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Optimization of simulated systems is the goal of many methods, but most methods assume known envi-
ronments. We, however, develop a “robust” methodology that accounts for uncertain environments. Our

methodology uses Taguchi’s view of the uncertain world but replaces his statistical techniques by design and
analysis of simulation experiments based on Kriging (Gaussian process model); moreover, we use bootstrapping
to quantify the variability in the estimated Kriging metamodels. In addition, we combine Kriging with nonlinear
programming, and we estimate the Pareto frontier. We illustrate the resulting methodology through economic
order quantity (EOQ) inventory models. Our results suggest that robust optimization requires order quanti-
ties that differ from the classic EOQ. We also compare our results with results we previously obtained using
response surface methodology instead of Kriging.
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1. Introduction
In practice, some inputs of a given simulation
model are uncertain so the optimum solution
that is derived—ignoring these uncertainties—may be
wrong. Strategic decision making in such an uncertain
world may use Taguchi’s approach, originally devel-
oped to help Toyota design “robust” cars, i.e., cars that
perform reasonably well in many circumstances; see
Beyer and Sendhoff (2007), Kleijnen (2008), Park et al.
(2006), Taguchi (1987), and Wu and Hamada (2000).
We use Taguchi’s view of the world but not his

statistical methods. Taguchians use rather restric-
tive designs and analysis models, so we propose to
adopt a design and analysis of simulation experi-
ments (DASE) approach based on Kriging, which is
also called a Gaussian process model (Kleijnen 2008).
DASE including Kriging treats the simulation model
as a black box; i.e., only the input/output (I/O) of
the simulation model is observed. (Black-box meth-
ods have wider applicability but lower efficiency than
white-box methods such as perturbation analysis and
the score function.) This Kriging applied to simu-
lation or “computer” models is explained by Sacks
et al. (1989) and Santner et al. (2003). Kriging gives
metamodels, which are also called response surfaces,

surrogates, emulators, auxiliary models, and repro-
models, to name a few; see Barton and Meckesheimer
(2006). (We provide so many synonyms because
simulation is used in many disciplines, each with
its own terminology.) These metamodels run much
faster than the underlying—and possibly computa-
tionally expensive—simulation models; e.g., a sim-
ulation run on a high-performance computer in
the aerospace-engineering case study reported by
Oberguggenberger et al. (2009) takes 32 hours. Branke
et al. (2001) adopt regression models combined
with evolutionary algorithms in noisy optimization,
obtaining good performance in terms of both com-
puter time savings and approximation quality. More
recently, Dellino et al. (2007) discuss the design opti-
mization of an automotive component through Krig-
ing metamodels and an evolutionary algorithm, and
they observe that the optimization process assisted by
surrogates is three orders of magnitude faster than the
one based on plain simulation.
Within the Taguchian framework, to solve the

simulation-optimization problem, we combine Krig-
ing metamodeling with nonlinear programming (NLP).
In our NLP approach, we select one of the multi-
ple simulation outputs as the goal or objective, and
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the remaining outputs must satisfy given constraints
or threshold values provided by the decision mak-
ers. This combination of Kriging and NLP gives an
estimate of the robust solution of the simulation opti-
mization problem.
Next, in the NLP model, we change specific thresh-

old values for the constrained simulation outputs to
estimate the Pareto frontier. Finally, the robust opti-
mization literature ignores the analysis of the statisti-
cal variation in the estimated Kriging model. For this
analysis we use bootstrapping. We also compare our
results with those of a previous paper in which we
used response surface methodology (RSM) to optimize
the simulated system; see Dellino et al. (2010).
We use MATLAB software for the various com-

ponents of our heuristic (i.e., design of experiments,
metamodel fitting, metamodel-based optimization,
and statistical analysis), because this software is well
documented and is used by many simulationists for
the postprocessing of their simulation I/O data. In
general, the simulation model itself is programmed in
either special simulation software (such as Arena, Pro-
Model, or AnyLogic) or a general-purpose language
(such as Fortran or C++); here, we program our
simulation models in Arena. Even though MATLAB
is known to be slow (in particular, in optimization,
which is only one of the steps in our procedure),
we program our methodology in MATLAB for the
following reasons: (i) In “expensive” simulation, the
postprocessing is (by definition) negligible compared
with the computer time needed to run the underly-
ing simulation model (which may take days or weeks
to execute a single run); therefore, MATLAB does not
significantly affect the performance of our framework.
(ii) The speed of MATLAB code can be enhanced
(if necessary) through interfacing (e.g., using mex files)
with an external optimization solver. However, the
choice for such a solver depends on the specific appli-
cation, and it is beyond the scope of this research;
we refer to Neumaier et al. (2005) for a comparison
of global optimization solvers that perform a com-
plete search. (iii) MATLAB has many built-in func-
tions used in the various steps of our procedures, thus
quickening research activities.
Our methodology may also be applied to cases

affected by so-called implementation errors, which are
the differences between the (nominal or expected) val-
ues chosen for the design parameters and the val-
ues in practice; see Stinstra and den Hertog (2008).
Inspired by Bertsimas et al. (2010), we illustrate
the application of our methodology to a problem
that includes such implementation errors; see the
Online Supplement (available at http://dx.doi.org/
10.1287/ijoc.1110.0465).
The remainder of this paper is organized as follows.

Section 2 presents Taguchi’s worldview. Section 3

summarizes RSM for robust optimization. Section 4
discusses Kriging basics in §4.1 (readers familiar with
Kriging may skip this subsection) and the use of
Kriging for robust optimization including bootstrap-
ping in §4.2. Section 5 illustrates the new method-
ology through the classic economic order quantity
(EOQ) simulation model (which has a known I/O
function and is a building block for more compli-
cated and realistic supply-chain simulation models).
Section 6 presents our conclusions and possible topics
for future research. An extensive list of references fol-
lows. The Online Supplement provides more details,
including additional computational experiments and
supplementary references.

2. Taguchi’s Worldview
Taguchi (1987) distinguishes between two types of
factors (or inputs or variables): (i) decision or control
factors, which managers can control and which we
denote by dj 4j = 11 0 0 0 1 k5 (e.g., in inventory manage-
ment, the order quantity is supposed to be control-
lable); and (ii) environmental or noise factors, which are
beyond management’s control and which we denote
by eg 4g = 11 0 0 0 1 c5 (e.g., the demand rate in inven-
tory management is an environmental factor). The lat-
ter type of factor is uncertain, so ignoring this lack
of control may make the classic optimum solution
wrong. Taguchi assumes a single output—say, w—
and focuses on the ratio of the mean and the variance
of this output.
We adopt Taguchi’s view but not his statistical

methods, which have been criticized by many statis-
ticians; see Nair (1992) and the Online Supplement
for further details. Instead of these methods, we use
Kriging and include designs such as Latin hypercube
sampling (LHS). Our reason for selecting Kriging
is that the experimental area in computer simula-
tion experiments may be much larger than in physi-
cal (real-life) experiments, so a low-order polynomial
used by Taguchians may be an inadequate approxi-
mation (nonvalid metamodel). Our main reason for
choosing a non-Taguchian design is that simulation
experiments enable the exploration of many more
factors, factor levels, and combinations of factor levels
than do physical experiments. For further discus-
sion of various metamodels and designs in simu-
lation, we refer the reader to Kleijnen (2008) and
Kleijnen et al. (2005).
In our approach we keep the main Taguchian

robustness concept that prescribes to optimize a
specific performance measure while minimizing its
possible variations. However, instead of Taguchi’s
scalar loss function, we use nonlinear programming
(see (1) below) in which one of these characteristics—
namely, the mean of the primary simulation output,
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E4w5—is the goal function to be minimized, and the
other characteristics—namely, the standard deviation
of the goal output, sw—must meet given constraints
(Lehman et al. 2004 also minimize the mean while
satisfying a constraint on the variance; they use a
Bayesian approach):

min E4w5

s.t. sw ≤ T 0
(1)

Because we assume costly simulations, we use
a metamodel-assisted optimization; i.e., we replace
E4w5 and sw by their (Kriging) approximations. Next
we change the threshold T in the constraint in (1)
and estimate the Pareto-optimal efficiency frontier—
called the Pareto frontier for short—where we consider
the mean and standard deviation as criteria for find-
ing a trade-off. This is a classical approach for solv-
ing optimization problems with multiple criteria; see
Miettinen (1999). For further discussion of robust
optimization, we also refer the reader to Beyer and
Sendhoff (2007), Jin and Sendhoff (2003), Myers et al.
(2009), Park et al. (2006), and Wu et al. (2009).

3. RSM and Robust Optimization
In this section we summarize Dellino et al. (2010),
who use RSM for robust simulation optimization; this
RSM guides our Kriging approach. Like Myers et al.
(2009), Dellino et al. (2010) use the following type
of RSM metamodel, which consists of an incomplete
second-order polynomial approximation of the I/O
function implied by the simulation model:

y = �0 +Â′d+d′Bd+Ã′e+d′ãe+ �1 (2)

where y denotes the regression predictor of the ex-
pected (mean) simulation output E4w5, � denotes the
residual with E4�5 = 0 if this metamodel has no lack
of fit (i.e., if this metamodel is valid) and with con-
stant variance �2

� ; Â = 4�11 0 0 0 1�k5
′ denotes the first-

order effects of the decision variables d= 4d11 0 0 0 1 dk5
′;

B denotes the k× k symmetric matrix with the purely
quadratic effects �j3j on the main diagonal and half
the interaction effects �j3j ′/2 off the diagonal; Ã =
4�11 0 0 0 1�c5

′ denotes the first-order effects of the envi-
ronmental factors e = 4e11 0 0 0 1 ec5

′; and ã = 4�j3g5
denotes the “decision-by-environmental” two-factor
interactions.
To examine whether the assumed metamodel (2)

is an adequate approximation, Dellino et al. (2010)
use leave-one-out cross-validation. In brief, this
cross-validation eliminates one I/O combination,
recomputes the regression parameter estimates, and
compares the estimated regression output with the
simulation output eliminated.

Using the symbol E4e5=Ìe, it is easy to derive that
(2) implies

E4y5= �0 +Â′d+d′Bd+Ã′Ìe +d′ãÌe0 (3)

In denoting the variances and covariances of e by
cov4e5=ìe, (2) implies

var4y5= 4Ã′ +d′ã5ìe4Ã+ã′d5+�2
� = l′ìel+�2

� 1 (4)

where l= Ã+ã′d. The mean and variance in (3) and
(4) may be estimated through plugging the ordinary
least squares (OLS) estimates of the regression coeffi-
cients in (2) into the right-hand sides of (3) and (4),
respectively. (del Castillo 2007, pp. 250–253, shows
how the resulting bias in the estimated variance might
be eliminated; however, Dellino et al. 2010 do not use
this bias correction.)
Dellino et al. (2010) minimize the estimated mean—

say, ˆ̄y—resulting from plugging the OLS estimates �̂0

through ã̂ into (3) while keeping the estimated stan-
dard deviation �̂y resulting from (4) below a given
threshold T (see (1)). They use the standard deviation
instead of the variance because the standard devia-
tion has the same scale as the mean. They solve this
constrained minimization problem that is nonlinear in
the decision variables d (see (3) and (4)); this gives

the estimated robust decision variables d̂+. Next, the
authors vary T , which may give different solutions d̂+

with corresponding ˆ̄y+ and �̂+
y . They then collect the

pairs ( ˆ̄y+1 �̂+
y ) to estimate the Pareto frontier. Finally,

they estimate the variability of this frontier through
parametric bootstrapping of the OLS estimates that
gave ˆ̄y+ and �̂+

y (we shall return to bootstrapping in
§4.2). They illustrate their methodology through some
of the EOQ models that we shall use and extend in §5.

4. Kriging and Robust Optimization
In this section we first summarize the basics of
Kriging; we then discuss how to use Kriging for
robust optimization.

4.1. Kriging Basics
We base this subsection on Kleijnen (2008, 2010).
Typically, Kriging models are fitted to data that are
obtained for larger global experimental areas than
the small local areas used in low-order polynomial
regression metamodels such as (2). Originally, Kriging
was developed in geostatistics—also known as spa-
tial statistics—by the South African mining engineer
Danie Krige; see the classic geostatistics textbook by
Cressie (1993). Later on, Kriging was often applied
to the I/O data of deterministic simulation models
in engineering; see the classic article by Sacks et al.
(1989). Recently, Kriging has also been applied to
random (stochastic) simulation in operations research
and management science; see Ankenman et al. (2010).
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Kriging uses the linear predictor

y =Ë′w1 (5)

where—unlike the regression coefficients in (2)—the
weights Ë are not constants but decrease with the
distance between the “new” input combination to be
predicted and the “old” input combinations that have
already been simulated and that resulted in the sim-
ulation outputs w.
Our heuristic uses the simplest type of Kriging

called ordinary Kriging, which assumes

w=�+ �1 (6)

where w is the simulation output (which depends on
the input combination), � is the simulation output
averaged over the whole experimental area, and �
is the additive noise that forms a stationary covari-
ance process (so its covariances decrease with the dis-
tances between the simulation input combinations)
with zero mean. Note that Ankenman et al. (2010)
call � the “extrinsic noise.” They add another term
to (6) that they call “intrinsic noise,” which is caused
by the pseudo-random numbers (PRNs) that are used
in random simulation, so the same input combina-
tion still shows intrinsic noise (this intrinsic noise
has variances that may vary with the input combi-
nation and is correlated if common PRNs are used
to simulate various input combinations). The Online
Supplement discusses a more general approach for
building Kriging metamodels, namely, universal Krig-
ing. Notice that our framework allows the replace-
ment of ordinary Kriging by universal Kriging with
limited programming efforts.
If (6) holds, then the optimal weights in (5) can be

proven to be

Ëo = â−1

[

Ã+ 1
1− 1′â−1Ã

1′â−11

]

1 (7)

where â =8cov4wi1wi′59 (i1 i′ = 11 0 0 0 1n) is the n × n
matrix with the covariances among the n old outputs,
and Ã= 8cov4wi1w059 is the n-dimensional vector with
the covariances between the old outputs wi and w0,
the output of the combination to be predicted that
may be either new or old. Obviously, Ã varies with
w0, so Ëo in (7) varies with w0.
The covariances â and Ã in (7) are often based on

the Gaussian correlation function

exp

(

−
k
∑

j=1

�jh
2
j

)

=
k
∏

j=1

exp4−�jh
2
j 51 (8)

where hj denotes the Euclidian distance between
input j of the new and the old combinations, and �j
denotes the importance of input j (the higher �j is,

the less effect input j has). Different models for the
correlation function are also possible, as discussed in
the Online Supplement.
Substituting the correlation function (8) into (7)

implies that the weights are relatively high for inputs
close to the input to be predicted. Moreover, the opti-
mal weights (7) imply that for an old input, the pre-
dictor equals the observed simulation output at that
input (all weights are zero except the weight of the
observed output); i.e., the Kriging predictor is an exact
interpolator. (RSM uses OLS, which minimizes the sum
of squared residuals, so it is not an exact interpolator;
Kriging accounting for the intrinsic noise in random
simulation is also not an exact interpolator.)
Thus, the optimal weights (7) depend on the cor-

relation function (8), but this correlation function is
unknown. Consequently, the parameter values �j in
(8) must be estimated. The standard Kriging software
and literature use maximum likelihood estimators
(MLEs) assuming the noise � in (6) is (multivariate)
Normally (Gaussian) distributed. We estimate the cor-
relation functions and corresponding optimal weights
throughDACE,aMATLABtoolbox that is freeof charge
and well documented by Lophaven et al. (2002).
To get the I/O simulation data to which the Kriging

model is fitted, simulation analysts often use LHS,
assuming that a valid metamodel is more complicated
than a low-order polynomial (which is assumed in
RSM). LHS does not assume a specific metamodel
or I/O function; instead, it tries to fill the design
space formed by the simulation inputs. That is, LHS
is a space-filling design (references and websites for
other space-filling designs are given in Kleijnen 2008,
pp. 127–130). We further discuss our design of exper-
iments (DOE) through the EOQ examples in §5.

4.2. Two Kriging Approaches to Robust
Simulation Optimization

To solve robust simulation-optimization problems, we
propose the following two approaches using Kriging
metamodels, sketched in Figure 1.
1. Inspired by Dellino et al. (2010), we fit two

Kriging metamodels, namely, one model for the mean
and one for the standard deviation—both estimated
from the simulation’s I/O data.
2. Inspired by Lee and Park (2006), we fit a single

Kriging metamodel to a relatively small number, say,
n, of combinations of the decision variables d and the
environmental variables e. Next, we use this meta-
model to compute the Kriging predictions for the sim-
ulation output w for N ≫ n combinations of d and e
accounting for the distribution of e.
In the first approach, which we refer to as one-

layer Kriging metamodeling (1L-KM), we select the
input combinations for the simulation model through
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Robust Optimization Combining Taguchi and Kriging

Input: design matrix Xnd×ne
in the decision-by-environmental space 4d1e5; probability distribution of environmental factors;

begin

for each design point 4di1 ej 5 in X, i= 11 0 0 0 1nd1 j = 11 0 0 0 1ne

1. Run the simulation model, obtaining W=w4di1 ej 5

2. switch Kriging approach
A. Case 1L-KM

A.1 Estimate the average response w̄i and its standard deviation si (i= 11 0 0 0 1nd)
A.2. Fit one metamodel for the average response, K14w̄ � d5, and one metamodel for its standard deviation, K24sw � d5
A.3. Validate the metamodels, using leave-one-out cross-validation

B. Case 2L-KM
B.1 Fit a Kriging metamodel for the output, K4w � d1e5
B.2 Validate the metamodel, using leave-one-out cross-validation
B.3 Generate a new design matrix XI

Nd×Ne
in the decision-by-environmental space

B.4 Estimate the average predicted response ˆ̄yi and its standard deviation sŷ 4i= 11 0 0 0 1nd5

B.5 Fit one Kriging metamodel for the mean of the predicted response, K14 ˆ̄y � d5, and one for its standard deviation, K24sŷ � d5
B.6 Validate the metamodels, using leave-one-out cross-validation

3. Estimate the Pareto frontier, iteratively solving the problem in (1) with varying threshold values T
4. Apply B times distribution-free bootstrap to the simulation output data w, obtaining w∗

b 4b= 11 0 0 0 1B5
5. switch Kriging approach
Case 1L-KM

For each b= 11 0 0 0 1B, repeat Steps A.1–A.3 replacing w with w∗

Case 2L-KM
For each b= 11 0 0 0 1B, repeat Steps B.1–B.6 replacing w with w∗

6. Derive confidence regions using the bootstrapped metamodels
end

Figure 1 Summary of the Two Kriging Approaches

a crossed (combined) design for the decision and envi-
ronmental factors (as is also traditional in Taguchian
design); i.e., we combine the, say, nd, combinations
of the decision variables d with the ne combinations
of the environmental variables e. These nd combina-
tions are space filling, so we can avoid extrapolation
when using the Kriging metamodels to obtain pre-
dictions; Kriging is known to give bad extrapolators,
as observed by van Beers and Kleijnen (2004). The ne

combinations are sampled from their input distribu-
tion; we use LHS for this sampling. Simulating these
nd × ne combinations gives the outputs wi1 j with i =
11 0 0 0 1nd and j = 11 0 0 0 1ne. These I/O data enable the
following estimators of the nd conditional means and
variances:

w̄i =
∑ne

j=1wi1 j

ne

4i= 11 0 0 0 1nd51 (9)

s2i =
∑ne

j=14wi1 j − w̄i5
2

ne − 1
4i= 11 0 0 0 1nd50 (10)

These two estimators are unbiased because they do not
assume any metamodel; metamodels are only approx-
imations, so they may have a lack of fit.
Note that Dellino et al. (2010) mention that they use

a crossed design, even though RSM does not require
such a design. Alternatives for a crossed design
are the split-plot design presented by Dehlendorff
et al. (2011) or simultaneous perturbation stochastic
approximation (SPSA) recently described by Miranda
and del Castillo (2011). Furthermore, note that the

variability of the estimators is much smaller for the
mean than it is for the variance, e.g., under the
normality assumption var4w̄5 = �2/ne and var4s25 =
24ne − 15�4/n2

e; this problem is also studied by Koch
et al. (1998).
In the second approach, referred to as two-layer

Kriging metamodeling (2L-KM), we select a relatively
small number of input combinations for the simula-
tion model, say, n, using a space-filling design for the
k+ c input factors (k and c still denote the number of
decision and environmental factors, respectively; refer
to the first paragraph of §2); i.e., the environmental
factors are not yet sampled from their distribution.
Then, we use the I/O simulation data to fit a Krig-
ing metamodel for the output w using (5). Finally,
for the larger design with N combinations, we use a
space-filling design for the decision factors but LHS
for the environmental factors accounting for their dis-
tribution. We do not simulate the N combinations of
this large design, but we do compute the Kriging pre-
dictors for the output; then we derive the conditional
means and standard deviations using equations ana-
logue to (9) and (10); i.e., in the right-hand sides of
(9) and (10), we replace ne and nd by Ne and Nd (the
large-sample analogues of the small-sample ne and
nd) and w by ŷ, where ŷ denotes the Kriging predictor
computed through (5). We use these predictions to fit
two Kriging metamodels for the mean and standard
deviation of the output.
We shall further explain both approaches through

some EOQ examples in the next section. Our method-
ology assumes that in practice the simulation model
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is expensive, although we shall illustrate the two
approaches through this inexpensive EOQ simulation
model.
Both approaches use their estimated Kriging

metamodels for the mean and standard deviation
to estimate the robust optimum that minimizes the
mean while satisfying a constraint on the standard
deviation, according to (1). Varying the value of the
right-hand side for that constraint gives the estimated
Pareto frontier (see the last paragraph of §3).
This Pareto frontier is built on estimates of

the mean and standard deviation of the output.
Obviously, estimates are random, so we wish to
quantify the variability in the estimated mean and
standard deviation. Bootstrapping is a versatile statis-
tical technique; see Efron and Tibshirani (1993) and
the many references in Kleijnen (2008, pp. 84–87). Spe-
cial bootstrap procedures are currently available in
many statistical software packages, including the BOOT
macro in SAS and the bootstrap command in S-Plus
(see Novikov and Oberman 2007). Nevertheless, we
easily implemented these procedures in MATLAB,
which we have already used to process the data so far.
Whereas Dellino et al. (2010) apply parametric boot-
strapping, we apply nonparametric or distribution-free
bootstrapping; i.e., we resample—with replacement—
the original simulation observations (which may have
any kind of distribution, not necessarily Gaussian).
Moreover, bootstrapping (both parametric and non-
parametric) assumes that the original observations are
identically and independently distributed. Because
we cross the design for the decision variables and
the environmental variables in our robust optimiza-
tion procedure, the nd observations on the output for
a given combination of the environmental factors are
not independent (this dependence may be compared
with the dependence created by the use of common
random numbers in stochastic simulation, which is
investigated by Chen et al. 2010). We therefore resam-
ple the ne vectorswj 4j = 11 0 0 0 1ne5—with replacement.
This resampling gives the ne bootstrapped observa-
tions w∗

j = 4w∗
11 j1 0 0 0 1w

∗
nd1 j

5; the asterisk is the usual
symbol for bootstrapped values. (Simar and Wilson
1998 also use distribution-free bootstrapping, albeit
in the context of data envelopment analysis instead
of Pareto frontiers.) Analogously to (9) and (10), we
estimate the nd bootstrapped conditional means and
variances as follows:

w̄∗
i =

∑ne
j=1w

∗
i1 j

ne

4i= 11 0 0 0 1nd51 (11)

s2∗i =
∑ne

j=14w
∗
i1 j − w̄∗

i 5
2

ne − 1
4i= 11 0 0 0 1nd50 (12)

We apply Kriging to the estimates computed through
(11) and (12), respectively.

To reduce the sampling error when bootstrapping,
we repeat this sampling, say, B times; B is called
the bootstrap sample size. This sample size gives the
B bootstrapped conditional averages and variances
w̄∗

i3 b and s2∗i3 b 4b = 11 0 0 0 1B5; see (11) and (12). Next,
we apply Kriging to w̄∗

i3 b and s2∗i3 b. For each optimal

solution d̂+ belonging to the “original” (i.e., nonboot-
strapped) Pareto frontier, we compute the predictions
for the average and standard deviations of the output
over the B bootstrapped metamodels, obtaining, say,
w̄+∗

i3 b and s+∗
i3 b. The B bootstrap observations enable us

to compute a confidence region for the mean and stan-
dard deviation of the output; i.e., we obtain simul-
taneous confidence intervals—called a confidence
region—for these two outputs. These confidence
intervals allow us to account for management’s risk
attitude associated with the threshold value. More
specifically, we compute the following distribution-
free bootstrapped confidence interval (see Efron and
Tibshirani 1993, pp. 170–174) as follows:

[ ˆ̄y+∗
4�B4�/25/2�51

ˆ̄y+∗
4�B41−4�/255/2�5

]

1 (13)

where ˆ̄y+∗
4 · 5 denotes the bootstrapped mean output that

the Kriging model predicts for the estimated Pareto-

optimal decision variable d̂+, the subscript ( ) denotes
the order statistic (i.e., the B bootstrapped observa-
tions are sorted from smallest to largest), � � denotes
the floor function (which gives the integer part), � �
denotes the ceiling function (rounding upwards), and
�/2 gives a two-sided confidence interval; Bonfer-
roni’s inequality implies that the Type I error rate for
the interval per output is divided by the number of
outputs (which is two, namely, the mean and stan-
dard deviation).

The following confidence interval for the standard
deviation of the output is the analogue of (13):

6ŝ+∗
4�B4�/25/2�51 ŝ

+∗
4�B41−4�/255/2�570 (14)

We shall further detail our procedure through some
EOQ examples in the next section.

5. EOQ Inventory Simulation
Like Dellino et al. (2010), we apply our methodol-
ogy to the classic EOQ inventory model for which
Zipkin (2000, pp. 30–39) uses the following symbols
and assumptions: (i) The demand rate, say, a units per
time unit, is known and constant. (ii) The order quan-
tity is Q units. (iii) Total costs consist of setup cost
per order K, cost per unit purchased or produced c,
and holding cost per inventory unit per time unit h.
Management’s goal is to minimize the total costs per
time unit C over an infinite time horizon.
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It is easy to derive that this problem has the follow-
ing true I/O function, which we shall use to check our
simulation results:

C = aK

Q
+ ac+ hQ

2
0 (15)

This function implies that the EOQ is

Qo =
√

2aK

h
1 (16)

and the corresponding minimal cost is

Co =C4Qo5=
√
2aKh+ ac0 (17)

In our example we use the parameter values of
an example from a classic operations research text-
book (Hillier and Lieberman 2001, pp. 936–937 and
942–943): a = 81000, K = 121000, c = 10, and h = 003.
Substituting these values into (16) and (17) gives Qo =
251298 and Co = 871589.
To study robust simulation optimization, we fol-

low Dellino et al. (2010) and consider a variant of
the classic EOQ model that assumes an unknown
demand rate. The robustness of the EOQ model is
also examined by Yu (1997), who uses other criteria
and methods (e.g., he uses two minmax criteria and
analytical methods instead of simulation). Borgonovo
(2010, p. 127) gives references to the literature on
EOQ “in the presence of imprecision in the parameter
estimates” (and then proceeds to sensitivity analysis,
not robustness analysis). First, however, we consider
classic optimization.

5.1. Classic Simulation Optimization
of the EOQ Model

In this subsection we use classic optimization; i.e.,
we ignore the uncertainty of the environment. As in
Dellino et al. (2010), we use the following steps in our
simulation experiment.
We select an experimental area for Q, namely, the

interval 615100034510007 (remember that EOQ equals
251298). Furthermore, we pick five equally spaced
points in this interval, including the extreme points,
151000 and 451000; see the first row in Table 1. Run-
ning the simulation model with these five input val-
ues gives the total costs C4Qi5 = Ci 4i = 11 0 0 0 155;
see the second row in Table 1. Based on these I/O
data, we estimate the Krigingmetamodel; see Figure 2,
which also displays the true I/O function derived

Table 1 I/O Data of the Classic EOQ Simulation

i 1 2 3 4 5

Qi 151000 221500 301000 371500 451000

Ci 881650000 871641066 871700000 881185000 881883034
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Figure 2 Kriging and RSM Metamodels and the True I/O Function of

the Classic EOQ Model

through (15) and the second-degree polynomial RSM
metamodel used by Dellino et al. (2010).
To validate this Kriging metamodel, we use cross-

validation, as Dellino et al. (2010) do to validate their
RSM metamodel. This gives Figure 3, which shows
the scatterplots for the Kriging and RSM metamod-
els. Because scatterplots may use scales that are mis-
leading, Table 2 gives the relative prediction errors
ŷ−i/Ci, where the subscript −i means that I/O com-
bination i is eliminated in the cross-validation of the
metamodel. This validation shows that in this exam-
ple Kriging does not give a better approximation than
does the second-order polynomial. Our explanation
uses the Taylor-series argument; i.e., the EOQ model
has a simple, smooth I/O function that is well approx-
imated by a second-order polynomial in our relatively
small experimental area. However, van Beers and
Kleijnen (2003) give examples in which Kriging does
give better predictions than do regression metamod-
els. Moreover, the next paragraph will give estimated
optimal order quantities and corresponding costs that
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Figure 3 Scatterplots for the Cross-Validation of the Kriging and RSM

Metamodels of the Classic EOQ Model
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Table 2 Cross-Validation of Kriging and RSM Metamodels for

EOQ Cost

Kriging Regression

i ŷ−i ŷ−i/Ci ŷ−i ŷ−i/Ci

1 871951083 009921 871849094 009910

2 881151034 100058 871952011 100035

3 881337088 100073 871628092 009992

4 881417091 100026 871951095 009974

5 881044017 009906 871576098 100078

are closer to the true optimal values when using
Kriging instead of a second-order polynomial. (Of
course, the true optimum is known only for sim-
ple academic models such as the EOQ model; cross-
validation can be applied to any metamodel.)
To compute the estimated optimum, say, Q̂o, we

apply MATLAB’s function fmincon to the Kriging
metamodel for the EOQ cost (we could have used
some other solver, including an external global opti-
mizer, instead of a local optimizer such as fmincon).
This gives Q̂o = 251337031 and the estimated minimal
cost Ĉo = 871523030. To verify these estimated opti-
mal values, we use the true values following from
(16) and (17). This gives Q̂o/Qo = 251337031/251298=
100016 and Ĉo/Co = 871523030/871589 = 009992, so
we conclude that the estimated optimal cost and
order quantity virtually equal the true optimal values.
For the second-order polynomial metamodel, Dellino
et al. (2010) give the following results: Q̂o = 281636
and Ĉo = 8871654; thus Q̂o/Qo = 1013 and Ĉo/Co =
10001, which are slightly less accurate estimated opti-
mal values compared with our Kriging estimates.
Note that we also experiment with a smaller exper-

imental area, i.e., a smaller Q interval. This interval
gives an even more accurate Kriging metamodel; the
resulting estimated optimum is only 0032% above the
true EOQ, and the corresponding cost virtually equals
the true cost.

5.2. Robust Optimization with
Uncertain Demand Rate

Now we follow Dellino et al. (2010), and assume that
a (demand per time unit) is an unknown constant; i.e.,
a has a Normal distribution with mean �a and stan-
dard deviation �a: a ∼ N4�a1�a5. In our experiments
we assume that �a = 81000 (the “base” value used in
§5.1) and �a = 0010�a (uncertainty about the true input
parameter). This standard deviation can give negative
values for a, so we resample until we get nonnegative
values only; this adjustment of the Normal distribu-
tion is ignored in our further analysis. We apply the
two Kriging approaches sketched in §4.2.

5.2.1. 1L-KMApproach:KrigingModels forMean
and Standard Deviation Estimated from Simulation
I/O Data. To select a suitable sample size for the

environmental factor a in our simulation, we choose
na = 100, which gives quite accurate estimates of
the sample mean and sample standard deviation
of the simulation output (moreover, na = 100 gives
“enough” data to bootstrap later on). For the envi-
ronmental factors design, we use LHS; it splits the
range of possible a values (0< a<�) into na equally
likely subranges. We use lhsnorm from the MAT-
LAB Statistics Toolbox (Mathworks Inc. 2005) to select
these values from N4�a1�a5. For the decision vari-
able Q, we select nQ = 10 equally spaced values
within 615100034510007, which is the range selected
in §5.1. We cross these two designs for a and Q,
respectively, which gives 100×10 combinations of the
two factors. Running the simulation model for these
11000 input combinations, together with (9) and (10),
gives the estimated mean and standard deviation of
the cost C conditional on the nQ values of Q:

C̄i =
∑na

j=1Ci1 j

na

4i= 11 0 0 0 1nQ51 (18)

si =
[

∑na
j=14Ci1 j − C̄i5

2

na − 1

]1/2

4i= 11 0 0 0 1nQ50 (19)

The latter estimator is biased because E4
√
s25= E4s5 6=

√

E4s25=
√
�2 = � ; we ignore this bias.

Using (18) and (19), we fit one Kriging metamodel

for the estimated mean cost—which gives ˆ̄C—and one
Kriging metamodel for the estimated standard devia-
tion of cost—which gives ŝ. Obviously, each of these
metamodels is based on nQ = 10 observations (in the
terminology of §4.1, there are 10 “old” observations).
The two Kriging metamodels are shown in Figures 4
and 5, which also display the true cost function

E4C̄5=
(

K

Q
+ c

)

�a +
hQ

2
(20)

and the true standard deviation function

�C = c�a +
K�a

Q
1 (21)

which are easy to derive from (15). Figure 4 resembles
the classic EOQ graph (see the dashed curve in Fig-
ure 2), which assumes a known demand rate. Figure 5
illustrates that the standard deviation decreases as
the order quantity increases; i.e., the increased order
quantity provides a buffer against unexpected varia-
tions in the demand rate.
We validate these two metamodels—without using

the true I/O functions (20) and (21)—through leave-
one-out cross-validation. This validation gives the
scatterplots in Figures 6 and 7. Given these two fig-
ures, we accept the two Kriging metamodels.
Based on these Kriging metamodels, we try to find

the order quantity that minimizes the mean cost while
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Figure 4 Kriging Metamodel for Mean Cost in the 1L-KM Approach and

the True Mean Cost

ensuring that the standard deviation does not exceed
the given threshold T . We again solve this constrained
optimization problem through MATLAB’s function
fmincon. Next we vary this threshold and find the set
of optimal solutions that estimates the Pareto frontier;
see Figure 8, which also shows the true Pareto frontier
derived from (20) and (21).
Note that we select a range for the threshold T that

differs from the range in Dellino et al. (2010). Select-
ing the same range would have resulted in an uncon-
strained optimization problem, so the Pareto frontier
would have been a single point.

5.2.2. 2L-KMApproach:KrigingModels forMean
and Standard Deviation Estimated from Intermedi-
ate Kriging Predictions. We select the same number
of input combinations for the simulation model as
we did for the 1L-KM approach; i.e., we select na ×
nQ = 100 × 10 = 11000 input combinations. To select
these 11000 values, we use a space-filling design in
these two factors (in the 1L-KM approach, we use a
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Figure 5 Kriging Metamodel for the Cost’s Standard Deviation in the

1L-KM Approach and the True Standard Deviation
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Figure 6 Scatterplot of Kriging Metamodel for Mean Cost in the 1L-KM

Approach

space-filling design only for Q). To avoid extrapola-
tion when using the metamodel, we select max aj =
�a + 3�a and min aj = max4�a − 3�a1 �5, where � is
a small positive number. After running the simula-
tion for these 11000 input combinations, the result-
ing I/O data give a Kriging metamodel for the cost
Ĉ as a function of the demand rate a and the order
quantity Q. This metamodel is used in the following
procedure:
Step 1. Use LHS to sample Na ≫ na values from the

distribution of the environmental variable a, and use
a space filling design to select NQ ≫ nQ values for the
decision variable Q. We select Na = 200 and NQ = 30.
Note that exceeding the upper bound for a is rare; if
this event occurs, we simply take a new sample.
Step 2. Combine the values of Step 1 into Na ×NQ

input combinations.
Step 3. Compute the Kriging predictions Ĉi1 j 4i =

11 0 0 0 1NQ3 j = 11 0 0 0 1Na5 for the combinations of
Step 2 using the Kriging metamodel estimated from
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Figure 7 Scatterplot of Kriging Metamodel for Cost’s Standard

Deviation in the 1L-KM Approach
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the smaller experiment with the simulation model
with na ×nQ input combinations.

Step 4. Use these predictions Ĉi1 j to estimate the
NQ conditional means and standard deviations of the
cost C, which are analogous to (18) and (19) but use
metamodel predictions instead of simulated values as
follows:

Ĉi =
∑Na

j=1 Ĉi1 j

Na

4i= 11 0 0 0 1NQ51 (22)

�̂i =
∑Na

j=14Ĉi1 j − Ĉi5
2

Na − 1
4i= 11 0 0 0 1NQ50 (23)

Step 5. Fit one Kriging metamodel to the NQ esti-
mated means resulting from (22), and fit another
Kriging metamodel to the NQ estimated standard
deviations resulting from (23).
Figures 9 and 10 display the two Kriging models

that result from Step 5 and the true functions.
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Figure 9 Kriging Metamodel for Mean Costs Based on Kriging

Predictions in the 2L-KM Approach, and the True Mean Cost
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Cross-validation gives scatterplots for these two
metamodels, which look very good: all points are near
the 45� line, so we do not display these two figures
but refer to Figures 6 and 7 (which give the scat-
terplots for the 1L-KM approach). Cross-validation
also gives values such as Ĉ4−15/Ĉ1 = 00999999332 and
ŝ4−305/�̂30 = 100000002496, which imply very small rela-
tive prediction errors. Thus we accept these two Krig-
ing metamodels as adequate approximations.
We solve the constrained optimization problem,

again using fmincon. Next we vary the threshold T ,
albeit over a range that differs from the previous
range, to get interesting results—namely, neither
unconstrained nor infeasible results. The resulting
Pareto frontier and the true frontier are displayed in
Figure 11.
A first and intuitive way to compare the two

Kriging approaches uses their relative costs and ben-
efits. A benefit may be the accuracy of the approach;
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e.g., how close the estimated frontier is to the
true frontier derived from (20) and (21). A com-
parison of Figures 8 and 11 shows that the accu-
racy on the Pareto frontier provided by the 1L-KM
approach is higher than that of the 2L-KM approach.
A cost component is the computation time needed
by the two approaches: because they use two designs
of the same size, their computational costs are roughly
the same, assuming that the time required for fitting
the metamodels and deriving predictions from them
is negligible compared with that of running the simu-
lation model. Assessing the advantages of one robust
simulation optimization approach over the other is
not straightforward. There are several issues mainly
related to possible variability in the metamodels,
which could yield misleading interpretations of the
obtained Pareto-optimal solutions. Therefore, in the
next subsection, we compare the two approaches
through their confidence regions for the mean and
standard deviation.

5.2.3. Bootstrapped Confidence Regions. As we
discussed in §§5.2.1 and 5.2.2, we estimated the
Pareto frontier through random simulation outputs
Ci1 j (whether we use the 1L-KM or the 2L-KM
approach) as a consequence of the uncertainty in the
demand rate. Therefore, it becomes important to per-
form further analyses of the statistical variation of this
frontier to better understand the performance of the
two approaches proposed. To estimate this variability,
we use distribution-free bootstrapping, described in (11)
and (12). This bootstrap gives C̄∗

b and s∗b 4b= 11 0 0 0 1B5,
respectively, which gives bootstrapped Kriging meta-
models. The results for 1L-KM are given in Figure 12,
where the vertical line will be explained below.
Figure 12 shows that the bootstrapped curves

envelop both the original and true curves. Dellino
et al. (2010) use bootstrapping to derive a bundle of
estimated Pareto curves, but we think that the fol-
lowing analysis is more relevant. In particular, we
focus on the original (non-bootstrapped) Pareto fron-
tier and study the variability of the optimal solu-
tions Q̂+ using the bootstrapped pairs of metamodels.
Such an analysis considers the implications of a deci-
sion (in terms of Q̂+) based on this Pareto frontier
as a result of uncertainty. In fact, given the original
Pareto frontier, management selects its preferred com-
bination of the mean and standard deviation of the
inventory cost; e.g., ˆ̄C = 871560084 and ŝ = 81440033,
which corresponds with the “cross” in Figure 8 (near
the end of the Pareto frontier estimated through 1L-
KM). Making the standard deviation not exceed its
threshold (namely, T = 81600) implies a specific order
quantity—namely, Q̂+ = 251304019; see the “cross” in
Figure 5. This order quantity may actually give a
mean and a standard deviation that differ from the
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Figure 12 (a) Bootstrapped Estimated Costs, Original Metamodel in

the 1L-KM (Heavy Curve) and True Cost (Dotted Curve);

(b) Bootstrapped Estimated Standard Deviations of Cost,

Original Metamodel in the 1L-KM (Heavy Curve) and True

Standard Deviation (Dotted Curve)

“original” values in Figure 12; see the vertical lines in
Figure 12, panels (a) and (b), at Q= Q̂+ = 251304019.
The solution Q̂+ selected by the management is

subject to variability, and we need to take this into
account when using the Pareto frontier as a “deci-
sional tool”; we adopt bootstrapping to study this
variability. Thus this estimated Pareto-optimal order
quantity Q̂+ corresponds with B bootstrapped val-
ues for the mean and standard deviation, respectively.
From these B values, we estimate a confidence region
for the mean and standard deviation of the cost given
Q̂+, applying (13) and (14). Figure 13 displays the rect-
angular confidence regions for two points on the origi-
nal estimated Pareto curve. Figure 13(a) corresponds
with the relatively small threshold value T = 81300,
so Q̂+ = 401495 for the 1L-KM approach and Q̂+ =
281035038 for the 2L-KM approach. Figure 13(b) cor-
responds with the larger threshold value T = 81600,
so we obtain the smaller Q̂+ = 251304019 for the 1L-
KM approach and Q̂+ = 251727024 for the 2L-KM
approach. These two threshold values may reflect
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in 1L-KM and 2L-KM, respectively: (a) (
ˆ̄
C1L-KM = 881416055, ŝ1L-KM =

81296097) at Q̂+
1L-KM = 401495, and (

ˆ̄
C2L-KM = 8716430981 ŝ2L-KM = 81219055)

at Q̂+
2L-KM = 281035038; and (b) (

ˆ̄
C1L-KM = 8715600841 ŝ1L-KM = 81440033) at

Q̂+
1L-KM = 251304019, and (

ˆ̄
C2L-KM = 8716050021 ŝ2L-KM = 81249082) at Q̂+

2L-KM =
251727024.

risk-averse and risk-seeking management. In this exam-
ple, 2L-KM gives a smaller confidence region and still
covers the true point: the Kriging metamodel esti-
mated from relatively few (possibly expensive) sim-
ulation observations is so accurate that the relatively
large sample based on this metamodel gives accurate
predictions. We further notice that the high accuracy
in the metamodel of total cost obtained in the first
layer of the 2L-KM approach implies that predictions
computed from this metamodel can be treated as if
they were simulated data. From this point on, the two
approaches perform the same computations. There-
fore, the 2L-KM approach can provide better results
than can the 1L-KM approach at the same compu-
tational costs: in fact, we derive the metamodels of
mean and standard deviation in 2L-KM using an arbi-
trarily large set of design points without increasing

the computational costs as would be required by
1L-KM, whose accuracy can be increased by running
additional expensive simulations.
The confidence interval for the standard devia-

tion shows that the original estimated Pareto-optimal
order quantity may still give a standard deviation
that violates the threshold because of the metamod-
els’ variability (see Figure 12(b)). In fact, we could
also use the confidence region derived to estimate the
degree of infeasibility of a solution (i.e., the proba-
bility that an optimal solution obtained for a given
T becomes infeasible because of uncertainty) as the
fraction of the overall area that is beyond (i.e., to
the right of) the threshold value T used in the opti-
mization problem. Confronted with this possibility,
management may want to change the order quan-
tity such that the probability of violating the thresh-
old becomes acceptable; e.g., management may switch
from the relatively small threshold (and correspond-
ing high Q) in Figure 13(a) to the higher threshold
(and smaller Q) in Figure 13(b). The formalization of
the problem of choosing among random outputs is
beyond this paper—a classic reference is Keeney and
Raiffa (1976). We also refer to the first future-research
issue described in §6.

5.3. Robust Optimization with Uncertain
Demand Rate and Cost Coefficients

Inspired by Borgonovo and Peccati (2007), we extend
our robust formulation of the EOQ model such that it
accounts for fixed but uncertain cost parameters. Thus
the number of environmental factors increases from
one (demand rate) to three (holding and setup costs,
as well as demand rate). Both Kriging approaches
give confidence regions that cover the true point, but
the 2L-KM approach again gives a smaller confidence
region. We provide further details and computational
results in the Online Supplement.

6. Conclusions and Future Research
Robust optimization of simulated systems may use
Taguchi’s worldview, which distinguishes between
decision variables that may be optimized and envi-
ronmental variables that remain uncertain but should
be taken into account when optimizing. Taguchi’s
statistical techniques, however, may be replaced by
Kriging metamodels (instead of low-order polyno-
mials) and their space-filling designs such as LHS
(instead of Taguchian or RSM designs). We developed
two Kriging variants—namely, the 1L-KM approach
that fits one Kriging metamodel for the mean and one
for the standard deviation estimated from the simu-
lation data, and the 2L-KM approach that fits a single
Kriging metamodel to a relatively small simulation
sample and uses this metamodel to compute Kriging
predictions for a larger sample. In the EOQ examples,
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2L-KM gives more accurate predictions than 1L-KM,
given the same computational cost measured by the
number of expensive simulation runs. Moreover, we
point out that the only way to improve the metamod-
els’ accuracy for 1L-KM is to run additional expensive
simulations, which increases the computational cost
of this approach. On the contrary, we can arbitrar-
ily increase the accuracy of the metamodels derived
through 2L-KM with negligible costs because we do
not need to use simulations anymore; however, this
is possible only if the metamodel obtained in the
first layer is sufficiently accurate to provide “reliable”
predictions. The whole Kriging-based methodology
for robust optimization may be further enhanced
by distribution-free bootstrapping, which quantifies
the variability of the estimated robust optimization
results so that it may help management make the final
compromise decision. The confidence regions derived
through bootstrapping for both approaches confirm
that the 2L-KM approach performs better than does
the 1L-KM approach in the EOQ examples. Besides
the EOQ examples, we tested our methodology on
another example, which is discussed in detail in the
Online Supplement; this example includes more deci-
sion and environmental factors and also accounts for
implementation errors. The results confirm the behav-
ior of the two proposed approaches.
Future research may address the following issues.

Instead of minimizing the mean under a variance con-
straint, we may minimize a specific quantile of the
simulation output (see Batur and Choobineh 2010,
Bekki et al. 2009, Kleijnen et al. 2011) or minimize
the conditional value at risk (CVaR) (see Chen et al.
2009, Dehlendorff et al. 2010, García-González et al.
2007, Natarajan et al. 2009); the mean–variance trade-
off is also criticized by Yin et al. (2009). Besides
CVaR, other risk measures are surveyed by Sordo
(2009), including the “expected shortfall at level p,”
which is popular in the actuarial literature. Our
Kriging-based method may be compared with alter-
native approaches based on either different metamod-
eling techniques (e.g., the so-called universal Krig-
ing discussed in the Kriging literature and applied
in classic and robust optimization in engineering,
RSM (low-order polynomial linear regression) mod-
els proposed by Dellino et al. (2010) for robust opti-
mization, and generalized linear models proposed
by Lee and Nelder 2003) or different optimization
solvers (e.g., evolutionary algorithms proposed by
Branke et al. 2001 for robust optimization of noisy
systems and by Jin and Sendhoff 2003 for robust opti-
mization with a multiobjective formulation). Inves-
tigating the performance of alternative DOEs might
also be of interest; see Dehlendorff et al. (2011).
Based on the promising results obtained from the
bootstrap procedure, we plan to further investigate

and refine this analysis. In our next study, we adjust
our methodology to accommodate random simulation
models, which imply aleatory uncertainty as well
as epistemic uncertainty; these two types of uncer-
tainty are discussed by de Rocquigny et al. (2008) and
Helton (2009). Examples of random simulation are
4s1 S5 models, with either explicit out-of-stock costs
resulting in scalar output or a service constraint
resulting in vector output (the difference S − s in
these models is often based on the EOQ model dis-
cussed in this paper). Finally, we plan to apply our
methodology to complex supply chain models; see also
Cannella and Ciancimino (2010), Narasimhan and
Talluri (2009), Rao and Goldsby (2009), and Shukla
et al. (2010).

Electronic Companion
An electronic companion to this paper is available as
part of the online version at http://dx.doi.org/10.1287/
ijoc.1110.0465.

Acknowledgments
The authors thank Dick den Hertog (Tilburg University)
and Wim van Beers (University of Amsterdam) for help-
ful discussions on their research. The authors also thank
the associate editor and two referees for their useful com-
ments on the first versions of this article. G. Dellino and
C. Meloni thank CentER for the financial support when they
visited Tilburg University. G. Dellino thanks the Depart-
ment of Information Engineering (University of Siena) for
its support for the completion of this research, which has
been partially funded by PRIN Grant 2007ZMZK5T of the
Italian Ministry of Education.

References

Ankenman, B., B. L. Nelson, J. Staum. 2010. Stochastic kriging for
simulation metamodeling. Oper. Res. 58(2) 371–382.

Barton, R. R., M. Meckesheimer. 2006. Metamodel-based simulation
optimization. S. G. Henderson, B. L. Nelson, eds. Handbooks in
Operations Research and Management Science, Vol. 13. Elsevier,
Amsterdam, 535–574.

Batur, D., F. Choobineh. 2010. A quantile-based approach to system
selection. Eur. J. Oper. Res. 202(3) 764–772.

Bekki, J. M., J. W. Fowler, G. T. Mackulak, M. Kulahci. 2009.
Simulation-based cycle-time quantile estimation in manu-
facturing settings employing non-FIFO dispatching policies.
J. Simulation 3(2) 69–83.

Bertsimas, D., O. Nohadani, K. M. Teo. 2010. Robust optimization
for unconstrained simulation-based problems. Oper. Res. 58(1)
161–178.

Beyer, H.-G., B. Sendhoff. 2007. Robust optimization—A compre-
hensive survey. Comput. Methods Appl. Mech. Engrg. 196(33–34)
3190–3218.

Borgonovo, E. 2010. Sensitivity analysis with finite changes: An
application to modified EOQ models. Eur. J. Oper. Res. 200(1)
127–138.

Borgonovo, E., L. Peccati. 2007. Global sensitivity analysis in
inventory management. Internat. J. Production Econom. 108(1–2)
302–313.

Branke, J., C. Schmidt, H. Schmeck. 2001. Efficient fitness estimation
in noisy environments. L. Spector, E. D. Goodman, A. Wu, W. B.
Langdon, H.-M. Voight, M. Gen, S. Sen et al., eds. Proc. Genetic
Evol. Comput., Morgan Kaufmann, San Francisco, 243–250.



Dellino, Kleijnen, and Meloni: Taguchi and Krige Combined
484 INFORMS Journal on Computing 24(3), pp. 471–484, © 2012 INFORMS

Cannella, S., E. Ciancimino. 2010. Up-to-date supply chain man-
agement: The coordinated 4S1R5 order-up-to. W. Dangelmaier,
A. Blecken, R. Delius, S. Klöpfer, eds. Adv. Manufacturing Sus-
tainable Logist.: 8th Internat. Heinz Nixdorf Sympos. Springer-
Verlag, Berlin, 175–185.

Chen, X., B. Ankenman, B. L. Nelson. 2010. The effects of common
random numbers on stochastic Kriging metamodels. Indust.
Engrg. 1 1–31.

Chen, Y., M. Xu, Z. G. Zhang. 2009. A risk-averse newsvendor
model under CVaR criterion. Oper. Res. 57(4) 1040–1044.

Cressie, N. A. C. 1993. Statistics for Spatial Data, revised ed. John
Wiley & Sons, New York.

Dehlendorff, C., M. Kulahci, K. Andersen. 2011. Designing simula-
tion experimentswith controllable anduncontrollable factors for
applications in healthcare. J. Roy. Statist. Soc. Ser. C 60(1) 31–49.

Dehlendorff, C., M. Kulahci, S. Merser, K. Andersen. 2010. Condi-
tional value at risk as a measure for waiting time in simulations
of hospital units. Quality Tech. Quant. Management 7(3) 321–336.

del Castillo, E. 2007. Process Optimization: A Statistical Approach.
Springer, New York.

Dellino, G., J. P. C. Kleijnen, C. Meloni. 2010. Robust optimization in
simulation: Taguchi and response surface methodology. Inter-
nat. J. Production Econom. 125(1) 52–59.

Dellino, G., P. Lino, C. Meloni, A. Rizzo. 2007. Enhanced evolution-
ary algorithms for MDO: A control engineering perspective.
C. Grosan, A. Abraham, H. Ishibuchi, eds. Hybrid Evolution-
ary Algorithms. Studies in Computational Intelligence, Vol. 75.
Springer, Berlin, 41–80.

de Rocquigny, E., N. Devictor, S. Tarantola. 2008. Uncertainty set-
tings and natures of uncertainty. E. de Rocquigny, N. Devictor,
S. Tarantola, eds. Uncertainty in Industrial Practice: A Guide
to Quantitative Uncertainty Management. John Wiley & Sons,
Chichester, UK, 199–212.

Efron, B., R. J. Tibshirani. 1993. An Introduction to the Bootstrap.
Chapman & Hall, New York.

García-González, J., E. Parrilla, A. Mateo. 2007. Risk-averse profit-
based optimal scheduling of a hydro-chain in the day-ahead
electricity market. Eur. J. Oper. Res. 181(3) 1354–1369.

Helton, J. C. 2009. Conceptual and computational basis for the
quantification of margins and uncertainty. Report SAND2009-
3055, Sandia National Laboratories, Albuquerque, NM.

Hillier, F. S., G. J. Lieberman. 2001. Introduction to Operations
Research, 7th ed. McGraw-Hill, New York.

Jin, Y., B. Sendhoff. 2003. Trade-off between performance and
robustness: An evolutionary multiobjective approach. C. M.
Fonseca, P. J. Fleming, E. Zitzler, K. Deb, L. Thiele, eds. Evolu-
tionary Multi-Criterion Optimization. Lecture Notes in Computer
Science, Vol. 2632. Springer, Berlin, 237–252.

Keeney, R. L., H. Raiffa. 1976. Decisions with Multiple Objectives: Pref-
erences and Value Tradeoffs. John Wiley & Sons, New York.

Kleijnen, J. P. C. 2008. Design and Analysis of Simulation Experiments.
Springer, New York.

Kleijnen, J. P. C. 2010. Sensitivity analysis of simulation models.
J. J. Cochran, L. A. Cox Jr., P. Keskinocak, J. P. Kharoufeh, J. C.
Smith, eds. Wiley Encyclopedia of Operations Research and Man-
agement Science. John Wiley & Sons, New York, 1–10.

Kleijnen, J. P. C., H. Pierreval, J. Zhang. 2011. Methodology for
determining the acceptability of given designs in uncertain
environments. Eur. J. Oper. Res. 209(2) 176–183.

Kleijnen, J. P. C., S. M. Sanchez, T. W. Lucas, T. M. Cioppa. 2005.
State-of-the-art review: A user’s guide to the brave new world
of designing simulation experiments. INFORMS J. Comput.
17(3) 263–289.

Koch, P. N., D. Mavris, J. K. Allen, F. Mistree. 1998. Modeling noise
in approximation-based robust design: A comparison and criti-
cal discussion. ASME Design Engrg. Tech. Conf., Atlanta, ASME,
New York, 1–15.

Lee, Y., J. A. Nelder. 2003. Robust design. J. Quality Tech. 35(1) 2–12.
Lee, K.-H., G.-J. Park. 2006. A global robust optimization using

Kriging based approximation model. J. Japan Soc. Mech. Engrg.
49(3) 779–788.

Lehman, J. S., T. J. Santner, W. I. Notz. 2004. Designing computer
experiments to determine robust control variables. Statistica
Sinica 14(2) 571–590.

Lophaven, S. N., H. B. Nielsen, J. Søndergaard. 2002. DACE:
A MATLAB Kriging toolbox (version 2.0). Technical Report
IMM-TR-2002-12, Technical University of Denmark, Lyngby.

MathWorks Inc. 2005. Statistics Toolbox. User’s manual. MathWorks,
Natick, MA.

Miettinen, K. M. 1999. Nonlinear Multiobjective Optimization. Kluwer
Academic Publishers, Boston.

Miranda, A. K., E. del Castillo. 2011. Robust parameter design opti-
mization of simulation experiments using stochastic perturba-
tion methods. J. Oper. Res. Soc. 62(1) 198–205.

Myers, R. H., D. C. Montgomery, C. M. Anderson-Cook. 2009.
Response Surface Methodology: Process and Product Optimization
UsingDesignedExperiments, 3rded. JohnWiley&Sons,NewYork.

Nair, V. N., B. Abraham, J. Mackay, G. Box, R. N. Kacker, T. J.
Lorenzen, J. M. Lucas et al. 1992. Taguchi’s parameter design:
A panel discussion. Technometrics 34(2) 127–161.

Narasimhan, R., S. Talluri. 2009. Perspectives on risk management
in supply chains. J. Oper. Management 27(2) 114–118.

Natarajan, K., D. Pachamanova, M. Sim. 2009. Constructing risk
measures from uncertainty sets. Oper. Res. 57(5) 1129–1141.

Neumaier, A., O. Shcherbina, W. Huyer, T. Vinkó. 2005. A compar-
ison of complete global optimization solvers. Math. Program-
ming Ser. B 103(2) 335–356.

Novikov, I., B. Oberman. 2007. Optimization of large simulations
using statistical software. Comput. Statist. Data Anal. 51(5)
2747–2752.

Oberguggenberger, M., J. King, B. Schmelzer. 2009. Classical and
imprecise probability methods for sensitivity analysis in engi-
neering: A case study. Internat. J. Approximate Reasoning 50(4)
680–693.

Park, G.-J., T.-H. Lee, K. H. Lee, K.-H. Hwang. 2006. Robust design:
An overview. AIAA J. 44(1) 181–191.

Rao, S., T. J. Goldsby. 2009. Supply chain risks: A review and typol-
ogy. Internat. J. Logist. Management 20(1) 97–123.

Sacks, J., W. J. Welch, T. J. Mitchell, H. P. Wynn. 1989. Design and
analysis of computer experiments. Statist. Sci. 4(4) 409–435.

Santner, T. J., B. J. Williams, W. I. Notz. 2003. The Design and Analysis
of Computer Experiments. Springer-Verlag, New York.

Shukla, S. K., M. K. Tiwari, H.-D. Wan, R. Shankar. 2010. Optimiza-
tion of the supply chain network: Simulation, Taguchi, and
psychoclonal algorithm embedded approach. Comput. Indust.
Engrg. 58(1) 29–39.

Simar, L., P. W. Wilson. 1998. Sensitivity analysis of efficiency
scores: How to bootstrap in nonparametric frontier models.
Management Sci. 44(1) 49–61.

Sordo, M. A. 2009. Comparing tail variabilities of risks by means of
the excess wealth order. Insurance: Math. Econom. 45(3) 466–469.

Stinstra, E., D. den Hertog. 2008. Robust optimization using com-
puter experiments. Eur. J. Oper. Res. 191(3) 816–837.

Taguchi, G. 1987. System of Experimental Designs, Vols. 1 and 2.
UNIPUB/Krauss International, White Plains, New York.

van Beers, W. C. M., J. P. C. Kleijnen. 2003. Kriging for interpolation
in random simulation. J. Oper. Res. Soc. 54(3) 255–262.

van Beers, W. C. M., J. P. C. Kleijnen. 2004. Kriging interpolation
in simulation: A survey. R. G. Ingalls, M. D. Rossetti, J. S.
Smith, B. A. Peters, eds. Proc. 2004 Winter Simulation Conf.,
IEEE, Washington, DC, 113–121.

Wu, C. F. J., M. Hamada. 2000. Experiments: Planning, Analysis, and
Parameter Design Optimization. John Wiley & Sons, New York.

Wu, J., J. Li, S. Wang, T. C. E. Cheng. 2009. A note on mean-variance
analysis of the newsvendor model with stockout cost. Omega
37(3) 724–730.

Yin, Y., S. M. Madanat, X.-Y. Lu. 2009. Robust improvement
schemes for road networks under demand uncertainty. Eur.
J. Oper. Res. 198(2) 470–479.

Yu, G. 1997. Robust economic order quantity models. Eur. J. Oper.
Res. 100(3) 482–493.

Zipkin, P. H. 2000. Foundations of Inventory Management.
McGraw-Hill, New York.


