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Abstract: We investigate the design of taper structures for coupling to

slow-light modes of various photonic-crystal waveguides while taking into

account parameter uncertainties inherent in practical fabrication. Our short-

length (11 periods) robust tapers designed for λ = 1.55 µm and a slow-light

group velocity of c/34 have a total loss of < 20dB even in the presence of

nanometer-scale surface roughness, which outperform the corresponding

non-robust designs by an order of magnitude. We discover a posteriori that

the robust designs have smooth profiles that can be parameterized by a

few-term (intrinsically smooth) sine series which helps the optimization to

further boost the performance slightly. We ground these numerical results

in an analytical foundation by deriving the scaling relationships between

taper length, taper smoothness, and group velocity with the help of an exact

equivalence with Fourier analysis.
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1. Introduction

In this paper, we combine large-scale optimization, an increasingly popular tool in nanophoton-

ics [1–16], with robustness and slow light for the problem of coupling two dissimilar waveg-

uides [17–36]: here, a conventional dielectric waveguide and a periodic waveguide with a

“slow-light” band edge [37–39] where the group velocity approaches zero. We start with the

basic idea of an “adiabatic taper,” a gradual transition that allows wide-bandwidth efficient

coupling [40], and apply optimization (∼ 1000 parameters) to design the best “profile” of the

taper rate for a given taper length L, in order to minimize the tradeoff between taper length L

and taper reflectivity R. We obtain < 20dB reflection for L of only a few periods, but we

show that the problem becomes intrinsically more difficult as the group velocity decreases,

and the resulting optimized designs become more and more counterintuitive. A key idea in our

approach is the use of robust optimization [41–45]: optimization that takes into account manu-

facturing uncertainty (e.g. fabrication disorder or errors in the dielectric constant or operating

frequency) by always optimizing the worst-case perturbation to any design. Building on our

previous work [43], we show that traditional “nominal” optimization (i.e., assuming no uncer-

tainty) in photonic devices such as this one can easily lead to disaster: an optimized device that

performs well only because of some delicate interference cancellation, and whose performance

advantage is destroyed even by tiny manufacturing errors. In contrast, the robust optimum de-

grades much more gracefully in the presence of errors: by taking into account the possibility

of errors from the beginning, the robust optimization procedure tends to avoid designs that rely

on delicate cancellations. Rather than expensive simulations of the full Maxwell equations per-

formed during the optimization procedure [18,20,21,25,34–36], rapid semi-analytical coupled-

mode theory (CMT) [40] calculations are possible for the taper-design problem [37,43]—these

initially perform small Maxwell simulations only for the periodic building blocks of the taper

to determine the waveguide modes, and subsequently compute a simple integral (equivalent to

a weighted Fourier transform) to find the reflectivity of any given taper profile. CMT trades off

efficiency for generality, but is an indispensable tool to make large-scale optimization feasible

for gradual tapers, especially in 3d. We find that, in the CMT context, the robustness helps us in

another way: by comparison to brute-force scattering-matrix calculations [46], we find that our

designs are also robust to computational approximations. Even with robustness, however, as the

group velocity becomes lower we show that large-scale (many-parameter) optimization tends

to push towards an artificial solution that exaggerates discrepancies between the optimization

model and the physical circumstances (e.g. modelling errors and/or imperfect uncertainty mod-

els), a tendency that can be combatted by building in a posteriori observations about the nature

of the robust optima. In particular, we observe that the robust optima tend to be smooth, slowly-

oscillating shapes that can be parameterized as a linear taper plus a truncated sine series with a

few terms, and by using this information a priori, in addition to robust optimization, we obtain
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parameter s = 0

parameter s = 1

z

going from uniform waveguide to periodic waveguide...

or

or

(e.g. s ~ hole radius, flange width, block spacing, ...)

s = 0

s = 1

L

s=0

s=1

z=0 z=L

design s(z/L)

...100s of parameters...

Fig. 1. Schematic taper design problem, with a transition between two waveguides charac-

terized by a dimensionless parameter s ∈ [0,1]. The taper goes from a uniform dielectric

waveguide (s = 0) to a periodic waveguide (s = 1), with 0 < s < 1 describing intermediate

structures (e.g. s ∼ hole radius, flange width, or block spacing in the structures shown at

right). A taper design (bottom) is a “shape” function s(z/L) (for z ∈ [0,L]) describing a

continuous transition from s(0) = 0 to s(1) = 1. For optimization, we parameterize s by its

values at uniformly spaced points and linearly interpolate in between (bottom left).

an improved design at very low group velocities. Although we show analytically that smooth-

ness reduces taper reflections asymptotically for long tapers, the desirability of smoothness for

optimized short tapers is not as apparent, especially in light of many previous coupler designs

employing abrupt transitions [20, 23, 25, 26, 30, 33, 34, 47, 48].

The coupling of optical modes from one structure to another is crucial for enabling com-

plex integrated photonic devices. A particular challenge is posed by slow-light waveguides,

which are useful since their low group velocity enhances many types of light-matter in-

teraction [39] as well as enhancing dispersion effects [37]. For example, the slow-light in-

crease of the field intensity boosts the optical force in optomechanical systems [49–51],

and it also enhances nonlinear effects for a variety of applications [39, 52–54]. Many de-

signs have been proposed for coupling dissimilar waveguides (in most cases at moder-

ate group velocities), including designs based on butt-coupling [23, 26], mode-field match-

ing [20, 25, 30, 47], anti-reflection coatings [33, 34], resonant transmission [48], and gradual

taper transitions [17–19, 21, 22, 24, 27–29, 31, 32, 36, 37, 40, 43]. Most of these works involved

only a small number of tunable degrees of freedom, which (combined with the moderate group

velocities) helped to avoid the ultra-sensitive nonmanufacturable designs that tend to arise when

many degrees of freedom are included; hence, they were able to disregard uncertainties during
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the design process. Resonance can be used to couple to slow light, but is intrinsically narrow-

band and relies on a delicate cancellation represented by a forced impedance matching (al-

though, being a single parameter, manufacturing errors could conceivably be compensated by

post-fabrication tuning) [48]. Strong frequency and parameter sensitivity was also encountered

in the optimization of a coupler over many degrees of freedom [7]. To address a similar problem

in our earlier work, we introduced one simple way of incorporating robustness by optimizing

the worst-case performance over a large (±30%) range of rescaled taper lengths for the same

shape [37]. In particular, we designed an adiabatic taper for coupling to a slow-light 3d flanged

waveguide (with a moderately low group velocity of c/10) having low reflection (< 20dB),

and optimizing over shapes parameterized by a few parameters (degree-4 polynomials) [37].

However, it is desirable to develop a framework in which more general uncertainties can be

incorporated. To this end, we recently demonstrated a method for designing waveguide tapers

that takes into account uncertainties in the operating frequency and taper shape while using a

large number (hundreds) of free parameters [43]. As a proof of concept, we designed a fixed-

length (30 periods) taper (to periodic 2d blocks) by smoothly varying the air gaps, coupling to

a mode at a moderate group velocity of c/4 [43]. Here, we extend that work to a more realis-

tic waveguide taper (a waveguide with periodic side flanges, which can be gradually extended

while avoiding arbitrarily narrow air gaps), closely analogous to the fabricatable [55–57] 3d

flanged waveguide considered in Ref. 37, but in two dimensions so as to be amenable to brute-

force validation of its performance in the face of fabrication imperfections (surface roughness).

Furthermore, rather than looking at a fixed taper length as in our previous works, we inves-

tigate the central engineering tradeoff in this problem: the tradeoff between performance and

taper length, by comparing separately-optimized structures at different lengths. We go down

to a group velocity of c/34, where the taper problem becomes even more challenging (both

physically and in the optimization sense, e.g. we find that low group velocity required more

algorithmic effort to avoid being trapped in poorly-performing local optima, and also requires

more care to maintain the validity of CMT). Finally, we extend the asymptotic analysis of the

adiabatic limit (taper length → ∞) from our previous works [37, 40] to address the interplay

between taper smoothness, group velocity, and reflection (with the help of an exact equivalence

to Fourier analysis that we derive here).

In a sense, all engineering design is a problem of optimization: choosing some design pa-

rameters p to optimize some objective O(p), possibly subject to some constraints. Large-scale

optimization (sometimes called “inverse design”) is simply optimization in the regime where

there are many parameters, so many that one cannot easily intuit the form of the solution. (With

many parameters, it is crucial that one evaluate the gradient ∇pO analytically, which can be ef-

ficiently achieved by an adjoint method [58].) There are many algorithms to solve optimization

problems of many different kinds, but robust optimization is not about the choice of algorithm,

it is about changing the optimization problem. Instead of solving a nominal optimization like

minp O(p), in which the optimization process assumes that O is known exactly with no uncer-

tainties, robust optimization techniques transform the problem to incorporate uncertainties. If

the uncertainties are described as unknown values v in some set V (e.g. the error bars of man-

ufacturing variability), then one way to “robustify” the problem is to optimize the worst case,

minp[maxv O(p,v)]. (There are also other possibilities, such as optimizing the average case, but

worst-case optimization benefits from the availability of many practical algorithms [43]. Refer-

ence 45 employed a simplified worst-case analysis for a waveguide-design problem, in which

the worst of three designs was optimized.) Most previous work on robust optimization focused

on “convex” optimization problems [59]—essentially, problems with no suboptimal local min-

ima, which can therefore be efficiently solved exactly. However, design problems in optics,

including the taper design problem here, are typically nonconvex: one cannot in general find
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the global optimum (except in the case of small parameter spaces that can be searched exhaus-

tively [60, 61]) and must settle for an approximation (a local optimum). Reference 43 devel-

oped an effective technique to approximately solve non-convex robust optimization problems,

combining approximate pessimization (worst-case analysis) with multi-scenario optimization.

(A somewhat more complicated algorithm, which combined pessimization by gradient ascent

from multiple sample points in V with optimization by gradient descent along a direction deter-

mined by solving a second-order cone problem, was applied to a microwave scattering problem

by Ref. 44.) Reference 43 also showed the effectiveness of a successive-refinement strategy

(gradually increasing the number of degrees of freedom) to avoid being trapped in poor local

optima. (In fact, we now find that the robustness itself helps to avoid being trapped in poor local

optima, so much so that it was helpful to artificially enlarge the uncertainty set V .)

To set the stage for our remaining paper, we begin by more precisely defining a taper-design

robust-optimization problem (as in Ref. 43), depicted schematically in Fig. 1. We are coupling

a uniform dielectric waveguide to a periodic (period a) waveguide, e.g. a dielectric waveguide

pierced by a sequence of holes [38, 62, 63] or with periodic side flanges [55–57]. A continuous

transition from the uniform waveguide (s = 0) to the periodic waveguide (s = 1) is described

by a dimensionless parameter s ∈ [0,1]; for example, s could be proportional to the hole radius

(if we taper by gradually increasing the hole radii) or to the flange width (if we gradually

taper the flanges outwards). A taper design is then described by a continuous profile s(z/L),
which characterizes all intermediate structures for z ∈ [0,L]. [This easily generalizes to the

case of multiple taper parameters sn(z/L) that are varied independently, e.g. hole radius and

waveguide width or flange width and height, but we found that a single taper parameter sufficed

to obtain good performance.] As we review below (and have argued elsewhere [37,40,43]), the

taper losses are usually dominated by reflections (as opposed to radiative scattering), especially

for slow light, so it is sufficient for us to minimize the reflectivity R[s(z/L),v,L], which is a

functional of both the taper shape s(z/L) and a vector v of small uncertainties (in some set V ),

for a given design length L. For example, the uncertainties v could include (as components)

some uncertainty Δω in the operating frequency, imperfections Δs(z/L) in the shape, and/or

uncertainty ΔL in the taper length. As described above, the robust design problem is then to

minimize the worst-case reflection, a “minimax” problem:

Rmin(L) = min
s∈S

max
v∈V

R[s,v,L], (1)

where S is some set of allowed taper shapes. To begin with we parameterize s(z/L) by its

values s(n/N) ∈ [0,1] at N equally spaced points n, with s(0) = 0 and s(1) = 1, and then lin-

early interpolate s between these points as shown in Fig. 1. (This can be thought of as a “tent

function” basis [58].) We also constrain the slope |s′(z/L)| < 5—without some constraint on

the smoothness of s, the optimization strays too far outside the bounds of validity of CMT and

numerical difficulties arise. At the end of the paper, we also consider an alternative parameteri-

zation s(z) = z/L+(sine series), with a linear constraint to enforce s ∈ [0,1]. By the adiabatic

theorem [40], limL→∞ R[s(z/L),0,L] = 0 (in the absence of surface roughness or other uncer-

tainties that cause scattering), but the goal of optimization is to determine the best tradeoff

curve Rmin(L) (with a different optimal shape s for each L).

2. Analytical and computational methods

There are two computational challenges: first, solving Maxwell’s equations to obtain R for

any given s, v, and L; and second, solving the optimization problem (1) for Rmin. These two

questions are related because a very efficient method to compute R is desirable in order to

rapidly explore a large parameter space (s,v,L) during optimization. To address this challenge,
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we first review CMT and its application as a numerical method, and also discuss its analytical

implications for the asymptotic properties of gradual tapers. We also compare CMT with more

“brute-force” simulation algorithms, which are used both for validation of CMT and for post-

optimization evaluation of our designs in the face of disorder. Finally, we briefly review the

optimization algorithm, which was developed in detail in our previous work [43].

2.1. Coupled-mode theory and the adiabatic limit

In order to compute R, as in our previous work [37, 43] we employ the coupled-mode the-

ory (CMT) developed in Ref. 40. The basic idea is to expand the field in the waveguide

in the basis of the Bloch eigenmodes of periodic waveguides—here, the waveguide modes

corresponding to the intermediate structure s(z/L) is used to expand the fields at that z. Ab-

stractly, if the electromagnetic field is ψ(z) (with xy coordinates omitted), we write ψ(z) =

∑n cn(z)ψn(z)exp[i
∫ z βn(z

′)dz′], where the ψn(z) are the Bloch eigenmodes at z, βn is the cor-

responding propagation constant (or wavevector), and cn is the expansion coefficient. When

this expansion is substituted into the Maxwell equations, a set of coupled ODEs for cn(z) is

obtained (the “coupled-mode” or “coupled-wave” equations) [40]. In the L → ∞ limit, the adi-

abatic theorem states that the expansion coefficients are constants [cn(z)→ cn(0)], while for a

finite L we can apply a slowly varying envelope approximation (SVEA) to compute the correc-

tions to this limit. In the SVEA, assuming we start with a single incident mode cn(0) = δn0, to

lowest order in the rate of change one finds that the reflected-wave amplitude cr is [40]:

cr =
∫ 1

0
dus′(u)∑

k

Mk[s(u)]

Δβk[s(u)]
eiL

∫ u
0 Δβk[s(u

′)]du′ . (2)

Here, Mk(s) is a coupling matrix element (an overlap integral 〈ψi| · · · |ψr〉) of the incident and

reflected fields with the geometric variation, and Δβk(s) = βr(s)−βi(s)+2πk/a(s) is a phase-

mismatch factor between the incident (i) and reflected (r) modes summed over all Brillouin

zones (all integers k). In this paper, the Mk and Δβk parameters were obtained from a planewave-

expansion method [64]. In practice, the sum over k converges rapidly [40] so we only included

|k| < 3. The reflected power is then R = |cr|2. Computation of the gradient ∇scr is described

in Ref. 43. (It is important to contrast this Bloch-mode expansion with older coupled-wave ap-

proaches that expand in the basis of uniform waveguide modes of each cross-section, which is

ineffective as a semi-analytical technique for strongly periodic structures in which the cross sec-

tion is rapidly varying [40]. A Bloch-mode basis, on the other hand, experiences no scattering

at all from the periodicity itself—it only undergoes intermodal scattering when the periodicity

is broken by the taper, and is therefore a rapidly converging basis for gradual taper transitions

of periodic structures, including structures whose unit cells contain discontinuities such as air

gaps [40].)

In principle, the total loss (1− transmission) includes radiative scattering in addition to re-

flection (assuming single-mode waveguides so that there is no other inter-modal reflection).

However, the reflected power tends to dominate [40], especially for slow-light modes (low

group velocity vg = dω/dβ ), as can be argued from (2) [37]. First, at a quadratic band edge in

a periodic waveguide, Δβ ∼ vg (for the k term corresponding to modes β = π/a±Δ coupled in

adjacent Brillouin zones)—this both decreases the denominator in (2) and decreases the phase

mismatch. Second, the modes in coupled-mode theory are normalized to unit power [40], and

hence the fields scale ∼ 1/
√

vg and there is an additional 1/vg factor in M for coupling slow-

light incident and reflected modes, versus only a 1/
√

vg factor in M for coupling slow-light

incident to non-slow scattered waves [37].

In order to understand the validity of CMT and the precise scaling with group velocity,

we must have a better understanding of the adiabatic limit. A particularly elegant approach
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is to make a change of variables to transform (2) into a Fourier integral, at which point all of

the well-known properties of Fourier transforms can be invoked. Omit the k summation for

simplicity (e.g. focus on the dominant k term). The key point is that one generally (with rare

exceptions [65]) considers adiabatic transitions in which the incident and scattered modes are

never degenerate in β , so that Δβ is always nonzero. This is certainly true for the case of

reflections. The function x(u) =
∫ u

0 Δβk[s(u
′)]du′ is therefore monotonic, and one can invert it

to u(x) and change variables u ↔ x. We obtain precisely a Fourier integral:

cr =
∫ ∞

−∞
dxs′(u(x))

Mk[s(u(x))]

Δβk[s(u(x))]2
eiLx, (3)

where we are free to extend the integration range since s′ = 0 outside the taper. As long as

s is continuous, so that s′ contains no delta functions, this → 0 for L → ∞ because L is sim-

ply the “frequency” of a convergent Fourier transform. Furthermore, the rate at which cr → 0

with L is well known in Fourier theory to depend on the smoothness of the integrand [66, 67],

which in this case is determined by the smoothness of s′ (including the taper endpoints). For

example, if s is a simple linear taper with discontinuous slope s′ at the taper ends, then the

Fourier transform (due to the discontinuity) scales as cr ∼ 1/L, hence the reflections go as 1/L2

asymptotically [37, 40]. More generally, if s has endpoint discontinuities in its ℓ-th derivative

and is otherwise smooth, then |cr|2 ∼ 1/L2ℓ [66, 67] (we previously analyzed a related point in

the context of PML absorbing boundaries, where the Fourier analogy was not so exact [68]).

Similarly, the group-velocity scaling depends on the smoothness of s. For the case of a linear

taper, or any taper with discontinuous s′, the reflection goes as |cr|2 ∼ |M/Δβ |2/L2 ∼ 1/(Lv3
g)

2,

or equivalently we must have L ∼ 1/v3
g to obtain a fixed reflection [37,69]. For smoother tapers,

the convergence analysis of the Fourier integral involves integration by parts to apply additional

derivatives to s until the discontinuity is reached [66–68], which gives additional du/dx= 1/Δβ
factors by the chain rule. Hence, the generalization to a discontinuity in the ℓ-th derivative is a

scaling |cr|2 ∼ |M/Δβ |2/(LΔβ )2ℓ ∼ (1/v4
g)/(Lvg)

2ℓ, or L ∼ 1/v
1+2/ℓ
g . The consequence of this

scaling is that a tradeoff of taper length with group velocity becomes (asymptotically) better

for smoother tapers, approaching L ∼ 1/vg, and so smoothness—eliminating high-frequency

Fourier components—of the taper shape may be especially important for slow light. On the

other hand, the optimum taper shape is very different for any given finite L than it is in the

asymptotic limit—the rule is not simply “smoother is better,” because smoother tapers also

tend to require a larger L to attain the asymptotic 1/L2ℓ behavior [68]. Optimization is required

to determine the best shape for any finite L, especially for short L far from the asymptotic

regime.

2.2. Brute-force numerics and validation

CMT, when evaluated to lowest-order as in (2), is asymptotically exact in the limit of gradual

tapers, but is only an approximation for the rapid taper transitions that are the goal of opti-

mization because we are neglecting multiple-scattering effects. (Note that our expansion basis

is that of Bloch modes [40], so multiple-scattering effects of the periodicity itself are treated

exactly; it is only multiple scattering between Bloch modes due to the taper transition that

are neglected.) Fortunately, the optimization will also tend to drive the taper shape precisely

into the small-|cr| regime where CMT is accurate. However, to check the performance of our

taper designs, we supplement the CMT with a brute-force numerical calculation based on an

eigenmode-expansion scattering-matrix method (also called RCWA, the rigorous coupled-wave

approximation) via the free CAMFR package [70]. CAMFR is also used as a final check of the

robustness of the designs to fabrication errors, since in that method we can incorporate random
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surface roughness in the taper (which requires a different coupled-mode theory technique to de-

scribe it accurately [71]). In general, we found that the robust-optimization approach produced

designs that were robust even in the face of errors in the computational method, whereas we

show below that nominal optimization produces designs whose performance is destroyed even

by slight changes in the simulation accuracy.

Figure 2(a) shows a linear (forward and backward, double) taper between a uniform waveg-

uide and a sequence of dielectric blocks (ε = 12), for relatively “fast” light (vg ≈ c/4) in the

TM (out-of-plane E) polarization, with excellent agreement between CAMFR and CMT except

for very short tapers with reflections > 10%. This structure is convenient for validation [40,43]

because its piecewise-constant cross-sections are particularly efficient in CAMFR and allow

us to study very long and gradual tapers, but it is relatively difficult to realize experimentally

because its tapers involve many extremely narrow air gaps (that must be abruptly merged in

practice once the limits of lithographic resolution are reached [72]). In Fig. 2(b), we instead

consider a (TE-polarized) case of a waveguide with lateral flanges [55–57] operating close to

the band edge where the group velocity is ≈ c/34. This sort of geometry is experimentally

attractive because a gradual taper involves no arbitrarily narrow features, and the TE polariza-

tion translates into a TE-like polarization in three dimensions that can be confined by much

thinner structures than TM-like polarizations [38]. In this case, however the CMT only begins

to converge to the CAMFR results (which we also check against a third numerical method,

FDTD [73, 74]) for very long tapers, but this is not unexpected. Because of the slow light used

here, the reflections are very large (∼ 40%), and the first-order approximation in our CMT is

expected to be inaccurate. For slow light, as explained above, a simple linear taper is a poor

choice even if the taper can be made quite long: although CMT predicts an asymptotic 1/L2

scaling of the reflection, we would need to go to much larger lengths to observe this scaling for

slow light. [Unfortunately, CAMFR is far more expensive for the taper in (b) than for the taper

in (a), due to the nonconstant cross-sections in the former, while FDTD is also too expensive to

simulate a very gradual taper.] As we show below, however, optimizing the CMT in the slow-

light case nevertheless yields a (much more counterintuitive) design that performs well even in

the brute-force CAMFR check.

2.3. Robust-optimization algorithm

The basic optimization algorithm, as described in Ref. 43, is sequential linear programming

(SLP) with a trust-region constraint [75, 76]. In order to implement the robustness [the inner

maxv of (1)], the method uses the gradient ∇vR to estimate the worst-case v parameters for the

current shape s (and in fact accumulates a memory of ten such worst cases over the course of

the optimization that it uses for subsequent steps), and thus transforms the continuous maxv

into a discrete “multi-scenario” maximization over a finite set of worst-case candidates [43].

Reference 43 also introduced a technique of “successive refinement”: we gradually increase

the number of degrees of freedom (from 1 to 1024, roughly doubling in each step), using the

optimized coarser structures as starting points for optimization of the finer structures. This pro-

cedure has two benefits: it both increases the robustness of the design (by making it more robust

to coarsening the discretization of s) and also tends to avoid becoming immediately trapped in

local minima (although we cannot guarantee that the final result is a global minimum).

We found that the precise details of the set V of uncertainties makes relatively little

difference—putting in any robustness tends to force the optimization to avoid delicate can-

cellations that would be sensitive to any errors. However, some care is required in the case of

slow light because of the presence of a band edge beyond which the guided mode no longer

exists. As the band edge is approached, any uncertainty Δω in the operating frequency must

be reduced to avoid going past this band edge. In practice, if a fabrication error were to shift
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Fig. 2. Comparison of coupled-mode theory (CMT) calculation of reflection coefficient

from double taper (from uniform to periodic to uniform) structure, using a simple lin-

ear profile s(u) = u, with two other brute-force numerical methods, scattering matrix

(CAMFR [46]) and finite-difference time-domain (FDTD [74]). (a) 2d period a 0.4a×0.4a

blocks example (top left) with TM operating mode at vg = c/4 [40,43]. CMT and CAMFR

agree well. (b) 2d period-a flanged waveguide (inner width a, outer width 2a, 50% duty

cycle) with TE operating mode at vg = c/34, adapted from Ref. 37 (top right). For such

slow light, the scattering from a short linear taper is too large for CMT to be valid, but op-

timization of the taper shape will drive the reflections low enough for the CMT calculation

to be suitable.

the band edge slightly, an application requiring slow light would have to either adjust the op-

erating frequency accordingly or perform post-fabrication tuning (e.g. by thermally changing

the refractive index) in order to keep vg fixed. Therefore, to reflect this situation of fixed vg,

we did not include any uncertainty in ω . However, in order to represent the possibility of er-

ror in the phase velocity (ω/β ) that could result from such post-fabrication tuning, we instead

included an uncertainty ΔL in the taper length L [equivalent to an overall shift in β by (2)].

Since ∂β/∂ω diverges as vg → 0, we increased the uncertainty in L (and hence in β ) as we de-

creased vg—failing to do this resulted in designs that were overly sensitive to fabrication errors

in our simulations. Furthermore, we found that decreasing vg made the optimization increas-

ingly susceptible to being trapped in poor local minima—intuitively, the increased reflections in

the slow-light regime also increase the number of opportunities for delicate cancellations—and

increasing ΔL helped to combat this tendency. We also included random perturbations in s (at

each discretized s point), but we found that this made little difference in the resulting design

once ΔL was sufficiently large.

3. Results

We now discuss the results of optimizing and simulating taper designs for the two different

waveguides of Fig. 2, considering both slow light and moderate group velocities, for both nom-

inal (mins R) and robust (mins maxv R optimization), with and without introducing “fabrication

disorder” (surface roughness) in the simulation (after optimizing).

3.1. Periodic blocks

To begin with, we return to the periodic (period a) sequence of 0.4a× 0.4a blocks (dielectric

constant ε = 12 in air) from Fig. 2(a) that we studied in Ref. 43, operating at the same moderate
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Fig. 3. Optimization results for taper structure of square blocks (operating TM mode with

vg = c/4) from Fig. 2(a), with block spacing as the taper variable (top: linear tapers). (a)

Performance of three tapers (linear in green, nominal optimum in blue, and robust optimum

in red, with the optimizations performed independently at each length L) computed using

a brute-force scattering-matrix method (CAMFR [46]) (with no disorder introduced). (b)

Performance of nominal taper (optimized independently at each taper length) computed us-

ing two different methods (CMT and CAMFR)—the large disparity is due to the nominal

optimum relying on a delicate interference cancellation that is destroyed even by the slight

numerical differences between the two techniques. (c) Performance of linear, nominal, and

robust tapers designed at L = 50a and then rescaled to other taper lengths: the nominal

optimum relies on a delicate cancellation that only works close to L = 50a. Inset compares

CMT and CAMFR for the L = 20a design rescaled to different lengths, and illustrates that

the two approaches agree everywhere except at L = 20a, where there is a delicate interfer-

ence cancellation that is inherently irreproducible (non-robust), and at small L where the

reflection exceeds 10% (causing CMT to break down). (d) Nominal and robust taper pro-

files s(u) designed at L = 50a: the nominal design is only slightly different from a linear

taper, with the slight changes (inset) sufficient to create a delicate reflection cancellation.
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group velocity of c/4 and coupled to a uniform waveguide of width 0.4a, which is a convenient

test problem because of the ease of comparison with brute-force CAMFR simulation. Unlike

our previous work, however, we now perform the optimization of s separately for every taper

length L ∈ [1,100]a, in order to examine the tradeoff of optimal Rmin with L. We then simulate

each of the resulting taper designs in CAMFR in order to verify their performance.

The results are shown in Fig. 3(a), and exhibit a surprising phenomenon: even when no

disorder (no roughness) is introduced into the scattering-matrix (CAMFR) calculation, so that

in principle it should be modeling exactly the same system as the CMT calculations used during

optimization, the nominal optimum exhibits worse performance than the robust optimum (and

both are better than a simple linear taper). Mathematically, one would expect that the nominal

optimum should always perform at least as well as the robust optimum when the disorder is set

to zero, simply because maxv R[s,v]≥ R[s,0]. The reason for the behavior in Fig. 3(a) is simple,

however: the nominal optimum relies on such a delicate cancellation effect that even the slight

difference in simulation accuracy between CAMFR and CMT (both will have simulation errors,

but the errors will be different) is sufficient to radically degrade the performance of the nominal

optimum, while the robust optimum still performs well. As shown below, when the nominal

and robust optima are evaluated in CMT, the nominal performance is indeed slightly better.

This discretization-error degradation in the nominal optimum can be seen in Fig. 3(b), which

compares the CMT and CAMFR calculations for the nominal optimum at each L. For very short

tapers, they make comparable predictions, but once the taper is about 10a in length the opti-

mization is able to engineer a delicate cancellation that causes the CMT reflections to suddenly

drop by four orders of magnitude (at which point they become limited by numerical errors

and cease to improve further). Even the slight difference in discretization error induced by the

switch from CMT to CAMFR, however, is enough to destroy this cancellation. (In our previous

work, we showed for this structure that the robust optimum remained an order of magnitude

better than the nominal optimum even after additional disorder is intentionally introduced into

the CAMFR calculation [43]; we consider such disorder in the next section.) The agreement of

CMT and CAMFR everywhere except at the point of this delicate cancellation is demonstrated

below, using the inset of Fig. 3(c).

Another viewpoint on this delicate cancellation is shown in Fig. 3(c), which considers the

design s for L = 50a, but then plots the performance of the same taper shape s(z/L) when it

is rescaled to other lengths L. The nominal optimum performs well only at the design length

of L = 50a, and its performance immediately degrades to little better than a linear taper shape

(s(u) = u) as soon as it is rescaled to a different L—this is a signature of a delicate destructive

cancellation in the reflected wave that the nominal optimization forced to occur at L = 50a.

The inset compares CMT and CAMFR for a rescaled L = 20a design, and shows that the

two agree except at L = 20a where the non-robust cancellation occurs, which is destroyed by

slight differences in discretization error as discussed above. In contrast, the robust optimum still

performs well even when s is rescaled to lengths L very different from the L where the shape was

designed—the robust optimum does not rely on a delicate cancellation that is easily destroyed.

(As expected, the nominal optimum at L= 50a is indeed slightly better than the robust optimum

at that L, when the two are evaluated in CMT with no disorder.) The corresponding taper shapes

s are shown in Fig. 3(d): while the robust optimum is a relatively smooth transition that flattens

at the ends (reducing the s′ discontinuities of a linear taper as might be expected from the

asymptotic analysis), the nominal optimum is nearly identical to a linear taper, only deviating

by a slight amount (inset) that is apparently tuned to force a reflection cancellation at L = 50a.

Finally, we should comment on one other interesting feature of Fig. 3(a): for the robust

optimum, the reflections appear to decrease exponentially with L until reaching a “noise floor”

around 10−6 imposed by numerical accuracy limitations. An exponential tradeoff of reflection
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Fig. 4. Optimization results for taper from uniform to flanged waveguide (operating TE

mode with vg = c/6) from Fig. 2(b), with flange (outer) width as the taper variable (top:

linear tapers). (a) Performance of three tapers (linear in green, nominal optimum in blue,

and robust optimum in red, with the optimizations performed independently at each length

L) computed using a brute-force scattering-matrix method (CAMFR [46]), where surface

roughness (±10−3a every 0.01a) was introduced, averaged over 50 structures. The robust

optimum maintains good (∼ 30 dB) performance even in the presence of disorder, whereas

the nominal optimum is greatly degraded. (b) Nominal and robust taper profiles designed

at L = 13a (vertical axis exaggerated for clarity): the nominal design includes fine cusps

(circled) absent from the robust design, whose apparent function is to introduce reflection

cancellations (which are spoiled by disorder).

with length is the ideal situation that would be attained asymptotically for an analytic taper

shape (such as s(u) = tanh(u)/2+ 1/2), due to the exponential convergence of the Fourier

transforms of such analytic functions [67, 68], but this requires the taper to have an infinitely

long “tail”, and in any case only applies asymptotically for large L. In contrast, optimization

seems to attain a similar ideal tradeoff even for small L, even for finite-length tapers, albeit by

changing the taper shape as a function of L. (Whereas the linear and nominal tapers show 1/L2

scaling.)

3.2. Periodic flanges

Next, we consider taper designs to couple to a waveguide with period-a dielectric (ε = 12)

flanges in air, as in Fig. 2(b): the flanges occupy 50% of each period, and extend to an outer

diameter (flange width) of 2a from an inner diameter of a (matching the uniform waveguide).

Again, we optimize separately at each L, in this case for L ∈ [11,20]a (shorter than in the

previous section, both for computational tractability in brute force verification and also because

short tapers are more practical).

To start with, in Fig. 4, we operate at a moderate group velocity c/6, at a frequency ≈ 1%

below the band edge of the fundamental mode. After optimization, we then simulated the result-

ing structures in CAMFR, but modified to include disorder: uniform random surface roughness

with amplitude ∈ [−10−3,10−3]a (corresponding to ≈ nm-scale surface roughness for opera-

tion at λ = 1.55 µm) added to each slice (“pixel”) of thickness 0.01a of the taper. Each result

in Fig. 4(a) is the reflection averaged over 50 realizations of surface roughness. The robust op-

timum is more than an order of magnitude better in performance than the nominal optimum—
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again, the nominal optimum is better in the CMT but relies on delicate cancellations that are

destroyed by the surface roughness, although the nominal optimum is still slightly better than

a simple linear taper. The robust design has reflections of ≈ 30 dB for a taper only L = 11a

in length. The reflection improves for longer lengths, but only slowly, and eventually starts to

become worse—the reason is that there is a tradeoff introduced by the surface roughness, in

that longer tapers are more gradual but also accumulate roughness-induced reflections over a

longer length, and eventually the latter effect dominates. The nominal and robust designs for

L = 13a are shown in Fig. 4(b); note that the vertical axis is exaggerated for clarity. The robust

s(z/L) is a fairly smooth taper transition, exhibits some oscillatory behavior that seems hard

to guess a priori (and s will become even more counter-intuitive when the group velocity is

decreased below). The nominal optimum is even more strange, with some fine cusps appearing

in the first few taper flanges that almost certainly create reflections, albeit in such a way as to

exactly cancel other reflections (e.g. from the taper ends) in the absence of disorder.

Next, we move to a more challenging problem: coupling to the same structure, but at a

frequency only 0.01% below the band edge of the fundamental mode, operating at a group ve-

locity of c/34. In this case, a simple linear taper exhibits > 30% reflections for a taper length

L = 20a. In Fig. 5(a), we show the CAMFR simulations of the optimized designs at each L,

again modifying the structures to include surface roughness. The robust optimum here exhibits

reflections < 20 dB, more than an order of magnitude better than the nominal optimum design,

which is again only slightly better than a naive linear taper. The robust optimum, in fact, has

a dip < 40 dB in its reflections at L ∈ [13,15]a, apparently due to some destructive cancella-

tion, but the dip disappears in Fig. 5(b) if we examine the total loss (1− transmission) instead

of just the reflections (which still dominate the loss for most L). Note that the losses again

can be seen to increase with L, an effect of the increased scattering from roughness along a

longer length. In order to obtain the good performance for the robust taper, we found that we

needed to increase the amount of uncertainty ΔL in the optimization process to a relatively large

value (3a), apparently to avoid being trapped in local minima. In fact, the nominal optimization

seemed to immediately become trapped in a relatively poor solution, even for the CMT with

no uncertainty—as shown in Fig. 5(c), the nominal optimum achieves > 20 dB reflections in

the CMT, a performance that is destroyed when switching to CAMFR even with no surface

roughness (due to discretization effects alone).

The nominal and robust optimum shapes s(u) for c/34 are shown in the lower-left and top-

middle panels of Fig. 6 (again with the vertical axis enlarged for clarity). The nominal optimum

has even stronger cusps than in the c/6 velocity case, suggesting even more reliance on cancel-

lations of strong interior reflections. However, even the robust optimum is highly oscillatory,

with oscillations even within a single flange. Despite its good performance in the simulations

of Fig. 5, this led us to wonder whether the oscillatory shape was somehow an artifact of the

choice of parameterization of s. That is, is this merely a local minimum that we were trapped in

as a consequence of discretizing s into piecewise linear (non-smooth) segments (tent functions)

and gradually refining? To investigate this question, we repeated the robust optimization with

an entirely different parameterization: s(u) = u+(sine series), where the sine series enforces

the s(0) = 0 and s(1) = 1 boundary conditions. (The 0 ≤ s ≤ 1 boundary conditions were im-

posed explicitly at 1000 points in u, which takes the form of a simple linear constraint added to

the linear-programming steps.) Successive refinement was performed by repeatedly doubling

the number of terms in the sine series (4,16,32,64), setting the new terms to zero as the starting

point for optimization. The resulting robust sine-series optima are shown in Fig. 6 (lower-right),

and are clearly converging towards the same oscillatory robust optimum. The 64-term sine se-

ries s(u) is superimposed on the original robust optimum in the top-middle panel, and can be

seen to reproduce even many of the fine features within each flange.
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Fig. 5. Optimization results for taper from uniform to flanged slow-light waveguide (op-

erating TE mode with vg = c/34) with flange (outer) width as the taper variable (top:

linear tapers). (a) Performance of three tapers (linear in green, nominal in blue, and ro-

bust in red, with the optimizations performed independently at each length) computed

using a brute-force scattering-matrix method (CAMFR [46]), where surface roughness

(±10−3a every 0.01a) was introduced, averaged over 50 structures. (b) Same as (a) but

with 1− transmission: the inclusion of radiative scattering loss eliminates the optimization-

created dip (cancellation) in the reflection losses from (a). As in Fig. 4, the robust optimum

greatly outperforms the nominal optimum in the presence of disorder. (c) Even without

disorder, the nominal optimum performs poorly in CAMFR compared to CMT: the slight

differences in simulation accuracy are enough to spoil the nominal optimum. (d) Same

as (a) but with robust optimization using the original (1024-point) piecewise-linear (“tent

function”) parameterization (red squares) compared to robust optimization using a sine-

series parameterization (cyan) with 4, 16, and 64 terms: the latter is converging towards

similar performance as the former, and towards similar structures as seen in Fig. 6, so the

robust optimum is not merely a local minimum obtained as a byproduct of the discretization

choice.
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Fig. 6. Linear, nominal, and robust-optimum taper profiles from the slow-light (c/34) op-

timization of Fig. 5, optimized at a taper length L = 13a. Vertical axes are exaggerated for

scale; topmost (black) figure shows the robust taper design to scale. Even the robust design

shows complicated sub-flange oscillations, but similar oscillations are reproduced indepen-

dent of the parameterization of the taper design during optimization. Top middle (red):

robust design using 1024-point linear interpolation (tent functions). Cyan (bottom/right):

robust optimization using sine series with successive increase of the number of series terms.

64-term sine series structure (top right) is similar to tent-function (top middle) structure,

and is superimposed on the latter as a dotted cyan curve. Nominal optimum (lower left) has

even more radical oscillations, designed to create delicate reflection cancellations (which

are spoiled by disorder).

The performance of these sine-series designs, shown in Fig. 5(d), is also converging towards

the original robust optimum. In fact, the sine series for some L performs better with only 4 terms

than it does with more terms or with the original tent-function results. It may be, therefore, that

the most counter-intuitive feature of the (tent or 64-sine) robust designs, the intra-flange oscil-

lations, are an artifact not of the parameterization but of the model. That is, the optimization

is driving the design towards a regime in which the accuracy limitations of CMT and/or the

uncertainty model (which cannot accurately capture surface roughness in the context of CMT)

are being exploited to reduce reflections in a way that is partially spoiled in practice (e.g. in

brute-force calculations or in experiments). Although the robust designs still perform well, and

it would not have been feasible to perform optimization of long tapers on a more exact model,

these accuracy limitations can be further compensated for by building in a priori knowledge

of the solution: here, the observation that robust solutions tend to be smooth and slowly oscil-

latory. (In hindsight, a few-term sine-series basis would have been sufficient to parameterize

the robust designs in Fig. 3 and Fig. 4 as well.) Robustness is still required: we have checked

that nominal optimization applied to the sine-series parameterization continues to yield signifi-

cantly worse results. In fact, for the L = 11a 4-term sine-series case where the robust optimum
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performed very well, the nominal optimization is immediately trapped in a local minimum and

its reflections stay above 10%.

4. Concluding remarks

We have demonstrated how a rapid, semi-analytical Maxwell solver combined with large-

scale robust optimization can be used to design taper structures for slow-light photonic-crystal

waveguides with performance markedly better than their non-robust counterparts (nominal op-

tima) in the presence of manufacturing variability. In three dimensions, our semi-analytical

CMT approach remains feasible [37], and currently seems to be the only feasible computa-

tional method in 3d for optimizing the gradual tapers required in slow-light applications. We

have shown that robustness, in addition to compensating for manufacturing uncertainty, can

also compensate for limitations of CMT to obtain designs that perform well in practice, even

though CMT requires increasingly gradual tapers to be accurate as the group velocity decreases.

Because we also find that the robust optima tend to be smooth, slowly-oscillating shapes, by

building this information into the parameterization a priori—parameterizing the shape as a

truncated sine series with a few terms—we find that even better results can sometimes be ob-

tained (although robust optimization is still important). (This finding is reminiscent of—but

does not follow from—our analytical result that smooth shapes, with minimal high-frequency

Fourier components of s′, reduce reflections in the asymptotic L → ∞ limit.) As the group ve-

locity becomes lower, building in smoothness seems to become more and more important for

robustness. Using such an a priori low-dimensional representation has other potential bene-

fits: combined with the efficiency of CMT it opens the possibility of more expensive global

optimization approaches. Furthermore, these techniques are easily generalized to taper opti-

mization for other waveguide designs, including in 3d, and other uncertainty models. As robust

taper designs are particularly useful for coupling to slow-light modes in realistic experimen-

tal settings, they may potentially form a crucial component of complex, reconfigurable and

dynamic optomechanical devices.
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