 0.4 

0.02117 

 

0.15 0.15 0.05 0.05 0.05 0 0.2 0.05 0.015 0.15 0.5 

0.2096 

 

0.2 0.1 0.075 0.075 0.075 0 0.2 0.075 0.1 0.1 0.6 

0.02082 
 

0.2 0.1 0.075 0.075 0.075 0 0.2 0.075 0.1 0.1 0.7 

0.02068 
 

0.2 0.1 0.075 0.075 0.075 0 0.2 0.075 0.1 0.1 0.8 

0.02055 
 

0.2 0.083 0.083 0.083 0.083 0 0.2 0.083 0.1 0.083 0.9 

0.02043 

 

0.2 0.083 0.083 0.083 0.083 0 0.2 0.083 0.1 0.083 1 

0.01959 
 

0.2 0.0875 0.0875 0.0875 0.0875 0 0.2 0.0875 0.0875 0.075 2 

0.01889 
 

0.1936 0.0890 0.0890 0.0890 0.0890 0 0.2 0.0890 0.0890 0.071 3 

0.01853 
 

0.1696 0.0950 0.0950 0.0950 0.0950 0 0.2 0.0950 0.0950 0.0598 4 

0.01845 

 

0.01747 0.0938 0.0938 0.0938 0.0938 0.0623 0.2 0.0938 0.0938 0 5 

0.01845 

 

0.01747 0.0938 0.0938 0.0938 0.0938 0.0623 0.2 0.0938 0.0938 0 6 

0.01845 
 

0.01747 0.0938 0.0938 0.0938 0.0938 0.0623 0.2 0.0938 0.0938 0 10 

 

 
 In this table we show different solution based on different price of robustness. As 

we show in table by increase of C the objective function reduced. The first row is 

about the situation that i =0.   It means there isn’t any uncertainty in parameters. 

When i =0  the result is equal to the situation that we don’t use robust approach. 

This row show different between the use of robust approach and original m-MAD. 
X4 has the best rate of return in this set of stocks and x5 refer to face book rate of 

return that has the worst rate of return in this set. As shown in table the model try 

to maximize x4 because it has the best effect on portfolio and all situation of  i , 

x4 has the most share in portfolio and x5 has the less share in portfolio. From i =0 

to i =1 there is a little different between solution because we use small i .investors 

can use this strategy if they anticipate small volatility in market.  

      From row i =1  to i =10 the uncertainty of parameters goes up. And the 

solutions have big change. But from i =5 to i =10 the solution don t change any 

more. There is a mathematical explain for this phenomena. Robust optimization 

consider the optimum solution in worst case of uncertainty and from i =5 to i =10 

the best solution that remain feasible are achieved. 
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     Based on information in the table, by increase of level of robustness the level of 
conservatism increases and objective function is reduced.  

     As we show the robust method of m-MAD model that we represent, consider 

uncertainty coefficient in the good way. Experimental results show that by 

increasing the level of robustness how the model is reacting. When, the price of 
robustness increases, the conservatism of solution has increase. 

 

      5. Conclusions  

     This paper developed a new robust model in portfolio optimization by using the 

m-MAD approach. This model has advantages on computational complexity and 
provides robust solutions under parameter uncertainty .In addition, we shown 

conservatism of objective function against the level of robustness in this model. 

For future development, we offer use of robust optimization in goal programming 
for portfolio selection problem. 
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