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Robust optimization is a methodology that has gained a lot of attention in the recent years. This is mainly

due to the simplicity of the modeling process and ease of resolution even for large scale models. Unfortunately,

the second property is usually lost when the cost function that needs to be “robustified” is not concave

(or linear) with respect to the perturbing parameters. In this paper, we study robust optimization of sums

of piecewise linear functions over polyhedral uncertainty set. Given that these problems are known to be

intractable, we propose a new scheme for constructing conservative approximations based on the relaxation

of an embedded mixed-integer linear program and relate this scheme to methods that are based on exploiting

affine decision rules. Our new scheme gives rise to two tractable models that respectively take the shape

of a linear program and a semi-definite program, with the latter having the potential to provide solutions

of better quality than the former at the price of heavier computations. We present conditions under which

our approximation models are exact. In particular, we are able to propose the first exact reformulations for

a robust (and distributionally robust) multi-item newsvendor problem with budgeted uncertainty set and

a reformulation for robust multi-period inventory problems that is exact whether the uncertainty region

reduces to a L1-norm ball or to a box. An extensive set of empirical results will illustrate the quality of

the approximate solutions that are obtained using these two models on randomly generated instances of the

latter problem.

Key words : Robust optimization, piecewise linear, linear programming relaxation, semi-definite program,

tractable approximations, newsvendor problem, inventory problem.
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1. Introduction

Since the seminal work of Ben-Tal and Nemirovski (1998), robust optimization is a methodology

that has attracted a large amount of attention. Such attention has stemmed in application fields

that range from engineering problems like structural design (Ben-Tal and Nemirovski 1997) and

circuit design (Boyd et al. 2005), management problems such as portfolio optimization (Goldfarb

and Iyengar 2002) and supply chain management (Ben-Tal et al. 2005), to an array of data mining

applications such as classification (Xu et al. 2009), regression (El Ghaoui and Lebret 1997) and

parameter estimation (Calafiore and Ghaoui 2001) (see Bertsimas et al. (2011a) for a detailed
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review of such applications). Two important factors that have contributed to this success are 1) the

simplicity of the modeling paradigm, and 2) the tractability of many resulting formulations thus

enabling the resolution of problems of scales that can match the practical needs. Unfortunately,

the second property is usually lost when the cost function that needs to be “robustified” is not

concave (or linear) with respect to the perturbing parameters.

This paper focuses on the following robust optimization problem:

minimize
x∈X

max
ζ∈Z

N∑
i=1

hi(x,ζ) , (1)

where X ⊆Rn is a bounded polyhedral set of feasible solution for the decision x, Z ⊆Rm is the set

containing the possible perturbation ζ and for each i, the cost function hi(x,ζ) is piecewise linear

and convex in both x and ζ (although not necessarily jointly convex). In particular, this means

that the cost function can be expressed as follows:

hi(x,ζ) := max
k
ci,kx (ζ)Tx+ di,kx (ζ) := max

k
ci,kζ (x)Tζ+ di,kζ (x) ,

for some affine mappings ci,kx : Rm→Rn, di,kx : Rm→R, ci,kζ : Rn→Rm and di,kζ : Rn→R. Although

objective functions that take the form of sums of piecewise linear function abound in practice, exact

solutions to the robust version of these problems are often considered impossible to obtain because

of the computational difficulties that arise in solving the inner maximization problem (a.k.a. ad-

versarial problem). Beside the two inventory problems that will be discussed later, such structured

functions also play an important role in multi-objective optimization and machine learning (see

Appendix A for details).

Recently, Gorissen and den Hertog (2013) have made a valuable effort at presenting a comprehen-

sive overview of three families of solution methods that can be employed for this problem: namely,

exact methods, tractable conservative approximations1, and cutting plane methods. Unfortunately,

while there are a few very special cases for which finding an exact solution is known to be tractable,

still very little is known theoretically about the quality of conservative approximations that are

available. In this paper, we attempt to reduce this gap by bringing the following contributions:

1. We propose a novel scheme for deriving tractable conservative approximations that connects

for the first time the suboptimality of an approximate solution directly to the integrality gap of an

associated mixed integer linear program (MILP). This allows us to identify fairly general conditions

under which the concept of total unimodularity can be used to establish that the approximate

solution obtained by solving a linear program of reasonable size is exactly optimal. The connection

to MILP optimization also naturally allows us to propose a tighter conservative approximation

model that takes the shape of semi-definite program. This is perhaps surprising given that it is
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well known that, while schemes that are based on quadratic decision rules will lead to semi-definite

program (SDP) approximation models when the uncertainty set is ellipsoidal, such adjustment

functions lead in general to optimization problems that are computationally intractable, for instance

when the uncertainty set is polyhedral (see Ben-Tal et al. (2009a) p. 372). Indeed, we show for the

first time how to obtain SDP approximation models for such uncertainty sets by employing affine

decision rules on a clever reformulation of the objective function.

2. We provide for the first time an exact tractable reformulation for a robust multi-item newsven-

dor problem with demand uncertainty that is non-rectangular, namely where it takes the shape

of a budgeted uncertainty set with an integer budget. A novel tractable reformulation is also pre-

sented for the distributionally robust version of this problem in which the distribution information

includes a budgeted uncertainty set for the support, the mean vector, and a list of first order partial

moments. To the best of our knowledge, this appears to be first exact tractable reformulation for

instances of multi-item newsvendor problem where there exists information about how the demand

for different items behave jointly, a problem that was left open since the early work of Scarf (1958).

3. We propose a new conservative approximation model for a robust multi-period inventory

problem where all orders must be made initially. We prove that this model produces an exact

solution when facing a budgeted uncertainty set with a budget equal to one or to the total size of

the horizon. Although exact reformulations exist for each of these extreme cases, this is the first

model known to be exact for both cases simultaneously. Our empirical study also provides evidence

that the suboptimality gap is relatively small with our new model (less than 0.3% gap on average

with a maximum observed gap of 5%) when the budget takes on intermediate values. Finally, we

present extensive empirical evidence that this model can be used to identify ordering strategies that

make better trade-off between performance and robustness in comparison to strategies obtained

using existing tractable method in the literature.

The paper is organized as follows. We start in Section 2 with a brief review of related work and

currently available methods for solving these types of problems. Section 3 presents our notation. In

Section 4, we introduce our new approximation scheme for the robust optimization problem (1) that

is based on the fractional relaxation of an associated mixed-integer linear program. In Section 5, we

present implications of our results for a robust and distributionally robust multi-item newsvendor

problem. In Section 6, we apply the new models to a robust multi-period inventory problem.

Section 7 presents experiments on an inventory problem that attempt to evaluate the relative

tightness of different approximation schemes and illustrate how one can employ these schemes to

explore the trade-offs between expected performance and robustness in choosing an order policy.

Finally, we conclude and provide some directions of future research in Section 8.
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2. Background & Prior Work

Our work follows very closely the initiative of Gorissen and den Hertog (2013) who were interested

in solving problems of the form (1) and where a comprehensive overview of available methods is

presented. In Gorissen and den Hertog (2013), the robust optimization of the sums of maxima of

linear functions takes the shape of

minimize
x∈Rn

max
ζ∈Z

`(ζ,x) +
N∑
i=1

max
k
{`i,k(ζ,x)},

where ` and `i,k are bi-affine functions in the uncertain parameter ζ and the decision variable

x ∈ Rn, and where Z is the uncertainty set. Given that Z is convex, the authors first describe

an exact solution approach that is based on reducing the worst-case analysis to a search over

the vertices of Z since the objective function is convex in ζ. This leads to the equivalent finite

formulation

minimize
x,y

max
v∈V

`(ζv,x) +
N∑
i=1

yvi

subject to yvi ≥ `i,k(ζ
v,x) ∀i, ∀k, ∀v ∈ V,

where V = {1,2, · · · , V } with V the number of vertices of Z, and {ζv}Vv=1 is the finite set of such

vertices. The authors do warn their reader that computational complexity of this approach grows

exponentially with respect to the number of constraints that define Z.

Gorissen and den Hertog also propose using cutting plane methods to solve these problems

exactly (especially when enumerating the vertices becomes unthinkable). In fact, there is empirical

evidence that seems to indicate that such methods are particularly effective in practice for solving

two-stage robust optimization problems (see Zeng and Zhao (2013)). In each iteration of a cutting

plane method, there is a need to establish the worst-case ζ for some fixed x in order to produce a

cutting plane: i.e.,

max
ζ∈Z

{
`(ζ,x) +

N∑
i=1

max
k
{`i,k(ζ,x)}

}
.

While there exists some special cases where an efficient procedure might be identified (see Bienstock

and Özbay (2008) for an example), the authors suggest that in general this problem can be solved

by solving a MILP similar to

max
ζ∈Z,y,z

`(ζ,x) +
N∑
i=1

yi

subject to yi ≤ `i,k(ζ,x) +M(1− zi,k) ∀ i, ∀k
K∑
k=1

zi,k = 1 ∀i

ζ ∈Z , z ∈ {0,1}N×K .
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Unfortunately, although software products that handle such models are well developed, solving this

problem is generally NP-hard (see NP-hardness discussion in Section 4) thus making this approach

prohibitive for large problems. In particular, the experiments we conduct in Section 4.4 identified

instances of such mixed-integer linear programs reformulations that could not be solved in less than

a day of computation already when N = m = 64. Finally, polynomial-time solvability of cutting

plane methods is not guaranteed except for the ellipsoid method which is rarely used in practice.

Gorissen and den Hertog finally explain how the theory of affinely adjustable robust counterpart

(AARC) proposed by Ben-Tal et al. (2004) can be used to obtain a conservative approximation

method. In this case, each convex term of the objective is replaced with an affine function that

is adjusted optimally while ensuring that the objective function upper bounds the true objective.

The resulting model takes the shape:

minimize
x,v,w

max
ζ∈Z

`(ζ,x) +
N∑
i=1

(vi +wT
i ζ)

subject to vi +wT
i ζ ≥ `i,k(ζ,x) , ∀ i, ∀k, ∀ζ ∈Z,

for which one can easily formulate a finite dimensional linear programming reformulation using

duality theory. It is mentioned that this approach can be improved by using a lifting of the uncer-

tainty space (Chen and Zhang 2009) or by involving quadratic decision rules if the uncertainty set

is ellipsoidal. Although the AARC approach is often tractable, very little is theoretically known

about the suboptimality of the obtained approximate solution (we refer the reader to Iancu et al.

(2013) for the most general results to date on this topic).

As mentioned in the introduction, many robust inventory problems can be considered a special

case of problem (1). In Bertsimas and Thiele (2006), the authors seem to have been the first to

propose an approximation method to solve such problems. Their approach relies on finding the

worst-case cost of each period individually before summing the results over all periods. Effectively,

they replace problem (1) with the following:

minimize
x∈X

N∑
i=1

max
ζ∈Z

hi(x,ζ) .

Interestingly, when the uncertainty set takes the shape of the budgeted uncertainty set (see Bertsi-

mas and Sim (2004)), they show that the optimal robust policy is equivalent to the optimal policy

of the nominal problem under a specifically designed demand vector. In spite of having been used

in many occasions (e.g. José Alem and Morabito (2012), Wei et al. (2011)), as noted in Gorissen

and den Hertog (2013), this conservative approximation does not impose any relation between the

worst-case ζ used to evaluate the different periods.
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It appears that Ben-Tal et al. (2004) were the first to address a robust inventory problem in which

there is a possibility to make adjustments to future orders as information about demand becomes

available. They provide conservative approximations of the problem by applying the concept of

affine decision rules. In Ben-Tal et al. (2005), similar ideas are applied to a supply chain problem.

Interestingly, the empirical experiments presented there seem to indicate that AARC can perform

surprisingly well. A similar success was achieved in Ben-Tal et al. (2009b) as reported in their

Section 3.2.

3. Notation

We briefly review some notation that is used in the remaining sections. First, let ei be the i-th

column of the identity matrix while 1 is the vector of all ones, both of their dimensions should be

clear from context. Given two matrices of same sizes, A •B refers to the Frobenius inner product

which returns
∑

i,jAi,jBi,j. We use Ai,: to refer to the i-th row of A while A:,j would refer to the

j-th column of A. For the sake of clarity, given a vector b we might use (b)i, instead of bi, to refer

to the i-th term of the vector b.

4. Mixed-integer Linear Programming based Approximation

In this section, we seek to obtain a conservative approximation of problem (1) using linearization

schemes that are used in the field of mixed-integer linear programming. In particular, it is well-

known that the inner maximization problem:

maximize
ζ∈Z

N∑
i=1

max
k
cTi,kζ+ di,k , (2)

where Z is polyhedral and where we dropped the dependence of ci,k and di,k on x for clarity, is

NP-hard (see Appendix B for a proof). Given that Z is polyhedral and bounded, we can assume

without loss of generality 2 that it is represented as

Z := {ζ ∈ [−1,1]m |Aζ ≤ b, ‖ζ‖1 ≤ Γ} ,

for some A∈Rp×m and b∈Rp+, and some 0≤ Γ≤m, and with 0∈Z capturing the “nominal” (i.e.,

most likely) scenario for ζ. Note that this representation reduces to the budgeted uncertainty set

when A := 0 and b := 0 which is the most natural way of capturing that each ζi is a perturbation of

similar magnitudes while one does not expect too many terms of ζ being perturbed simultaneously

(see Bertsimas and Sim (2004) and its ubiquitous use in robust optimization applications). In

the more general case, we expect this representation to be especially relevant in problems where
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one wishes to emphasize that the uncertainty region is roughly symmetrical around the nominal

scenario ζ0 := 0. Hence, we are left with the following adversarial problem:

maximize
ζ∈Rm

N∑
i=1

max
k
cTi,kζ+ di,k (3a)

subject to Aζ ≤ b (3b)

‖ζ‖∞ ≤ 1 (3c)

‖ζ‖1 ≤ Γ . (3d)

We will initially present two approximation models that will trade-off between computational

requirements and quality of the solution. We will then relate these models to the important family

of approximation schemes known as AARCs.

4.1. Linear Programming Approximation Model

Our first step is to convert this convex maximization problem to a mixed-integer quadratic program

by replacing the objective function with

max
{z∈{0,1}N×K |

∑K
k=1 zi,k=1 ,∀i}

N∑
i=1

K∑
k=1

zi,k(c
T
i,kζ+ di,k) ,

where we introduced additional adversarial binary decision variables zi,k. As is often done for mixed-

integer quadratic programs, we will circumvent the difficulty of maximizing the terms that are

quadratic in z and ζ by linearizing the objective function, yet only after replacing the perturbation

variables by the sum of their positive and negative parts (i.e., ζ := ζ+ − ζ−). Specifically, this

linearization is obtained by replacing instances of zi,k · ζ+ by ∆+
i,k and zi,k · ζ− by ∆−i,k. In steps,

the objective becomes

N∑
i=1

K∑
k=1

zi,k(c
T
i,k(ζ

+− ζ−) + di,k) =
N∑
i=1

K∑
k=1

cTi,kζ
+zi,k− cTi,kζ

−zi,k + di,kzi,k

=
N∑
i=1

K∑
k=1

cTi,k∆
+
ik− cTi,k∆

−
ik + di,kzi,k.

As for the constraints, one can first make explicit the relation between ∆+ and ζ+ by imposing∑K

k=1 ∆+
i,k =

∑K

k=1 zi,k · ζ
+ = ζ+ and similarly the relation between ∆− and ζ−. One can also add

to the model what is implied by every linear constraint aTζ ≤ b on the ∆+ and ∆−, in other

words that aT (∆+
i,k−∆−i,k) = aTζ · zi,k ≤ bzi,k. Overall, it is easy to show that the following MILP

is equivalent to problem (3):3

maximize
z,ζ+,ζ−,∆+,∆−

N∑
i=1

K∑
k=1

cTi,k(∆
+
i,k−∆−i,k) + di,kzi,k (4a)
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subject to A(ζ+− ζ−)≤ b (4b)

ζ+ ≥ 0 & ζ− ≥ 0 & ζ+
j + ζ−j ≤ 1 , ∀ j (4c)

1T (ζ+ + ζ−) = Γ (4d)
K∑
k=1

zi,k = 1 , ∀ i (4e)

K∑
k=1

∆+
i,k = ζ+ &

K∑
k=1

∆−i,k = ζ− , ∀ i (4f)

A(∆+
i,k−∆−i,k)≤ bzi,k , ∀ i, ∀k (4g)

∆+
i,k ≥ 0 & ∆−i,k ≥ 0 & ∆+

i,k + ∆−i,k ≤ zi,k , ∀ i, ∀k (4h)
m∑
j=1

(∆+
i,k)j + (∆−i,k)j = Γzi,k , ∀ i, ∀k (4i)

zi,k ∈ {0,1} , ∀ i, ∀k . (4j)

Based on the observation that the fractional relaxation of problem (4) provides an upper bound

for the mixed-integer version, we can already conclude that replacing the adversarial problem in (1)

with this fractional relaxation will provide us with a conservative approximation for problem (1).

Proposition 1 The optimization model

minimize
x∈X ,λ+,λ−,∆,ν,γ,ρ,w,ψ,θ

1T∆ + Γν+ bTρ+ 1Tγ (5a)

subject to ν ≥
N∑
i=1

λ+
i −A

Tρ−∆ (5b)

ν ≥
N∑
i=1

λ−i +ATρ−∆ (5c)

γi ≥ bTwi,k + 1Tψi,k + Γθi,k + di,k(x) ∀i, ∀k (5d)

θi,k ≥−λ+
i −A

Twi,k−ψi,k + ci,k(x) ∀i, ∀k (5e)

θi,k ≥−λ−i +ATwi,k−ψi,k− ci,k(x) ∀i, ∀k (5f)

ρ≥ 0 , ∆≥ 0 , wi,k ≥ 0 , ψi,k ≥ 0 , ∀i, ∀k , (5g)

where ρ ∈Rp, ∆ ∈ Rm, ν ∈R, γ ∈RN , λ+
i ∈Rm, λ−i ∈Rm, wi,k ∈Rp, ψi,k ∈Rm, and θi,k ∈ R, is

a conservative approximation of problem (1). Specifically, let x̂∗ and v̂∗ be respectively the optimal

solution and optimal value of this problem, v̂∗ is an optimized upper bound for the best achievable

worst-case cost, as measured by problem (1), and x̂∗ is guaranteed to achieve a lower worst-case

cost than v̂∗.

Proof. This is simply obtained by constructing the dual of problem (4). Specifically, we identified

the dual variables of constraints (4b) to (4i) respectively as ρ, ∆, ν, γ, (λ+
i ,λ

−
i ), wi,k, ψi,k, and
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θi,k. Since problem (4) is a linear program for which we can show that there is always a feasible

solution, one can confirm that duality is strict. After combining the dual problem to the outer

minimization in x we obtain problem (5). A feasible solution for problem (4) can be identified using

ζ0 := 0. We first assign ζ+
j := εj and ζ+

j :=−εj for some ε∈Rm chosen so that constraints (4b)-(4d)

are satisfied (see Endnote 3). Given any binary assignment for zi,k that satisfies constraint (4e),

one can complete the solution by setting (∆+
i,k)j := ζ+

j zi,k and (∆−i,k)j := ζ−j zi,k. �

At this point, one should wonder how good this approximation scheme is and whether it can be

compared to other schemes that have been proposed in the literature. While we will later establish

valuable connections to existing approximation methods, we will first shed light on how the quality

of our approximation is related to the notion of integrality gap of mixed-integer programs and

whether we can bound it.

Definition 1. The integrality gap for a class of mixed-integer programs, where the objective

function is maximized and the optimal value is known to be positive, is the supremum of the ratio

between the optimal value achieved by a fractional solution and the optimal value achieved by an

integer one. Specifically, if we seek maxζ∈U∩I f(ζ) for instances described by (U ,I, f) ∈ F, where

U is polyhedron, I imposes that a set of terms of ζ be integer valued, and F refers to a certain

family of problems that is being studied, then

integrality gap = sup
(U,I,f)∈F

f∗U/f
∗
U∩I ,

where f∗Z := maxζ∈Z f(ζ).

Proposition 2 Given that for each i and for all x ∈ X , hi(x, ·) is positive definite on Z, let x̂

and v̂(x̂) respectively be the optimal solution and optimal value obtained from problem (5), then

both the true worst-case value for x̂ and the value v̂(x̂) are less than a factor of γ away from the

optimal value of problem (1), where γ is the integrality gap for problem (4).

Proof. The integrality gap of problem (4) with positive optimal value is defined as a bound on

the largest achievable ratio between the optimal value obtained by a fractional solution and the

one obtained by an integer solution for this type of problem instances. Given that the integrality

gap for problem (4) is γ, this indicates that the worst-case value achieved by any feasible x is

bounded between v̂(x) and γv̂(x). Hence,

max
ζ∈Z

N∑
i=1

hi(x̂,ζ)≤ v̂(x̂)≤ v̂(x∗)≤ γmax
ζ∈Z

N∑
i=1

hi(x
∗,ζ) ,

where x∗ is the optimal solution for problem (1), and where we used the fact that x̂ is the minimizer

for v̂(·) over X , and that γ is the integrality gap for maxζ∈Z
∑N

i=1 hi(x
∗,ζ). The arguments for

linking v̂(x̂) to the true optimal value is exactly the same. �
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Our main attempt toward bounding the integrality gap consists of identifying three sets of

conditions on problem (4) under which there is no integrality gap for problem (4).

Proposition 3 For any fixed x∈Rn, given that A := 0 and b := 0, Problem (4) and its fractional

relaxation have the same optimal value under either of the following sets of conditions:

1. The budget Γ is equal to one (L1-norm ball).

2. The budget Γ is equal to m (Box uncertainty set) and there exists αi,k :Rn→R and βl :Rn→R

such that for every (i, k) pair ci,k(x) = αi,k(x)
∑

l<i(βl(x)el).

3. The budget Γ is integer and there exists αi,k :Rn→R such that for every (i, k) pair ci,k(x) =

αi,k(x)ei.

The proof of this proposition is deferred to Appendix C and relies, in the cases of conditions 1

and 3, on verifying total unimodularity of a matrix that defines an associated polytope to confirm

that this polytope has integer vertices. Based on the above result, we can right away conclude

about an important property of problem (1).

Corollary 1. Given that the set of subfunctions {hi(x,ζ)}Ni=1 satisfies one of the sets of condi-

tions described in Proposition 3, then problem (5) is equivalent to problem (1).

Hence, we have in hand a conservative approximation of problem (1) that is known to be exact

under a fairly general set of conditions. Reading through the three sets of conditions, we might

first recognize that Condition 1 reduces the uncertainty set to {ζ|‖ζ‖1 ≤ 1}, a case for which a

tractable robust counterpart can also be obtained through vertex enumeration. For the second set,

the uncertainty set reduces to {ζ|‖ζ‖∞ ≤ 1}, a set for which the number of vertices is exponential,

yet in this case the adversarial problem reduces to a model that was well studied in Bertsimas et al.

(2010). One might consider the more important contribution to be related to the third condition

which impose that each term of the objective function involve a different term of ζ, and that Γ

be integer. Actually, the fact that this results requires the integrality of Γ indicates that it cannot

be explained through any of the special cases identified in Gorissen and den Hertog (2013) and

Chapter 12 of Ben-Tal et al. (2009a). Furthermore, it extends in a non-trivial way the result of

Denton et al. (2010), where hi(x,ζ) := max{0 , ciζ(x)ζi + diζ(x)} in order to capture delays that

are caused by uncertain duration of surgeries in operating rooms.

Remark 1. Note that while one might be able to design a tractable oracle for providing the

value and sub-gradient in x of the objective function for problems that satisfy these conditions

and thus rely on a cutting plane method to achieve optimality, the proposed linear programming

reformulation has better worst-case convergence rate and can easily be modified to handle binary

decision variables.
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Remark 2. Note that many different MILP formulations could have been used to replace prob-

lem (4). Namely, the MILP proposed in Gorissen and den Hertog (2013) takes the form:

maximize
z,ζ,y

N∑
i=1

yi

subject to yi ≤ cTi,kζ+ di,k +M(1− zi,k) , ∀ i, ∀k

Aζ ≤ b

−1≤ ζ ≤ 1 &
m∑
j=1

|ζj| ≤ Γ

K∑
k=1

zi,k = 1 & zi,k ∈ {0,1} , ∀ i, ∀k .

Our particular choice of formulation is our own best attempt at strategically tightening the inte-

grality gap of the resulting model without paying too much of a price in terms of model size. A

side product of our analysis will be to present a perhaps surprising connection to a family of affine

approximations used in robust optimization problem where decisions are adjustable.

Remark 3. In recent years, total unimodularity has been somewhat of a fruitful tool for identifying

simpler reformulation of risk aware decision problems. In van der Vlerk (2004), the authors show

how a two-stage stochastic linear program with binary recourse variables can in some cases be

reformulated as a two-stage problem with continuous recourse yet under a different probability

measure. In Candia-Véjar et al. (2011), it is a maximum regret minimization problem involving

binary variables (e.g., assignment problem) that is reformulated as a simple mixed-integer linear

program. In the context of robust optimization, Düzgün and Thiele (2010) introduced an extension

to the budgeted uncertainty set that allows parameters to take on values in different sets of intervals

and show that the convex hull of possible realizations has a tractable representation. In Mak et al.

(2015), the authors exploit some “hidden convexity” to identify a tractable reformulation for a

distributionally robust appointment scheduling problem with marginal moment information. Unlike

our work which employs the budgeted uncertainty set, the model that is analysed does not capture

any correlation between parameters. However, the authors do identify a clever representation of

the
∑

i hi(x,ζ) that allows them to handle additional terms that are non-linear function of some

ζi.

4.2. Semi-Definite Programming Approximation Model

Although Section 5 and Section 6 will present important applications for which one of the three

conditions laid out in Proposition 3 is satisfied, there are still many instances of robust optimization

model for which problem (5) is inexact. For those instances, there might be a need to dedicate
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additional computing resources in order to get a better approximation. Drawing from the techniques

used to solve or bound the value of mixed-integer quadratic programs, we explore the use of semi-

definite programming formulations that might help tighten the integrality gap.

Following the ideas presented in Lovász and Schrijver (1991), we first introduce additional

quadratic constraints that are redundant for the mixed-integer program:

z2
i,k = zi,k & zi,kzi,k′ = 0 , ∀ i, ∀k 6= k′, ∀ i

0≤ (ζ+
j )2 ≤ ζ+

j & 0≤ (ζ−j )2 ≤ ζ−j , ∀ j .

Our next step is to introduce a set of N matrices Λi ∈RK×K , with i= 1,2, ...,N , and two matrices

Λ+,Λ− ∈Rm×m as new decision variables that will help characterize the quadratic interactions in

the model through Λi = zi,:z
T
i,:, Λ+ = ζ+ζ+T , and Λ− = ζ−ζ−

T
. Indeed, we would need that the

following constraints be satisfied:[
Λi mat(∆+

i,:)
mat(∆+

i,:)
T Λ+

]
=

[
zTi,:
ζ+

][
zi,: ζ

+T
]
, ∀ i (6a)[

Λi mat(∆−i,:)
mat(∆−i,:)

T Λ−

]
=

[
zTi,:
ζ−

][
zi,: ζ

−T
]
, ∀ i (6b)

Λi = diag(zTi,:) , ∀ i (6c)

Λ+
j,j ≤ ζ+

j & Λ−j,j ≤ ζ−j , ∀ j (6d)

Λ+ ≥ 0 & Λ− ≥ 0 , (6e)

where mat(∆+
i,:) refers to the K by m matrix composed of the terms of ∆+

i,: organized such that

(mat(∆+
i,:))k,j = (∆+

i,k)j. On the other hand, diag(·) is an operator that creates a diagonal matrix

from a vector: e.g. (diag(zTi,:))k,k = zik while (diag(zTi,:))k,k′ = 0 for all k 6= k′.

Unfortunately, equality constraints (6a) and (6b) are not acceptable in a convex optimization

model hence we relax them using a matrix inequality:[
Λi mat(∆+

i,:)
mat(∆+

i,:)
T Λ+

]
�
[
zTi,:
ζ+

][
zi,: ζ

+T
]
, ∀ i[

Λi mat(∆−i,:)
mat(∆−i,:)

T Λ−

]
�
[
zTi,:
ζ−

][
zi,: ζ

−T
]
, ∀ i

which can easily be reformulated as linear matrix inequalities and leads to the following mixed-

integer semi-definite program:

maximize
z,ζ+,ζ−,∆+,∆−,Λi,Λ+,Λ−

N∑
i=1

K∑
k=1

cTi,k(∆
+
i,k−∆−i,k) + di,kzi,k (7a)

subject to A(ζ+− ζ−)≤ b (7b)
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ζ+ ≥ 0 & ζ− ≥ 0 & ζ+
j + ζ−j ≤ 1 , ∀ j (7c)

1T (ζ+ + ζ−) = Γ (7d)
K∑
k=1

zi,k = 1 , ∀ i (7e)

K∑
k=1

∆+
i,k = ζ+ &

K∑
k=1

∆−i,k = ζ− , ∀ i (7f)

A(∆+
i,k−∆−i,k)≤ bzi,k , ∀ i, ∀k (7g)

∆+
i,k ≥ 0 & ∆−i,k ≥ 0 & ∆+

i,k + ∆−i,k ≤ zi,k , ∀ i, ∀k (7h)
m∑
j=1

(∆+
i,k)j + (∆−i,k)j = Γzi,k , ∀ i, ∀k (7i) Λi mat(∆+

i,:) z
T
i,:

mat(∆+
i,:)

T Λ+ ζ+

zi,: ζ+T 1

� 0 , ∀ i (7j)

 Λi mat(∆−i,:) z
T
i,:

mat(∆−i,:)
T Λ− ζ−

zi,: ζ−
T

1

� 0 , ∀ i (7k)

Λi = diag(zTi,:) , ∀ i (7l)

Λ+
j,j ≤ ζ+

j & Λ−j,j ≤ ζ−j , ∀ j (7m)

Λ+ ≥ 0 & Λ− ≥ 0 (7n)

zi,k ∈ {0,1} , ∀ i, ∀k . (7o)

Since this mixed-integer semi-definite program is equivalent to problem (3) yet contains additional

constraints compared to problem (4), we can expect that its fractional relaxation will lead to a

tighter conservative approximation for problem (1).

Actually, there are a number of different ways one might choose to tighten the relaxation of

problem (4) through the addition of linear cuts or lifting in the space of positive semi-definite cones.

Problem (7) is one such example that leads to a somewhat concise semi-definite program. We refer

the interested reader to Lasserre (2002) and Ghaddar et al. (2011) for a hierarchy of polynomial size

semi-definite programming relaxation of mixed-integer quadratic programs for which the integrality

gap is known to converge to 1. Based on Proposition 2, it is therefore theoretically possible to

find a semi-definite programming model of polynomial size that will generate a solution within a

constant factor of the optimal one. Unfortunately, this might often be of little practical relevance.

First, this would require us to assess the integrality gap for each of the models in this hierarchy,

which can be hard if not impossible to do. Second, the model that is found to achieve a given factor

of optimality might be of a size that cannot be solved in a reasonable amount of time. To help

resolve this issue, we actually show that one can potentially confirm after solving a conservative
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approximation model of smaller size that the approximate solution obtained is indeed optimal for

problem (3). As shown in the following proposition, this is done by verifying whether there is an

optimal assignment for the associated relaxed adversarial problem that lies in the convex hull of

integer solutions. We refer the reader to Appendix D for a complete proof.

Proposition 4 Given a robust optimization problem of the form

minimize
x∈X

max
ζ∈U∩I

h(x,ζ) ,

where X ⊂ Rn and U ⊂ Rm are both bounded convex sets, I = {ζ ∈ Rm | ζi is integer ∀i ≤ q} for

some q ≤m, hence imposing that a set of terms of ζ be integer valued, and h(x,ζ) is real valued,

convex in x and linear in ζ. Let x̂ be the solution of the conservative approximation

minimize
x∈X

max
ζ∈U

h(x,ζ) .

If there exists a ζ̂ ∈ arg maxζ∈Uminx∈X h(x,ζ) that is a member of the convex hull of U ∩I, denoted

as P(U ∩I), then x̂ is optimal according to the original robust optimization problem.

When X does not impose integer constraints, this proposition allows us to imagine a solution

scheme in which one generates progressively, based on the current pair (x̂, ζ̂), new tightening

constraints based on cutting planes that separates the current ζ̂ from P(U ∩ I), adds them to

problem (4), and re-solves the associated conservative approximation.4 This process has reached

optimality whenever it is impossible to separate ζ̂ from P(U ∩I). Note that if U only has integer

vertices, although one might not be aware of it, then optimality of x is confirmed instantly when

failing to separate the first proposal for ζ̂.

Corollary 2. If P(U ∩I) = U , then the optimality of x̂∈ arg minx∈X maxζ∈U h(x,ζ) is necessar-

ily confirmed when verifying that ζ̂ ∈ arg maxζ∈U minx∈X h(x,ζ) is a member of the convex hull of

U ∩I.

Remark 4. For completeness, we briefly outline an algorithm that can be used to determine

whether ζ̂ is in the convex hull of U ∩I. First, let us recall an equivalent definition for convex hull

P(U ∩I) =

{
ζ ∈Rm

∣∣∣∣∣ cTζ ≤ sup
ζ′∈U∩I

cTζ′ , ∀c∈B(1)

}
,

where B(1) = {c∈Rm | ‖c‖2 ≤ 1}. Based on this definition, verifying membership of ζ̂ to the convex

hull reduces to validating whether minc∈B(1) supζ′∈U∩I c
T (ζ′− ζ̂) is greater or equal to zero or not (if

not the argument that minimizes this expression can be used to generate a cutting plane). Finding

the minimum of such an expression can be done using a cutting plane algorithm as long as one

has an efficient algorithm to solve supζ′∈U∩I c
T (ζ′− ζ̂) when c is fixed. In practice, one might use

CPLEX to do so.
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4.3. Relation to Affinely Adjustable Robust Counterparts

We now provide an explicit connection between our approach and affinely adjustable robust coun-

terparts methods. In fact,we demonstrate below that any model that is obtained by exploiting

affine decision rules can also be motivated using our mixed-integer linear programming based ap-

proximation scheme. This is interesting since it indicates that our new scheme is somewhat more

flexible and, perhaps more importantly, implies the possibility of generalizing the techniques dis-

cussed in Section 4.2 so that they can be used to improve the quality of solutions obtained from

any AARC approximation of robust multi-stage problems.

Proposition 5 Given an adversarial problem of the type

maximize
ζ∈A

N∑
i=1

max
k
cTi,kζ+ di,k ,

where A= {ζ|Aζ ≤ b} is a bounded polyhedron, the optimal value of its affinely adjustable robust

counterpart

minimize
λ,γ

max
ζ∈A

N∑
i=1

λTi ζ+ γi (8a)

subject to λTi ζ+ γi ≥ cTi,kζ+ di,k , ∀ i, ∀k, ∀ζ ∈A (8b)

is equal to the optimal value of the fractional relaxation of the mixed-integer linear programming

problem

maximize
z,ζ,∆

N∑
i=1

K∑
k=1

cTi,k∆i,k + di,kzi,k (9a)

subject to Aζ ≤ b (9b)
K∑
k=1

zi,k = 1 , ∀ i (9c)

K∑
k=1

∆i,k = ζ , ∀ i (9d)

A∆i,k ≤ bzi,k , ∀ i, k (9e)

zi,k ∈ {0,1} , ∀ i, k . (9f)

Proof. The optimal value of the fractional relaxation of problem (9), can be presented in the

form

max
ζ∈A

max
z,∆

N∑
i=1

K∑
k=1

cTi,k∆i,k + di,kzi,k (10a)

subject to
K∑
k=1

zi,k = 1 , ∀ i (10b)
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K∑
k=1

∆i,k = ζ , ∀ i (10c)

A∆i,k ≤ bzi,k , ∀ i, k (10d)

zi,k ≥ 0 ∀i, k. (10e)

For any fixed ζ ∈ A, since the inner problem is linear and has a feasible solution, strict duality

applies and its optimal value is equal to the optimal value of its dual problem. Hence, this inner

problem can be reformulated as

minimize
γ,λ,ψ

N∑
i=1

γi +λTi ζ (11a)

subject to γi− bTψi,k ≥ di,k , ∀ i, k (11b)

ATψi,k +λi = ci,k , ∀ i, k (11c)

ψi,k ≥ 0 , ∀ i, k , (11d)

where γi ∈ R, λi ∈ Rm, and ψi,k ∈ Rp are respectively the dual variables associated to con-

straints (10b), (10c), and (10d). Since A is bounded and convex and the objective function (11a)

is bilinear in ζ and the set of variable {γ,λ,ψ}, Sion’s minimax theorem guarantees that the max-

imin formulation is equal to the minimax one, hence the optimal value of problem (10) is equal to

the optimal value of

minimize
γ,λ,ψ

max
ζ∈A

N∑
i=1

γi +λTi ζ (12a)

subject to γi− bTψi,k ≥ di,k , ∀ i, k (12b)

ATψi,k +λi = ci,k , ∀ i, k . (12c)

It can be shown that constraints (12b) and (12c) are equivalent to robust constraint (8b). Specifi-

cally, for all index pair (i, k) the right-hand side of the robust constraint of (8b) can be formulated

as

maximize
ζ

cTi,kζ−λ
T
i ζ (13a)

subject to Aζ ≤ b . (13b)

Since strict duality applies once again, problem (13) gives the same optimal value as:

minimize
ψi,k

bTψi,k

subject to ATψi,k = ci,k−λi , ∀ i, k

ψi,k ≥ 0 , ∀ i, k ,
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where each ψi,k ∈Rp contains the dual variables associated to constraint (13b). It is therefore clear

that robust constraint (8b) can be reformulated as

γi− di,k ≥ bTψi,k , ∀ i, k

ATψi,k = ci,k−λi , ∀ i, k.

We conclude that formulation (9) gives the same optimal value as problem (8). �

This result is interesting as it establishes that any robust counterpart that is obtained using an

affine decision rule scheme can be thought of in terms of replacing the adversarial problem with the

fractional relaxation of an equivalent MILP. In particular, one can easily verify that using affine

decision rules under the particular lifting ζ := ζ+ − ζ−, with ζ+ ≥ 0 and ζ− ≥ 0, is equivalent to

problem (5).

Corollary 3. The fractional relaxation of problem (4) is equivalent to the affinely adjusted ap-

proximation of problem (3) applied to the lifted set of perturbation ζ = ζ+ − ζ−, where ζ+ and

ζ− are the positive and negative parts of ζ. Specifically, it achieves the same optimal value as the

problem:

minimize
λ+,λ−,γ

max
(ζ+,ζ−)∈Z′

N∑
i=1

λ+
i

T
ζ+ +λ−i

T
ζ−+ γi

subject to λ+
i

T
ζ+ +λ−i

T
ζ−+ γi ≥ cTi,k(ζ

+− ζ−) + di,k , ∀ i, k, ∀ (ζ+,ζ−)∈Z ′ ,

where

Z ′ =

(ζ+,ζ−)

∣∣∣∣∣∣∣∣
ζ+ ≥ 0 , ζ− ≥ 0
ζ+
j + ζ−j ≤ 1 ∀ j∑
j ζ

+
j + ζ−j = Γ

A(ζ+− ζ−)≤ b

 .

While there is a lot of empirical evidence supporting the strength of affinely adjusted approxi-

mation schemes (see for instance Ben-Tal et al. (2005)), very little is actually known theoretically

about the quality of the approximations that are obtained with these methods, either in terms of

optimal value or optimal solution. To the best of our knowledge, the authors of Iancu et al. (2013)

are the ones that have identified to this date the most general class of problems for which the

approximation was exact. We refer the readers in particular to Theorem 3 in their article which

could potentially provide an alternative method for deriving our Proposition 3 given the connec-

tion established in Corollary 3. Note however that while Iancu et al. do identify problem instances

where conditions (P1) and (P2) of Theorem 3 in their paper are satisfied under box uncertainty or

the simplex (given the implicit sublattice structure of these uncertainty sets), they left open the

question of identifying such instances for a general budgeted uncertainty set with integer budget.
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Overall, our new interpretation of AARC methods is particularly interesting as it states that

asking whether AARC methods are exact is equivalent to asking whether an associated MILP

(problem (4) for example) has an integrality gap or not. Given the extensive efforts that have been

dedicated in the last few decades both to developing approximation methods for MILP that are

based on fractional relaxation schemes and to measuring the quality of these bounds, we have good

hope to find innovative ways of improving the performance of these AARC models.

We conclude this section with a result that establishes the connection between the semi-definite

programming based conservative approximation presented in Section 4.2 and the theory of AARCs.

The proof of this final connection is delayed to Appendix F.

Proposition 6 The optimal value of the fractional relaxation of problem (7) is equal to the optimal

value of the affinely adjustable robust counterpart of

minimize
{vi}Ni=1,w

+,w−,

{Q+
i ,V

+
i ,q

+
i ,S

+
i ,p

+
i ,r

+
i }

N
i=1

{Q−i ,V
−
i ,q
−
i ,S
−
i ,p
−
i ,r
−
i }

N
i=1

max(ζ+,ζ−)∈Z′ (w+)Tζ+ + (w−)Tζ−+
∑N

i=1 2p+
i

T
ζ+ + 2p−i

T
ζ−

+maxk{cTi,k(ζ
+− ζ−) + di,k + 2(V +

i )k,:ζ
+ + 2(V −i )k,:ζ

−+ (vi)k}
(14a)

subject to (vi)k = (Q+
i +Q−i )k,k + 2(q+

i + q−i )k + r+
i + r−i , ∀ i, k (14b) Q+

i V +
i q

+
i

V +
i

T
S+
i p+

i

q+
i

T
p+
i

T
r+
i

� 0,

 Q−i V −i q−i
V −i

T
S−i p−i

q−i
T
p−i

T
r−i

� 0 , ∀ i (14c)

N∑
i=1

S+
i ≤ diag(w+) ,

N∑
i=1

S−i ≤ diag(w−) , ∀ i (14d)

w+ ≥ 0 w− ≥ 0 , (14e)

where w+ ∈ Rm, w− ∈ Rm, while for each i, vi ∈ RK, Q+
i ∈ RK×K, Q−i ∈ RK×K, V +

i ∈ RK×m,

V −i ∈ RK×m, q+
i ∈ RK, q−i ∈ RK, S+

i ∈ Rm×m, S−i ∈ Rm×m, p+
i ∈ Rm, p−i ∈ Rm, r+

i ∈ R, r−i ∈ R,

and finally where

Z ′ =

(ζ+,ζ−)

∣∣∣∣∣∣∣∣
ζ+ ≥ 0 , ζ− ≥ 0
ζ+
j + ζ−j ≤ 1 ∀ j∑
j ζ

+
j + ζ−j = Γ

A(ζ+− ζ−)≤ b

 .

One might actually notice that in problem (14), when all the variables that are minimized over

are set to zero, which is a feasible assignment, the problem reduces to problem (3) with the lifted

set of perturbation ζ = ζ+ − ζ−. Intuitively, the SDP model is able to obtain a tighter bound by

adding some affine perturbations that have a positive net effect on the evaluation of the objective

function yet might allow to reach a lower amount when affine decision rules are introduced. In
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particular, in the case where ζ− := 0, which we assume for simplicity of exposure, and 0≤ ζ+ ≤ 1,

when constraints (14b) to (14e) are satisfied, then the objective function can be shown to satisfy

(w+)Tζ+ +
N∑
i=1

2p+
i

T
ζ+ + max

k
{cTi,kζ

+ + di,k + 2(V +
i )k,:ζ

+ + (Q+
i )kk + 2(q+

i )k + r+
i }

≥ (w+)T (ζ+)2 +
N∑
i=1

2p+
i

T
ζ+ + max

k
{cTi,kζ

+ + di,k + 2(V +
i )k,:ζ

+ + (Q+
i )kk + 2(q+

i )k + r+
i }

= (w+)T (ζ+)2 +
N∑
i=1

2p+
i

T
ζ+ + max

zk∈{0,1}∑K
k=1 zk=1

K∑
k=1

zk{cTi,kζ
+ + di,k + 2(V +

i )k,:ζ
+ + (Q+

i )kk + 2(q+
i )k + r+

i }

≥
N∑
i=1

max
zk∈{0,1}∑K
k=1 zk=1

ζ+TSiζ
+ + 2p+

i

T
ζ+ +

K∑
k=1

zk(c
T
i,kζ

+ + di,k + 2(V +
i )k,:ζ

+ + (Q+
i )kk + 2(q+

i )k + r+
i )

≥
N∑
i=1

max
zk∈{0,1}∑K
k=1 zk=1

K∑
k=1

zk(c
T
i,kζ

+ + di,k) =
N∑
i=1

max
k
{cTi,kζ

+ + di,k} ,

where we used the fact that ζ+ ∈ [0,1]m to get the first inequality, and constraint (14d) to get the

second. We finally used the fact that (Q+
i )kkzk =

∑
k′(Q

+
i )kkzkzk′ over the feasible region that is

considered, and used constraint (14c) which implies that

ζ+TSiζ
+ + 2p+

i

T
ζ+ + 2zT (V +

i )k,:ζ
+ +zTQ+

i z
T + 2zTq+

i + r+
i ≥ 0 .

A similar argument can be made when we involve the ζ− > 0. Hence, problem (14) necessarily

provides a tight upper bound to problem (3).

Overall, the connection established in Proposition 6 indicates that the scheme we adopt in this

paper allows to identify tractable conservative approximations that provide tighter bounds than the

well known applications of affine decision rules. Indeed, while schemes that are based on quadratic

decision rules can in some cases lead to SDP approximation models, such adjustment functions lead

in general to optimization problems that are computationally intractable when the uncertainty set

is polyhedral (see Ben-Tal et al. (2009a) p. 372). While one might be able to further approximate

those models by applying Sum-Of-Squares techniques as were proposed in Bertsimas et al. (2011b),

such an approach leads to SDP models of much larger size than the model presented here.

4.4. Empirical Evaluation of Integrality Gap

We briefly present a set of empirical experiments that illustrates the trade-off that need to be

made between computational effort and quality of the upper bound obtained for problem (3) with

A := 0 and b := 0 using three different fractional relaxation schemes. The first bound is obtained

by applying affine decision rules directly on ζ; this method will be referred as AARC. We also
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Table 1 Empirical evaluation of integrality gap and resolution time for a set of randomly generated convex

maximization problems of form (3). All problems have size N = m = n and K = 2. Note that in the case of N = 64,

it took longer than a full day to solve the MILP with CPLEX. We therefore choose to report the minimum,

maximum and average relative improvement (over 100 instances) of the bounds obtained by each model compared

to the bound obtained with AARC. Note that an integrality gap of one is optimal.

Size AARC LP (4) SDP (7)

N = 8

CPU time 0.062 sec 0.064 sec 1.564 sec
Gap = 1 instances 14% 29% 59%
Largest gap 1.70 1.58 1.09
Average gap 1.26 1.14 1.01

N = 16

CPU time 0.17 sec 0.18 sec 27.89 sec
Gap = 1 instances 3% 6% 11%
Largest gap 2.32 2.12 1.14
Average gap 1.82 1.49 1.05

N = 32

CPU time 10 sec 10 sec 28.9 min
Gap = 1 instances 0% 0% 0%
Largest gap 2.94 2.80 1.22
Average gap 2.61 1.96 1.10

N = 64

CPU time 34 sec 70 sec 19 h
Min improvement - 0% 43%
Max improvement - 54% 72%
Avg. improvement - 26% 68%

compare the two improved bounds based on linear program (4), and semi-definite program (7).

These methods compete on a set of 100 randomly generated instances of problem (3) which we

solved exactly using CPLEX. Each problem instance is generated by sampling each parameters

of the objective function uniformly between -1 and 1, and then ensuring that the optimal value

is positive by adding a constant term that makes
∑

imaxk c
T
i,k0 + di,k = 0; furthermore, a random

integer budget of Γ is generated uniformly between 1 to N . Based on the results presented in

Table 1, we see that the quality of each bound degrades as N increases yet an approach based on

semi-definite programming will achieve significant improvement in tightness. On the other hand,

there is a heavier computational price to pay for the semi-definite programming model. It is also

observed that LP (4) provides better results than AARC. Note that all linear programming models

were solved using CPLEX 12.4 while the SDP was solved using DSDP 5.8 (Benson et al. 2000).

5. Robust Multi-Item Newsvendor Problem

We now pay closer attention to the multi-item newsvendor problem as described in a general form

through the following model:

maximize
x∈X ,0≤y≤min(x,w)

m∑
i=1

viyi− cixi + gi(xi− yi)− bi(wi− yi) ,

where xi represents the amount of item i ordered, wi the demand for this item while X captures the

set of feasible orders and yi is the (second-stage) amount sold once the demand is known. We also
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denote the following terms: ci ∈Rn and vi ∈Rn are respectively the per unit ordering cost and retail

prices, bi(·) is a piecewise linear convex increasing stock-out cost, and gi(·) is a piecewise linear

decreasing concave salvage prices. We assume that for each item ∂gi(z)/∂z < ci < vi whenever the

derivative exists, i.e., that the unit ordering cost is always larger than the marginal salvage price

and always lower than the retail price. One can therefore not make profits out of salvaging his

products. Since y∗i = min(xi,wi), the two-stage model is equivalent to:

minimize
x∈X

m∑
i=1

cixi− vimin(xi,wi)− gi(xi−min(xi,wi)) + bi(wi−min(xi,wi)) ,

which is presented in terms of minimizing negative profits to be coherent with problem (1).

Further manipulations of the model will lead to a form that makes the connection with prob-

lem (1) explicit:

(cixi− vimin(xi,wi))− gi(xi−min(xi,wi)) + bi(wi−min(xi,wi))

= (ci− vi)wi + ci(xi−wi)+− (ci− vi)(wi−xi)+− gi((xi−wi)+) + bi((wi−xi)+)

= (ci− vi)wi + (ci(xi−wi)− gi(xi−wi))+ + ((vi− ci)(wi−xi) + bi(wi−xi))+

= max(cixi− viwi− gi(xi−wi) , (ci− vi)xi + bi(wi−xi))

= max

(
max

k∈{1,2,...,Kg}
cixi− viwi−αgi,k(xi−wi)−β

g
i,k , max

k∈{1,2,...,Kb}
(ci− vi)xi +αbi,k(wi−xi) +βbi,k

)
= max

k
αxi,kxi +αwi,kwi +βi,k ,

where we exploited the piecewise linear concave and convex structures of gi(y) =

mink∈{1,2,...,Kg}α
g
i,ky+ βgi,k and bi(y) = maxk∈{1,2,...,Kb}α

b
i,ky+ βbi,k respectively, and later combined

the indexes of the two layers of maximum operators so that

αxi,k =

{
ci−αgi,k if k≤Kg

ci− vi−αbi,k−Kg if k >Kg

αwi,k =

{
αgi,k− vi if k≤Kg

αbi,k−Kg if k >Kg

βi,k =

{
−βgi,k if k≤Kg

βbi,k−Kg if k >Kg .

When considering robustness in the multi-item newsvendor problem, we introduce a budgeted

uncertainty set for the demand vector. Specifically, we assume that the nominal demand vector

takes the form w̄, that each term is known to lie in the interval wi ∈ [w̄i− ŵi, w̄i + ŵi] and that we

do not expect the total perturbation to exceed a budget of Γ. Hence, the robust model takes the

form:

minimize
x∈X

max
ζ∈Z(Γ)

m∑
i=1

max
k
αxi,kxi +αwi,k(w̄i + ŵiζi) +βi,k , (15)
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where Z(Γ) := {ζ ∈ Rm|‖ζ‖∞ ≤ 1, ‖ζ‖1 ≤ Γ}. One might easily recognize in this form that each

term of the objective function depends on a different component of ζ. It is therefore clear based

on Corollary 1 that using the robust counterpart presented in problem (5) will provide an exact

solution. The proof of the following corollary, presented in Appendix E, serves to justify how to

obtain a more compact robust counterpart.

Corollary 4. Given that Γ is a strictly positive integer, then the robust multi-item newsvendor

problem (15) is equivalent to the following linear program:

minimize
x∈X ,ν,γ,ψ

Γν+ 1Tγ (16a)

subject to γi ≥ψi,k + (αxi,kxi +αwi,kw̄i +βi,k) ∀i, ∀k (16b)

ψi,k + ν ≥ αwi,kŵi ∀i, ∀k (16c)

ψi,k + ν ≥−αwi,kŵi ∀i, ∀k (16d)

ψi,k ≥ 0 , ∀i, ∀k , (16e)

where ν ∈R, γ ∈Rm, and ψi,k ∈R.

Given that the distribution-free version of the newsvendor problem has received so much at-

tention over the last fifty years (see Scarf (1958), Gallego and Moon (1993), Moon and Silver

(2000), Wang et al. (2009), and Hanasusanto et al. (2014) for some examples), we provide below

an exact reformulation for a model that seeks the distributionally robust newspaper quantities

when the only information that is available about the distribution includes that the support is

Z(Γ), the mean vector is µ, and a list of first order partial moments. To the best of our knowledge,

this appears to be the first tractable exact reformulation for such a problem when there exists

information about how the demand for different items behave jointly.

Proposition 7 The distributionally robust optimization model

minimize
x∈X

max
F∈D

EF

[
m∑
i=1

max
k
αxi,kxi +αwi,k(w̄i + ŵiζi) +βi,k

]
, (17)

where

D=

F ∈M
∣∣∣∣∣∣∣
PF (ζ ∈Z(Γ)) = 1
EF [ζ] =µ
EF [(ζ−µ)+]≤ r+

EF [(µ− ζ)+]≤ r−

 ,

is equivalent to the following linear program

minimize
x∈X ,t,q,λ+,λ−,ν,γ,ψ+,ψ−

t+µTq+ (r+)Tλ+ + (r−)Tλ− (18a)

subject to t≥ Γν+ 1Tγ (18b)
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γi ≥ψ+
i,k +αxi,kxi +αwi,kw̄i +βi,k +λ+

i µi ∀i, ∀k (18c)

γi ≥ψ−i,k +αxi,kxi +αwi,kw̄i +βi,k−λ−i µi ∀i, ∀k (18d)

ψ+
i,k + ν ≥ αwi,kŵi− qi−λ+

i ∀i, ∀k (18e)

ψ+
i,k + ν ≥−αwi,kŵi + qi +λ+

i ∀i, ∀k (18f)

ψ−i,k + ν ≥ αwi,kŵi− qi +λ−i ∀i, ∀k (18g)

ψ−i,k + ν ≥−αwi,kŵi + qi−λ+
i ∀i, ∀k (18h)

ψ+
i,k ≥ 0 , ψ−i,k ≥ 0 ∀i, ∀k (18i)

λ+ ≥ 0 , λ− ≥ 0 . (18j)

Proof. Applying duality theory for semi-infinite linear programs to the inner problem of the

distributionally robust problem (17), we obtain the following reformulation (see Delage and Ye

(2010) for derivation details):

minimize
x∈X ,t,q,λ+,λ−

t+µTq+ (r+)Tλ+ + (r−)Tλ−

subject to t≥
m∑
i=1

max
k
αxi,kxi +αwi,k(w̄i + ŵiζi) +βi,k− qiζi

−λ+
i max(0, ζi−µi)−λ−i max(0, µi− ζi) ∀ζ ∈Z(Γ)

λ+ ≥ 0 , λ− ≥ 0.

One might realize that the right-hand side equation of the infinite set of constraint indexed by ζ

is the sum of piecewise linear convex functions in ζ with 2K pieces; for each i, each affine piece

gives the highest value over k between either of the two following functions

αxi,kxi +αwi,k(w̄i + ŵiζi) +βi,k− qiζi−λ+
i (ζi−µi)

or

αxi,kxi +αwi,k(w̄i + ŵiζi) +βi,k− qiζi−λ−i (µi− ζi) .

Applying similar steps as provided in the proof of Corollary (4), we obtain a conservative approx-

imation of the right-hand side equation

t ≥ min
ν,γ,ψ+,ψ−

Γν+ 1Tγ

subject to γi ≥ψ+
i,k +αxi,kxi +αwi,kw̄i +βi,k +λ+

i µi ∀i, ∀k

γi ≥ψ−i,k +αxi,kxi +αwi,kw̄i +βi,k−λ−i µi ∀i, ∀k

ψ+
i,k + ν ≥ αwi,kŵi− qi−λ+

i ∀i, ∀k

ψ+
i,k + ν ≥−αwi,kŵi + qi +λ+

i ∀i, ∀k
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ψ−i,k + ν ≥ αwi,kŵi− qi +λ−i ∀i, ∀k

ψ−i,k + ν ≥−αwi,kŵi + qi−λ+
i ∀i, ∀k

ψ+
i,k ≥ 0 , ψ−i,k ≥ 0 ∀i, ∀k .

This constraint can then easily be re-inserted in the main problem to obtain the model presented

in (18). Furthermore, since for each i, each affine pieces only depend on ζi, we conclude that this

approximation is exact based on Condition 3 of Corollary 1 being satisfied. �

6. Robust Multi-Period Inventory Problem

In robust multi-period inventory problem (RMIP), the inventory manager’s objective is to minimize

the long term cost of inventory over a horizon of T periods. This long term cost might be composed

for each period t of an ordering cost of ct per unit, a fixed cost of Kt if an order is delivered at

time t, a shortage cost of pt per units of unsatisfied demand, and a holding cost ht per unit held

in storage. In each period, the ordered stocks are first used to satisfy the back-orders and then

the current demand if possible. Any extra inventory is held until the next period after paying the

associated holding cost. Unfortunately, since future demand is usually not fully determined at the

time of making orders, one might require that orders are made such that the worst-case long term

cost is as low as possible. This gives rise to the following robust optimization model

minimize
u,v

max
ζ∈Z

T∑
t=1

ctut +Ktvt + max(htxt+1(u,ζ),−ptxt+1(u,ζ)) (19a)

subject to 0≤ ut ≤Mvt, vt ∈ {0,1} ∀t, (19b)

where v ∈ {0,1}T and u ∈RT represent respectively for each t the decision of making an order or

not that will be delivered at time t, and the amount to be delivered, and where

xt+1(u,ζ) = x1 +
t∑

j=1

(uj − (w̄j + ŵjζj)) ∀t.

Problem (19) can be considered as a special case of problem (1) where ct,kζ (u,v) = αt,k
∑

j≤t ejŵj

and dt,kζ (u,v) = ctut + Ktvt − αt,k(x1 +
∑

j≤t(uj − w̄j)) where αt,1 = −ht and αt,2 = pt. We can

therefore easily obtain a conservative approximation based on Proposition 1:

(LP-RC) minimize
u,v,γ,∆, ν

θ,λ+,λ−,ψ

T∑
t=1

(ctut +Ktvt +γt + ∆t) + Γν (20a)

subject to 0≤ ut ≤Mvt, vt ∈ {0,1} ∀t (20b)

ν+ ∆≥
T∑
t=1

λ+
t (20c)
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ν+ ∆≥
T∑
t=1

λ−t (20d)

γt ≥ 1Tψt,k + Γθt,k−αt,k(x1 +
t∑

j=1

(uj − w̄j)) ∀t, ∀k (20e)

(ψt,k)j + θt,k ≥−(λ+
t )j +αt,kŵj ∀t,∀j ≤ t, ∀k (20f)

(ψt,k)j + θt,k ≥−(λ−t )j −αt,kŵj ∀t,∀j ≤ t, ∀k (20g)

(ψt,k)j + θt,k ≥−(λ+
t )j ∀t,∀j > t, ∀k= 1,2 (20h)

(ψt,k)j + θt,k ≥−(λ−t )j ∀t,∀j > t, ∀k= 1,2 (20i)

ψt,k ≥ 0,∀t,∀j ≤ t, ∀k= 1,2 , (20j)

where γ ∈RT , ∆∈RT , ν ∈R, θ ∈RK×T , λ+
t ∈RT , λ−t ∈RT , andψt,k ∈RT . Note that the expression

ctut +Ktvt would initially appear in the fourth constraint based on model (5) but was carried to

the objective function given that it is independent of k. Interestingly, based on Corollary 1, we

have conditions under which this approximation scheme returns an optimal robust solution.

Corollary 5. The conservative approximation model (20) is equivalent to problem (19) when

Γ = 1 or Γ = T .

Following the spirit of Theorem 3.2 in Bertsimas and Thiele (2006), one can also relate the

solution of this approximation model to a solution that would be obtained for a specific sequence

of deterministic orders.

Theorem 8 (Optimal robust policy) Let ψ∗ and θ∗ be optimal assignments in an optimal solution

of problem (20). The optimal robust policy of the problem (20) is equivalent to the optimal policy

of the deterministic version of problem (19) with demand set to w′t = w̄t + Υt−Υt−1 where Υ0 = 0

and Υt := (Bt,2−Bt,1)/(ht + pt) for Bt,k = 1Tψ∗t,k + Γθ∗t,k.

Proof. Given an optimal solution tuple (u∗.v∗,γ∗,∆∗, ν∗,θ∗,λ+∗,λ−
∗
,ψ∗) for problem (20), it

is clear that u∗, v∗, and γ∗ would also be the optimal solution of problem (20) if the remaining

variable were fixed to ∆∗, ν∗, θ∗, λ+∗, λ−
∗
, and ψ∗. Problem (20) is therefore equivalent to

minimize
u

T∑
t=1

(ctut +Kt1{ut>0}+ max(htx̄t+1 +Bt,1,−ptx̄t+1 +Bt,2) + ∆∗t ) + Γν∗, (21)

where x̄t+1 = x1 +
∑

j≤t(uj − w̄j), Bt,k = 1Tψ∗t,k + Γθ∗t,k, and where we use 1ut>0 as the indicator

function that returns one if ut is strictly positive and zero otherwise. Let us define variable x′t

according to the linear equation x′t+1 = x̄t+1 +
Bt,1−Bt,2
ht+pt

. This way we have that

max(htx̄t+1 +Bt,1,−ptx̄t+1 +Bt2) = max(htx
′
t+1,−ptx′t+1) +

htBt,2 + ptBt,1
ht + pt

,
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therefore, the problem (21) can be shown equivalent to

minimize
u

T∑
t=1

(ctut +Kt1ut>0 + max(htx
′
t+1,−ptx′t+1) +

htBt,2 + ptBt,1
ht + pt

+ ∆∗t ) + Γν∗ .

Based on the equation x′t+1 = x′t + ut − (w̄t + Υt −Υt−1) where Υt := (Bt,2 −Bt,1)/(ht + pt), we

can conclude that the optimal robust policy of problem (21) is equivalent to the optimal policy of

nominal problem with demand w′t = w̄t + Υt−Υt−1. �

Remark 5. The optimal cost of the problem (20) is equal to the optimal cost for the nominal

problem with the modified demand, w′t, added to
∑T

t=1(
htB2,t+ptBt,1

ht+pt
+ ∆∗t ) + Γν.

Remark 6. This robust inventory problem was first addressed in Bertsimas and Thiele (2006),

where the authors proposed a conservative approximation that relies on reversing the order of the

maximization over ζ and summation over t. The resulting model, which we will later refer to as

BT-RC can be reformulated as

(BT-RC) minimize
u,v,y,q,r

T∑
t=1

(ctut +Ktvt + yt)

subject to yt ≥ ht(x1 +
t∑

j=1

(uj − w̄j) + qtΓ +
t∑

j=1

rj,t) ∀t

yt ≥ pt(−x1−
t∑

j=1

(uj − w̄j) + qtΓ +
t∑

j=1

rj,t) ∀t

qt + rj,t ≥ ŵj ∀t, ∀j ≤ t

qt ≥ 0, rj,t ≥ 0 ∀t ∀j ≤ t

0≤ ut ≤Mvt, vt ∈ {0,1} ∀t ,

where y ∈RT , q ∈RT , and r ∈RT×T . Note that to reduce the conservativeness of their approach,

the authors use a different budget for each time period which we choose to omit doing for the sake

of comparing similar models.

This model can actually be interpreted as an AARC of problem (19) where the affine decision

rule is constrained to be constant over ζ. As was already recognized in Gorissen and den Hertog

(2013), this indicates that their approximation can already be tightened by using affine decision

rules, and, based on the results of Section 4.3, tightened even further by using problem (20) since

the later is equivalent to applying AARC on a lifting involving ζ+ and ζ−. For completeness, we

present AARC applied directly on ζ for this inventory problem:

(AARC) minimize
u,v,γ,∆,ν,θ,λ,ψ

T∑
t=1

(ctut +Ktvt +γt + ∆t) + Γν

subject to 0≤ ut ≤Mvt, vt ∈ {0,1} ∀t
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ν+ ∆j ≥

∣∣∣∣∣
T∑
t=1

λj,t

∣∣∣∣∣ , ∀j
γt ≥

T∑
j=1

ψj,t,k + Γθt,k−αt,k(x1 +
t∑

j=1

(uj − w̄j)) ∀t, ∀k= 1,2

ψj,t,k + θt,k ≥ |λj,t−αt,kŵj| ∀t,∀j ≤ t, ∀k= 1,2

ψj,t,k + θt,k ≥ |λj,t| ∀t,∀j > t, ∀k= 1,2

v≥ 0, ψj,t,k ≥ 0, θt,k ≥ 0 ∀t,∀j ≤ t, ∀k= 1,2,

where γ ∈RT , ∆∈RT , ν ∈R, θ ∈RT×2, λ∈RT×T , ψ ∈RT×T×2, and αt,1 =−ht ∀t and αt,2 = pt ∀t.

Remark 7. One might notice that in this section we focused on an inventory problem where all

ordering decisions must be made at time zero and there is no room for adjustment as time unfolds.

While this might appear a bit limiting, our reasons for doing so are two folds. First, we believe

this static version of the robust inventory problem is interesting in its own right based on the fact

that in some contexts delivery contracts give no freedom to make adjustments to the orders as

time evolves; even if there is some freedom, then the formulation studied in this section still gives

a meaningful initial ordering plan that can later be improved on by solving an updated version

of the model. Secondly, beside the special cases described in Bertsimas et al. (2010), very little is

actually known about how to get exact solutions to the static or dynamic version of this robust

model. Our hope is that by focusing on the static version of the problem we might understand

what are the tools that can provide better near-optimal solutions.

7. Numerical Experiments

In this section, we present numerical experiments for the robust multi-period inventory problem

discussed in Section 6. We initially present the performance of four different approximation methods

for the instance that was studied in Bertsimas and Thiele (2006). This will illustrate how the worst-

case bound can be gradually improved by using more computationally demanding models. In order

from most tractable to most precise, we have the following list of formulation: the BT-RC model,

the AARC model, the LP-RC model, a conservative approximate robust counterpart based on the

SDP bound presented in (7) and referred to as SDP-RC, and the exact robust model solved using

a cutting-plane method5. In order to study to which extent these conclusions can be generalized,

we later extend the numerical analysis to a set of randomly generated instances of the multi-period

inventory problem where every parameters (e.g. ordering cost, holding cost, amount of uncertainty,

etc.) are non-stationary. In doing so, we also explore what is the “price of robustness” (as coined

in Bertsimas and Sim (2004)) in this class of problems.
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7.1. Instance Studied by Bertsimas and Thiele

The instance studied in Section 5.2 of Bertsimas and Thiele (2006) is an inventory problem with

T = 20, ct = 1, Kt = 0, ht = 4, pt = 6, w̄t = 100 and ŵt = 40. Note that this problem is stationary

in the sense that the above parameters do not depend on t. Under this context, Table 2 presents

the optimal worst-case bound obtained with each method, the true worst-case cost achieved by

their respective approximate solution, and their respective suboptimality gap. As expected, when

Γ = 0 all four methods give the same optimal bound and solution, which is the optimal solution of

the nominal problem. The performance start to differ as Γ is increased. We can first confirm that,

for any value of Γ, suboptimality gap is always reduced as we move away from the BT-RC model

and use more sophisticated versions of our mixed-integer linear programming based approach.

We can also confirm that, when Γ equals 1 or 20, the LP-RC and SDP-RC approach are exact,

which was guaranteed by Theorem 5. This is also the case for AARC for this instance but will

not be the case in general (see Table 3 for some evidence). In the case of Γ = 10, we see that

using the SDP formulation allows us to reduce the suboptimality to a negligible amount, while it is

slightly insufficient for Γ = 15. Although the suboptimality gap of all approximations methods are

somewhat small in this example and the improvements obtained are rather limited, these results

already illustrate the key differences between the four different approximation schemes. We expect

these differences to be magnified in a richer experimental context.

Finally, it is worth noting that, although some of the solutions obtained are suboptimal, the

worst-case cost achieved by a suboptimal solution often indicates exactly the approximate bound

returned by the approximation model. For instance, one can observe in Table 2 that for the so-

lutions provided by BT-RC, the worst-case bound approximations that BT-RC provides for Γ ∈

{0,1,10,15,20} are exact. Yet, BT-RC does not return truly optimal solutions except when Γ = 0.

One should therefore treat with care the fact that worst-case cost is equal to the worst-case bound

for a solution that is returned by a conservative approximation scheme as there might actually

exist other solutions that achieve better worst-case cost but for which the worst-case bound is very

inaccurate.

7.2. Robust Performances on Randomly Generated Instances

In this second set of experiments, we consider a family of randomly generated instances of the

robust multi-period inventory problem for a horizon of T = 10 and T = 100. Specifically, each

problem instance is created by randomly generating for each period the values for ct, ht, pt based on

a uniform distribution between 0 and 10, and the values for w̄t and ŵt from a uniform distribution

over the interval [0,100] and [0, w̄t] respectively. Fixed ordering cost Kt are again considered to be

null.
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Table 2 Comparison of the optimal worst-case bound, true worst-case cost, and suboptimality gap for different

solution methods to the inventory problem presented in Bertsimas and Thiele (2006).

Method
Budget of uncertainty

0 1 10 15 20

Worst-
case

bound

BT-RC 2000 5848 31840 39560 42480
AARC 2000 5800 31456.7 39306.3 41818
LP-RC 2000 5800 31360 38976 41818

SDP-RC 2000 5800 31360 38940.3 41818

Worst-
case
cost

BT-RC 2000 5848 31840 39560 42480
AARC 2000 5800 31456.7 39306.3 41818
LP-RC 2000 5800 31360 38976 41818

SDP-RC 2000 5800 31360 38940.2 41818
Exact 2000 5800 31360 38933.3 41818

Sub-
optim.

gap

BT-RC 0 0.83% 1.53% 1.61% 1.58%
AARC 0 0.00% 0.31% 1.10% 0
LP-RC 0 0 0.00% 0.11% 0

SDP-RC 0 0 0.00% 0.02% 0

Similarly as was done in the previous analysis, we compare in Table 3 the optimal worst-case

bound, true worst-case cost, and suboptimality gap for different solution models, yet this time

the table presents the average of each indicator over a set of 1000 randomly generated problem

instances. A quick glance at the table should convince the reader that there are obvious gains in

terms of worst-case cost for employing either the LP-RC or SDP-RC method instead of BT-RC

or AARC. Note for instance that when Γ = 6, in these experiments the average worst-case cost

was 2.2% larger with the AARC method compared to the LP-RC and the SDP-RC methods. More

importantly, two valuable insights can be obtained from this table. First, we can estimate from

this table that suboptimality of the approximate solution is reduced by a factor of about 4 when

replacing the BT-RC method with AARC, by an additional factor of about 10 when replacing the

AARC method with LP-RC, and by a final factor of at least 2 when replacing LP-RC with SDP-

RC. Secondly, for general inventory problems it is uncommon for the worst-case bound obtained by

any of these methods to be exactly equal to the true worst-case cost for the retrieved approximate

solution. This can be observed by comparing the average worst-case bound to the average actual

worst-case cost. The only exception is for LP-RC and SDP-RC when Γ = 1 and Γ = 10 as our

theory previously established. Perhaps surprisingly, in the case of LP-RC, it also appears that for

other integer Γ’s it is quite rare that the worst-case bound is inexact at the proposed approximate

solution, even when this solution is suboptimal.

Table 4 presents further statistics regarding the suboptimality of each method. Specifically, for

each value of Γ studied, the table indicates for what proportion of random instances was each

method able to recover a solution that was below either 0.0001%, 1%, and 10% of optimality. One

can easily see that optimality is significantly improved by using the LP-RC or SDP-RC methods.
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Table 3 Comparison of the optimal worst-case bound, true worst-case cost, and suboptimality gap for different

solution methods averaged over a set of 1000 randomly generated instances of multi-period inventory problems with

10 periods.

Method
Budget of uncertainty

1 2 3 4 5 6 10

Average
worst-case
bound

BT-RC 4455 6050 7135 7871 8355 8657 8976
AARC 3620 4861 5725 6321 6720 6972 7252
LP-RC 3477 4597 5420 6031 6481 6798 7252

SDP-RC 3477 4592 5412 6024 6476 6794 7252

Average
worst-case
cost

BT-RC 4049 5400 6363 7071 7581 7936 8438
AARC 3619 4832 5677 6272 6681 6946 7252
LP-RC 3477 4597 5420 6031 6481 6798 7252

SDP-RC 3477 4591 5411 6023 6475 6794 7252
True 3477 4585 5407 6020 6474 6794 7252

Average
sub-
optimality
gap

BT-RC 16.6% 18.0% 18.0% 17.8% 17.5% 17.2% 16.8%
AARC 4.4% 5.7% 5.2% 4.3% 3.3% 2.3% 0
LP-RC 0 0.3% 0.3% 0.2% 0.1% 0.1% 0

SDP-RC 0 0.1% 0.1% 0.1% 0.0% 0.0% 0

Table 4 Proportion of random instances (in 1000 trials) where methods achieved a set of target levels with

respect to suboptimality for different values of Γ. The worst suboptimality gap attained by each method is also

reported.

Method
Γ Interval BT-RC AARC LP-RC SDP-RC

1

≤0.0001 0.0% 14.1% 100% 100%
≤1 0.0% 26.1% 100% 100%
≤10 19.9% 88.7% 100% 100%

Maximum gap 56.7% 24.9% 0% 0%

3

≤0.0001 0.0% 0.4% 52.6% 56.6%
≤1 0.2% 6.2% 90.4% 98.1%
≤10 15.7% 91.1% 100.0% 100.0%

Maximum gap 54.6% 23.0% 4.6% 2.0%

5

≤0.0001 0.0% 0.2% 57.3% 63.5%
≤1 0.0% 9.3% 96.6% 99.70%
≤10 16.5% 98.6% 100.0% 100.0%

Maximum gap 52.2% 14.9% 2.6% 1.3%

In terms of worst suboptimality gap obtained over these instances, one can remark an improvement

of a factor of 4, 6, and 2 for migrating from the BT-RC approximation to the AARC, and to the

LP-RC and SDP-RC respectively when the budget is set to 5.

In practice, it is often the case that robust optimization, and especially with the budgeted

uncertainty set, is used in a context where uncertain parameters are considered to be drawn from a

distribution. e.g. the distribution of historical values. For this reason, we next attempt to measure

the inherent trade-off that can be observed between expected cost and value at risk when using

different levels of budgets for uncertainty. Namely, given a problem instance, taking the shape of
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a set of parameters {ct, ht, pt, w̄t, ŵt}Tt=1, we assume that each interval [w̄t− ŵt, w̄t + ŵt] describes

the support of a uniform distribution for the random demand at time period t and that demand

is independent between each period. We then compare the performance of the different robust

solutions in terms of expected value and the 90th percentile of the total cost achieved when different

values of Γ are used.

Figure 1 presents the average expected cost and average 90th percentile6 achieved over 1000

problem instances by the five types of approximately robust solutions given different level of conser-

vativeness expressed through Γ. We also present these same results in Figure 2 where the averaged

(expected cost, value at risk) pair is plotted for each level of the budget, thus allowing us to iden-

tify the general structure of the Pareto frontier identified using each approximate models. These

figures clearly present how the solution obtained from the nominal problem, when Γ = 0, can be

improved both with respect to expected cost and to value at risk by considering a robust alterna-

tive. Although this behavior might seem surprising, it is in agreement with remark 3.2 of Delage

et al. (2014) that claims that the mean value problem, where one replaces every random variables

with its expected value, actually provides an optimistic solution (i.e., solution based on best-case

distribution) to stochastic programs when the objective function is convex with respect to uncer-

tain parameters. For this family of problems, it also appears that there is a threshold above which

the budget Γ leads to solutions that cannot be statistically motivated (i.e., dominated in terms

of both expected value and 90th percentile). This threshold appears to be respectively 1.5 and 3

in the case of problems with 10 periods and 100 periods. Based on Figures 1 (a) and (b), it also

appears that although there is a lot to gain from using a more sophisticated model than BT-RC,

the statistical performances of models that obtain the robust solution with greater precision than

AARC are highly comparable for a short horizon. The difference between AARC and LP-RC is

a bit more noticeable when the horizon is larger as portrayed in Figure 1 (c) and (d) where we

see that the LP-RC dominates AARC for nearly all values of Γ. Note that in our experiments

with T = 100, we omitted to include the performance of SDP-RC since it was too computationally

demanding and since the performance seemed highly comparable to LP-RC.

8. Conclusion

In this article, we proposed a new scheme that can be used to generate conservative approximations

of robust optimization problems involving the sum of piecewise linear functions and a polyhedral

uncertainty set. This scheme exploits the fractional relaxation of a MILP known to be equivalent

to the adversarial problem and can be used to identify two specific approximation models that

respectively take the shape of a linear program and a SDP. While the linear programming model

is shown to be equivalent to an application of AARC on a lifting of the parameter space, the
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Figure 1 Average expected cost and average 90th percentile (over 1000 problem instances) achieved by robust

solutions given different level of conservativeness. While Figure (a) presents average expected cost and

Figure (b) presents average 90th percentile for a horizon of 10 periods, Figures (c) and (d) present the

same statistics for a horizon of 100 periods.

SDP model clearly departs from previously known approximation techniques. Our approximation

scheme also allows us to exploit the concept of total unimodularity to establish new conditions

under which our LP-RC (and implicitly the AARC approach) model provides exact solutions. In

particular, we identified the first exact reformulations for a robust (and distributionally robust)

multi-item newsvendor problem with budgeted uncertainty set and a reformulation for robust

multi-period inventory problems that is exact whether the uncertainty region reduces to a L1-norm

ball or to a box. An extensive set of empirical results finally illustrates the quality of the solutions

obtained from different approximation schemes on randomly generated instances of the latter field

of application.
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Figure 2 Average expected cost versus average 90th percentile achieved by the different robust methods when

adjusting the level of conservativeness Γ. Figure (a) presents the achieved risk-return trade-offs for a 10

days horizon while (b) presents it for a 100 days horizon.

Although very relevant to the discussion of this paper, we leave open the question of how to

extend our approximation scheme to uncertainty set that are not polyhedral. In this regard, it

appears that one might be able to reach interesting conclusions in contexts where the uncertainty set

takes the shape of Z := {ζ |gj(ζ)≤ bj ∀ j = 1,2, . . . , J} using a set of convex positive homogeneous

gj(·) functions, i.e., functions for which gj(αζ) = αgj(ζ) for all α≥ 0. This is for example the case

when using an ellipsoidal set where gj(ζ) := ‖ζ‖2. Under these conditions, the MILP representation

of the adversarial problem studied in Section 4 will reduce to problem (4) with (4b) and (4g)

replaced with

gj(ζ
+− ζ−)≤ bj , ∀ j

gj(∆
+
i,k−∆−i,k)≤ bjzi,k , ∀ i, j, k ,

This is because we can now exploit that for all i, j, and k, we have that

gj(∆
+
i,k−∆−i,k) = gj(zi,k(ζ

+− ζ−)) = zi,kgj(ζ
+− ζ−)≤ bjzi,k .

Hence, the second constraint is necessarily redundant in the mixed integer program but will lead

to a tighter conservative approximation after applying fractional relaxation.

Appendix A: Examples of Sums of Piecewise Linear Functions

We briefly summarize two additional examples of problems where sums of piecewise linear functions

play an important role and for which robust optimization has the potential of identifying solutions

that are immunized against model misspecification.
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Example 1. Multi-attribute utility theory: Consider a multi-objective linear program

min
x∈X

{
cTi x+ di

}N
i=1

,

where x ∈ Rn, and for each i the affine mapping cTi x+ di computes an attribute that should be

minimized: e.g. total cost, delivery time, amount of carbon emitted, etc. Multi-attribute utility

theory (see Clemen and Reilly (1999) and reference therein) suggests that if the decision maker’s

preference relation satisfies additive independence then it can be represented by an additive utility

function: i.e that he should solve a model of the type

max
x∈X

N∑
i=1

ui(c
T
i x+ di) ,

where ui(·) is a decreasing function, typically concave, and possibly piecewise linear. One might

additionally consider that the value achieved for each objective is linearly influenced by a set of

parameters ζ and wonder what would be a decision that maximizes the worst-case multi-attribute

utility. Given that each ui(·) is piecewise linear concave, this question reduces to solving problem (1)

where hi(x,ζ) :=−ui(ci(ζ)Tx+di(ζ)) =−mink αi,k(ci(ζ)Tx+di(ζ)) +βi,k, with ci and di defined

as affine mappings of ζ.

Example 2. Support vector machine: One of the most popular method for classification is known

as the support vector machine, whereas one seeks a hyperplane that can separate as well as possible

a set of instances {(φi, κi)}Ni=1, where each φi is a vector of features in Rn and κi ∈ {−1,1} is a

label. In the soft margin method, this hyperplane is obtained by solving the following model:

min
x,x0

‖x‖2 +x2
0 +α

N∑
i=1

max{ 0 , 1−κi(φTi x−x0) } ,

where x∈Rn and x0 ∈R. Considering that the data points φi that are obtained could be the result

of noisy measurements, it might be more appropriate to search for a robust hyperplane in the sense

that it is optimal with respect to

min
x,x0

‖x‖2 +x2
0 + max

ζ∈Z
α

N∑
i=1

max{ 0 , 1−κi(φi(ζ)Tx−x0) } ,

where the second term of the objective is a robust optimization term of the same form as in

problem (1).

Appendix B: NP-hardness of Problem (2)

Proposition 9 Evaluating the optimal value of problem (2) is NP-hard even when Z is polyhedral.

This result is obtained by showing that the NP-complete 3-SAT problem can be reduced to

verifying whether

max
ζ∈Z

N∑
i=1

max
k
cTi,kζ+ di,k ≥ γ ,

is true or not.
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3-SAT problem: Let W be a collection of disjunctive clauses W = {w1,w2, ...,wN} on a finite set

of variables V = {v1, v2, ..., vm} such that |wi| = 3 ∀i ∈ {1, ...,N}. Let each clause be of the form

w = vi ∨ vj ∨ v̄k, where v̄ is the negation of v. Is there a truth assignment for V that satisfies all

the clauses in W?

Given an instance of the 3-SAT Problem, we can attempt to verify whether the optimal value of

the following problem is larger or equal to N

max
ζ

N∑
i=1

hi(ζ) (22a)

subject to 0≤ ζ ≤ 1 , (22b)

where ζ ∈ Rn, and where hi(ζ) := max{ζj1 ; ζj2 ; 1− ζj3} if the i-th clause is wi = vj1 ∨ vj2 ∨ v̄j3 . It

is straightforward to confirm that {ζ ∈Rn |0≤ ζ ≤ 1} is a polyhedron and that each hi(ζ) can be

expressed as hi(ζ) := maxk c
T
i,kζ + di,k. More importantly, we have that the answer to the 3-SAT

problem is positive if and only if the optimal value of problem (22) achieves an optimal value

greater or equal to N . �

Appendix C: Proof of Proposition 3

We present this proof in four steps. We first introduce the notion of integral polytope and total

unimodularity as these concepts are fundamental components of our proof. We then go through

each of the three sets of conditions and present arguments for our conclusions.

C.1. Integral Property of Polytope

Let the matrix A∈Rm×n and vector b∈Rm define the convex polytope {z ∈Rn|z ≥ 0,Az = b}.

Definition 2. A matrix A is called totally unimodular if the determinant of every submatrix of

A is equal to +1 or −1.

Lemma 10 (See Truemper (1978) as cited in Grady and Polimeni (2010), page 313) Let the

matrix A ∈ Rm×n and vector b ∈ Rm define the convex polytope {z ∈ Rn|z ≥ 0,Az = b}, all the

vertices of this convex polytope are integered valued if A is totally unimodular and b is integer

valued.

Hoffman and Kruskal (1956) proposed the following sufficient conditions for a matrix to be

totally unimodular.

Lemma 11 Let A be an m×n matrix containing only elements in the set {−1,0,1}, then A is a

totally unimodular matrix if both of the following conditions are satisfied:

1. Each column of A contains at most two nonzero elements.
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2. The rows of A can be partitioned into two sets A1 and A2 such that two nonzero entries in a

column are in the same set of rows if they have different signs and in different sets of rows if they

have the same sign.

In what follows we will use the following result which we present right away as an example of

application of Lemma 11.

Lemma 12 The polytope defined by

ζ+ ≥ 0 & ζ− ≥ 0 & ζ+
j + ζ−j ≤ 1 , ∀ j (23a)

1T (ζ+ + ζ−) = Γ (23b)
K∑
k=1

zi,k = 1 , ∀ i (23c)

K∑
k=1

∆+
i,k = ζ+

i &
K∑
k=1

∆−i,k = ζ−i , ∀ i (23d)

∆+
i,k ≥ 0 & ∆−i,k ≥ 0 & ∆+

i,k + ∆−i,k ≤ zi,k , ∀ i, k , (23e)

where ζ+ ∈Rm, ζ− ∈Rm, z ∈Rm×K, ∆+ ∈Rm×K and ∆− ∈Rm×K, has integer vertices.

Proof. First, let us realize that constraints (23c)-(23e) make constraint (23a) redundant. Hence,

constraints (23a) to (23e) are reduced to:

1T (ζ+ + ζ−) = Γ (24a)
K∑
k=1

zi,k = 1 , ∀ i (24b)

K∑
k=1

∆+
i,k− ζ+

i = 0 &
K∑
k=1

∆−i,k− ζ−i = 0 , ∀ i (24c)

∆+
i,k + ∆−i,k + si,k− zi,k = 0 ∀i, k, (24d)

∆+
i,k ≥ 0 & ∆−i,k ≥ 0 & si,k ≥ 0 , zik ≥ 0 ∀ i, k , (24e)

where constraint (24d) is presented in standard form with some additional decision variables si,k ∈R

for all (i, k) pair.

In constraints (24a) to (24d), matrix of coefficients A, contains only elements in the set {-1,0,1}.

The columns of matrix A contains two nonzero elements, except for the columns associated with

si,k which only have one. In the columns associated to ∆+
ik and ∆−ik, these coefficients are equal to

1 because of constraints (24c) and (24d) while in columns associated with zik, each column hold

a +1 and -1 coefficient based on constraints (24b) and (24d). Moreover, in columns associated

with ζ+
i and ζ−i , each column hold a +1 and -1 coefficient based on constraints (24a) and (24c).
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Condition 1 of Lemma 11 is easily satisfied. As of satisfying Condition 2, it is satisfied if matrix A

is partitioned so that A1 contains the coefficients associated with constraints (24a) and (24c), and

A2 contains entries of the other rows. �

C.2. Condition 1

We start with the case of Γ = 1. First, one can show that constraints (4b) to (4i) reduce to the

following:

ζ+ ≥ 0 & ζ− ≥ 0

1T (ζ+ + ζ−) = 1
K∑
k=1

zi,k = 1 , ∀ i

K∑
k=1

∆+
i,k− ζ

+ = 0 &
K∑
k=1

∆−i,k− ζ
− = 0 , ∀ i

∆+
i,k ≥ 0 & ∆−i,k ≥ 0 , ∀ i, k

zik−
m∑
j=1

(∆+
i,k)j − (∆−i,k)j ≥ 0 , ∀ i, k .

Together, these constraints further imply that zi,k =
∑m

j=1(∆+
i,k)j+(∆−i,k)j since if it was any larger,

say by a positive amount ∆i,k > 0 then the sum of zi,k would lead to

K∑
k=1

zi,k =
K∑
k=1

(∑
j

(∆+
i,k)j + (∆−i,k)j

)
+ ∆i,k

=
m∑
j=1

(ζ+
j + ζ−j ) +

K∑
k=1

∆i,k = 1 +
K∑
k=1

∆i,k > 1 ,

which contradicts the fact that they should sum to one.

This allows us to say that there is always an optimal solution of the fractional relaxation of

problem (4) that lies at one of the vertices of the polytope described by

m∑
j=1

ζ+
j + ζ−j = 1

K∑
k=1

∆+
1,k− ζ

+ = 0

K∑
k=1

∆+
i,k−

K∑
k=1

∆+
i−1,k = 0 , ∀2≤ i≤N

K∑
k=1

∆−1,k− ζ
− = 0

K∑
k=1

∆−i,k−
K∑
k=1

∆−i−1,k = 0 , ∀2≤ i≤N
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zi,k−
m∑
j=1

(∆+
i,k)j + (∆−i,k)j = 0, ∀i, k,

ζ+ ≥ 0 & ζ− ≥ 0

∆+
i,k ≥ 0 & ∆−i,k ≥ 0 , ∀ i, k .

One can easily show that the polytope defined by the first five constraints has integral vertices by

confirming that, in the representation Ay= b, where y stands for the vector formed by appending

all ζ+, ζ−, ∆+
i,k ∆+

i,k variables, the A matrix is totally unimodular. Indeed, total unimodularity

is directly verified on the A matrix capturing the first five constraints. For each of these integer

vertices, the projection zi,k :=
∑m

j=1(∆+
i,k)j + (∆−i,k)j makes zi,k also an integer. This completes the

proof that there always exists an optimal solution of the fractional relaxation of problem (4) that

is integer thus the optimal value of this relaxation is exact.

C.3. Condition 2

For the second case, we will assume without loss of generality that m=N , i.e., that there is one

perturbation variable per convex sub-function in the objective function. We then observe that the

description of the polytope reduces to the following set of constraints.

ζ+ ≥ 0 & ζ− ≥ 0 & ζ+
j + ζ−j ≤ 1 , ∀ j

K∑
k=1

zi,k = 1 , ∀ i

K∑
k=1

∆+
i,k = ζ+ &

K∑
k=1

∆−i,k = ζ− , ∀ i

∆+
i,k ≥ 0 & ∆−i,k ≥ 0 & ∆+

i,k + ∆−i,k ≤ zi,k , ∀ i, k .

Since an integer solution is feasible with respect to these constraints, we know that the fractional

relaxation must necessarily achieve a higher value than problem (3). Yet, we now show that this

relaxed problem is also upper bounded by problem (3) when ci,k has the given structure.

We get the upper bounding problem by first relaxing the feasible set to the following:

ζ+ ≥ 0 & ζ− ≥ 0 & ζ+
j + ζ−j ≤ 1 , ∀ j

K∑
k=1

zi,k = 1 , ∀ i

K∑
k=1

∆i,k = (ζ+− ζ−) , ∀ i

‖∆i,k‖∞ ≤ zi,k , ∀ i, k .
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For any fixed ζ+ and ζ−, the maximum over ∆ and z is upper bounded by its dual problem.

Specifically, the optimal value of the problem

maximize
∆,z

N∑
i=1

K∑
k=1

cTi,k∆i,k + di,kzi,k (25a)

subject to
K∑
k=1

zi,k = 1 , ∀ i (25b)

K∑
k=1

∆i,k = ζ+− ζ− , ∀ i (25c)

‖∆i,k‖∞ ≤ zi,k , ∀ i, k (25d)

is upper bounded by the optimal value of

minimize
γ,λ

N∑
i=1

γi +λTi (ζ+− ζ−)

subject to γi ≥ di,k + ‖ci,k−λi‖1 , ∀ i, k ,

where γ ∈RN and λ∈RN×m are the dual variables for constraint (25b) and (25c) respectively.

Based on the observation that reversing the order of maxζ and minγ,λ can only lead to a further

upper bound, we are left with

minimize
γ,λ

max
ζ:‖ζ‖∞≤1

N∑
i=1

γi +λTi ζ (26a)

subject to γi +λTi ζ ≥ di,k + cTi,kζ , ∀‖ζ‖∞ ≤ 1 , ∀ i, k . (26b)

Following some recent results presented in Bertsimas et al. (2010), this last optimization model

can be shown to be equivalent to problem (3) when ci,k has the given structure. Specifically, given

the structure of ci,k, problem (3) can be seen as evaluating the worst-case cost of linear dynamic

system with bounded independent perturbations under a fixed policy

maximize
ζ1,...,ζN ,x1,...,xN

N∑
t=1

max
k
αt,kxt + dt,k

subject to x1 = β1ζ1

xt = xt−1 +βtζt , ∀2≤ t≤N

−1≤ ζt ≤ 1 , ∀ t .

In Theorem 3.1 of Bertsimas et al. (2010), the authors proved that an optimized affine running cost

can be used instead of a convex one to measure exactly the total cost incurred by such a policy.

Since problem (26) optimizes over all upper bounding affine running cost, it will necessarily achieve

as optimal value the optimal value of problem (3). Hence, the fractional relaxation of problem (4)

is tight.
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C.4. Condition 3

For the third case, we can first realize that the objective function reduces to

N∑
i=1

K∑
k=1

αi,k((∆
+
i,k)i− (∆−i,k)i) + di,kzi,k .

Hence, it is invariant to our choice for the variables (∆+
i,k)j and (∆+

i,k)j for all j 6= i. We are therefore

interested in studying the vertices of the projection of the polytope defined by constraints (4b)

to (4i) over the space spanned by the variables (∆+
i,k)i and (∆+

i,k)i, zi,k, ζ
+, and ζ−.

When we remove from constraints (4b) to (4i), any constraint that involves (∆+
i,k)j with j 6= i,

we get the following set of constraints.

ζ+ ≥ 0 & ζ− ≥ 0 & ζ+
j + ζ−j ≤ 1 , ∀ j

1T (ζ+ + ζ−) = Γ
K∑
k=1

zi,k = 1 , ∀ i

K∑
k=1

(∆+
i,k)i = ζ+

i &
K∑
k=1

(∆−i,k)i = ζ−i , ∀ i

(∆+
i,k)i ≥ 0 & (∆−i,k)i ≥ 0 & (∆+

i,k)i + (∆−i,k)i ≤ zi,k , ∀ i, k .

By construction, the polytope defined by these constraints must include the projection that we

seek to define. An important property of this polytope is that it has integer vertices when Γ

is an integer (see Lemma 12 above). Yet, when Γ is integer, it is also a subset of the projec-

tion that we are interested in. This can be confirmed by verifying that for any feasible solution

of these constraints (ζ+,ζ−, (∆+
i,k)i, (∆

−
i,k)i, zi,k) one can create a solution (ζ+,ζ−,∆+

i,k,∆
−
i,k, zi,k)

with (∆+
i,k)j := zi,k(

∑K

k′=1(∆+
j,k′)j) and (∆−i,k)j := zi,k(

∑K

k′=1(∆−j,k′)j) that is feasible according to

constraints (4b) to (4i). Specifically, we have for all i= 1, . . . ,N and j = 1, . . . ,m:

K∑
k=1

(∆+
i,k)j =

K∑
k=1

zi,k

(
K∑
k′=1

(∆+
j,k′)j

)
=

K∑
k′=1

(∆+
j,k′)j = ζ+

j

(∆+
i,k)j + (∆−i,k)j = zi,k

(
K∑
k′=1

(∆+
j,k′)j + (∆−j,k′)j

)
≤ zi,k .

For constraints (4i), we verify the two cases. If for some (i′, k′), zi′,k′ = 0, then

m∑
j=1

(∆+
i′,k′)j + (∆−i′,k′)j = 0≤ 0 .

Otherwise xi′,k′ = 1 and, since the sum of zi′,k over the k’s is equal to one, it must be that∑K

k=1(∆+
i′,k)i′ = (∆+

i′,k′)i′ = ζ+
i′ and similarly for (∆−i′,k′)i′ = ζ−i′ . Hence, we have that

m∑
j=1

(∆+
i′,k′)j + (∆−i′,k′)j = zi′,k′

m∑
j=1

ζ+
j + ζ−j = Γzi′,k′ .
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We are left to conclude that since the projected polytope has integer vertices, it must

be that an optimal solution of problem (4) has integer vertices at least for the variables

(ζ+,ζ−, (∆+
i,k)i, (∆

−
i,k)i, zi,k). Completing this part of the solution with the suggestion above will

give an optimal solution of the problem that is completely integer.

Appendix D: Proof of Proposition 4

Given that the stated conditions on X , U , and h(x,ζ) are satisfied, by Sion’s minimax theorem we

have that

min
x∈X

max
ζ∈U

h(x,ζ) = max
ζ∈U

min
x∈X

h(x,ζ) .

and thus that

max
ζ∈U

h(x̂,ζ) = min
x∈X

h(x, ζ̂) .

In fact, Sion’s minimax theorem further implies that

min
x∈X

h(x, ζ̂)≤ h(x̂, ζ̂)≤max
ζ∈U

h(x̂,ζ) = min
x∈X

h(x, ζ̂)

so that the saddle point property is satisfied:

min
x∈X

h(x, ζ̂) = h(x̂, ζ̂) = max
ζ∈U

h(x̂,ζ) .

Now considering that ζ̂ is in the convex hull of U ∩ I, which we refer to as P(U ∩ I), we can

show that x̂ achieves the optimal value in the original robust optimization problem:

min
x∈X

max
ζ∈U∩I

h(x,ζ) = min
x∈X

max
ζ∈P(U∩I)

h(x,ζ) ≥ min
x∈X

h(x, ζ̂)

= h(x̂, ζ̂) = max
ζ∈U

h(x̂,ζ)

≥ max
ζ∈U∩I

h(x̂,ζ) ,

where the first equality comes from the fact that the maximum of a linear function over a set of

points is achieved on the convex hull of those points. �

Appendix E: Proof of Corollary 4

In the case of the robust newsvendor problem, the fractional relaxation of the adversarial prob-

lem (4) takes the form

maximize
z,ζ+,ζ−,∆+,∆−

m∑
i=1

K∑
k=1

αwi,kŵi((∆
+
i,k)i− (∆−i,k)i) + (αxi,kxi +αwi,kw̄i +βi,k)zi,k

subject to ζ+ ≥ 0 & ζ− ≥ 0 & ζ+
j + ζ−j ≤ 1 , ∀ j

1T (ζ+ + ζ−) = Γ
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K∑
k=1

zi,k = 1 , ∀ i

K∑
k=1

∆+
i,k = ζ+ &

K∑
k=1

∆−i,k = ζ− , ∀ i

∆+
i,k ≥ 0 & ∆−i,k ≥ 0 & ∆+

i,k + ∆−i,k ≤ zi,k ∀i, ∀k∑
j

(∆+
i,k)j + (∆−i,k)j = Γzi,k ∀i, ∀k .

Since for i 6= j, the variables (∆+
i,k)j and (∆−i,k)j do not affect the objective value of the problem,

we can use the argument presented in Section C.4 to justify the following equivalent reformulation

for this optimization problem.

maximize
z,ζ+,ζ−,∆+,∆−

m∑
i=1

K∑
k=1

αwi,kŵi(∆
+
i,k−∆−i,k) + (αxi,kxi +αwi,kw̄i +βi,k)zi,k

subject to ζ+ ≥ 0 & ζ− ≥ 0 & ζ+
j + ζ−j ≤ 1 , ∀ j

1T (ζ+ + ζ−) = Γ
K∑
k=1

zi,k = 1 , ∀ i

K∑
k=1

∆+
i,k = ζ+

i &
K∑
k=1

∆−i,k = ζ−i , ∀ i

∆+
i,k ≥ 0 & ∆−i,k ≥ 0 & ∆+

i,k + ∆−i,k ≤ zi,k ∀i, ∀k ,

where ∆+
i,k ∈R is now short for (∆+

i,k)i and similarly for ∆−i,k.

After replacing ζ+
i and ζ−i using the third equality constraint and dropping ζ+

i + ζ−i ≤ 1 which

is redundant since
∑K

k=1 ∆+
i,k + ∆−i,k ≤

∑K

k=1 zi,k ≤ 1, we get the following reduced form:

maximize
z,ζ+,ζ−,∆+,∆−

m∑
i=1

K∑
k=1

αwi,kŵi(∆
+
i,k−∆−i,k) + (αxi,kxi +αwi,kw̄i +βi,k)zi,k

m∑
i=1

K∑
k=1

∆+
i,k + ∆−i,k = Γ

K∑
k=1

zi,k = 1 , ∀ i

∆+
i,k ≥ 0 & ∆−i,k ≥ 0 & ∆+

i,k + ∆−i,k ≤ zi,k ∀i, ∀k .

We are left with deriving the dual of this reduced form for the relaxed adversarial problem and

re-introducing it back in the outer problem. Hence, we obtain

minimize
x∈X ,ν,γ,ψ

Γν+ 1Tγ

subject to γi ≥ψi,k + (αxi,kxi +αwi,kw̄i +βi,k) ∀i, ∀k
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ψi,k + ν ≥ αwi,kŵi ∀i, ∀k

ψi,k + ν ≥−αwi,kŵi ∀i, ∀k

ψi,k ≥ 0 , ∀i, ∀k .

This optimization model can be simplified to problem (16). Furthermore, since the robust multi-

item newsvendor problem presented in (15) satisfies Condition 3, we are guaranteed that this robust

counterpart is exact by Corollary 1. �

Appendix F: Proof of Proposition 6

We start by employing affine decision rules to produce a conservative approximation of prob-

lem (14). This leads to the following model.

minimize
{vi,γi,λ

+
i ,λ
−
i }

N
i=1,w

+,w−,

{Q+
i ,V

+
i ,q

+
i ,S

+
i ,p

+
i ,r

+
i }

N
i=1

{Q−i ,V
−
i ,q
−
i ,S
−
i ,p
−
i ,r
−
i }

N
i=1

max(ζ+,ζ−)∈Z′ (w+)Tζ+ + (w−)Tζ−

+
∑N

i=1 2p+
i

T
ζ+ + 2p−i

T
ζ−+ γi +λ+

i

T
ζ+ +λ−i

T
ζ−

(27a)

subject to γi +λ+
i

T
ζ+ +λ−i

T
ζ− ≥ cTi,k(ζ

+− ζ−) + di,k

+2(V +
i )k,:ζ

+ + 2(V −i )k,:ζ
−+ (vi)k ∀ i, k, (ζ+,ζ−)∈Z ′ (27b)

(vi)k = (Q+
i +Q−i )k,k + 2(q+

i + q−i )k + r+
i + r−i , ∀ i, k (27c) Q+

i V +
i q

+
i

V +
i

T
S+
i p+

i

q+
i

T
p+
i

T
r+
i

� 0,

 Q−i V −i q−i
V −i

T
S−i p−i

q−i
T
p−i

T
r−i

� 0 , ∀ i (27d)

N∑
i=1

S+
i ≤ diag(w+) ,

N∑
i=1

S−i ≤ diag(w−) , ∀ i (27e)

w+ ≥ 0 w− ≥ 0 . (27f)

Next, the variables γi can be replaced with γi := γ′i + r+
i + r−i , while vi can be replaced according

to constraint (27c), in order to bring the terms r+
i and r−i in the objective function to obtain

minimize
{γ′i,λ

+
i ,λ
−
i }

N
i=1,w

+,w−,

{Q+
i ,V

+
i ,q

+
i ,S

+
i ,p

+
i ,r

+
i }

N
i=1

{Q−i ,V
−
i ,q
−
i ,S
−
i ,p
−
i ,r
−
i }

N
i=1

max(ζ+,ζ−)∈Z′ (w+)Tζ+ + (w−)Tζ−+
∑N

i=1 r
+
i + r−i

+
∑N

i=1 2p+
i

T
ζ+ + 2p−i

T
ζ−+ γ′i +λ+

i

T
ζ+ +λ−i

T
ζ−

subject to γ′i +λ+
i

T
ζ+ +λ−i

T
ζ− ≥ cTi,k(ζ

+− ζ−) + di,k + 2(V +
i )k,:ζ

+ + 2(V −i )k,:ζ
−

+(Q+
i +Q−i )k,k + 2(q+

i + q−i )k ∀ i, k, (ζ+,ζ−)∈Z ′ Q+
i V +

i q
+
i

V +
i

T
S+
i p+

i

q+
i

T
p+
i

T
r+
i

� 0,

 Q−i V −i q−i
V −i

T
S−i p−i

q−i
T
p−i

T
r−i

� 0 , ∀ i

N∑
i=1

S+
i ≤ diag(w+) ,

N∑
i=1

S−i ≤ diag(w−) , ∀ i

w+ ≥ 0 w− ≥ 0 .
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We follow the derivation by applying Sion’s minimax theorem to invert the order of the minimiza-

tion and the maximization. Furthermore, since Z ′ is bounded and non-empty, constraint (27b) can

be replaced using duality theory. This finally leads to the following model

max
(ζ+,ζ−)∈Z′

min
{γ′i,λ

+
i ,λ
−
i ,ψi}

N
i=1,w

+,w−,

{Q+
i ,V

+
i ,q

+
i ,S

+
i ,p

+
i ,r

+
i }

N
i=1

{Q−i ,V
−
i ,q
−
i ,S
−
i ,p
−
i ,r
−
i }

N
i=1

(w+)Tζ+ + (w−)Tζ−+
∑N

i=1 r
+
i + r−i

+
∑N

i=1 2p+
i

T
ζ+ + 2p−i

T
ζ−+ γ′i +λ+

i

T
ζ+ +λ−i

T
ζ−

(28a)

subject to di,k− γ′i + b̄
T
ψik + (Q+

i +Q−i )k,k + 2(q+
i + q−i )k ≥ 0,∀ i, k(28b)

ci,k−λ+
i −A+Tψik + 2(V +

i )k,:
T

= 0∀ i, k (28c)

−ci,k−λ−i −A−Tψik + 2(V −i )k,:
T

= 0∀ i, k (28d) Q+
i V +

i q
+
i

V +
i

T
S+
i p+

i

q+
i

T
p+
i

T
r+
i

� 0,

 Q−i V −i q−i
V −i

T
S−i p−i

q−i
T
p−i

T
r−i

� 0 , ∀ i (28e)

N∑
i=1

S+
i ≤ diag(w+) , ∀ i (28f)

N∑
i=1

S−i ≤ diag(w−) , ∀ i (28g)

w+ ≥ 0 w− ≥ 0 , ψik ≥ 0 , ∀ i, k , (28h)

where ψik ∈R(p+2+3m) is the dual variable associated to the constraint A+ζ+ +A−ζ− ≤ b̄ with

A+ :=


A
1T

−1T

I
−I
0

 A− :=


−A
1T

−1T

I
0
−I

 b̄ :=


b
Γ
−Γ
1
0
0

 .

By applying duality theory one final time to replace the inner minimization problem we obtain

the fractional relaxation of problem (7). In particular we have zi,k, ∆+
i , ∆−i , Λ+, and Λ−, as dual

variable respectively for constraints (28b), (28c), (28d), (28f), and (28g). This completes the proof.

�

Endnotes

1. In other words, the approximate solution is guaranteed to achieve a worst-case cost that is

bounded by the optimal value of the approximate optimization problem.

2. Note that to obtain such a reformulation one might need to identify some ζ̄ ∈Z and ζ̂ ∈Rm

such that Z ⊆ [ζ̄1 − ζ̂1, ζ̄1 + ζ̂1]× · · · × [ζ̄m − ζ̂m, ζ̄m + ζ̂m] and reformulate the problem in terms of

ζ ′j := (ζj − ζ̄j)/ζ̂j for all j = 1, . . . ,m with ζ′ ∈Z ′ ⊆ [−1,1]m. This would lead to reformulating the

objective function according to ci,kζ
′
(x) := diag(ζ̂)ci,kζ (x) and di,kζ

′
(x) := ci,kζ (x)T ζ̄+ di,kζ (x).
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3. Note that when replacing ζ := ζ+ − ζ− we can replace ‖ζ+ + ζ−‖1 ≤ Γ with ‖ζ+ + ζ−‖1 = Γ

because Γ is assumed smaller or equal to m. In particular, if a candidate solution does not use all

the budget it is always possible to find an index for which ζ+
i + ζ−i < 1 and add the same amount

to both positive and negative term without affecting ζ+− ζ−.

4. New variables, such as positive semi-definite matrices, can also be added to the adversarial

model, in a lifting and projection fashion, as long as these variables are known to be bounded.

5. The exact robust model is solved using an analytic center cutting-plane method up to a pre-

cision of 10−6 where cuts are generated by using CPLEX to solve the inner mixed-integer linear

program.

6. Specifically, each statistic is estimated using 100 samples of random demand vector and aver-

aged over 1000 problem instances.
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