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Abstract Multiple Criteria Decision Aiding (MCDA) offers a diversity of approaches de-
signed for providing the decision maker (DM) with a recommendation concerning a set
of alternatives (items, actions) evaluated from multiple points of view, called criteria. This
paper aims at drawing attention of the Machine Learning (ML) community upon recent ad-
vances in a representative MCDA methodology, called Robust Ordinal Regression (ROR).
ROR learns by examples in order to rank a set of alternatives, thus considering a similar
problem as Preference Learning (ML-PL) does. However, ROR implements the interactive
preference construction paradigm, which should be perceived as a mutual learning of the
model and the DM. The paper clarifies the specific interpretation of the concept of prefer-
ence learning adopted in ROR and MCDA, comparing it to the usual concept of preference
learning considered within ML. This comparison concerns a structure of the considered
problem, types of admitted preference information, a character of the employed preference
models, ways of exploiting them, and techniques to arrive at a final ranking.
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1 Introduction

Ranking problems In ranking problems one aims at ordering a finite set of alternatives
(items, actions) from the best to the worst, using a relative comparison approach. On the
one hand, ranking problems have been of major practical interest in such various fields as
economy, management, engineering, education, and environment (Zopounidis and Parada-
los 2010). For example, countries are ranked with respect to the quality of their information
technology infrastructure, or established environmental policy goals, or level of introduced
innovation. World-wide cities are rated on the basis of living conditions or human capital.
When it comes to firms, they are ranked on the achieved level of business efficiency or relia-
bility of being the best contractor for a particular project. Furthermore, magazines regularly
publish rankings of MBA programs, schools, or universities.

On the other hand, a growing interest in ranking problems has recently emerged in fields
related to information retrieval, Internet-related applications, or bio-informatics (see, e.g,
Fürnkranz and Hüllermeier 2011; Liu 2011). Indeed, ranking is at the core of document
retrieval, collaborative filtering, or computation advertising. In recommender systems, a
ranked list of related items should be recommended to a user who has shown interest in
some other items. In computational biology, one ranks candidate structures in protein struc-
ture prediction problem, whereas in proteomics there is a need for the identification of fre-
quent top scoring peptides.

The popularity of ranking problems encouraged researchers in different fields to propose
scientific methods supporting the users in solving these problems. Remark that one has
to dissociate problem formulation from problem solving because differences between the
various approaches concern rather problem solving than problem formulation. The central
point of these approaches concerns accounting for human preferences.

Multiple criteria decision aiding As far as Multiple Criteria Decision Aiding (MCDA)
(Figueira et al. 2005) is concerned, it offers a diversity of methods designed for structuring
the decision problem and carrying forward its solution. An inherent feature of decision prob-
lems handled by MCDA is a multiple criteria evaluation of alternatives (criteria = attributes
with preference ordered scales). As multiple criteria are usually in conflict, the only objec-
tive information that stems from the formulation of such a decision problem is a dominance
relation (Pareto relation) in the set of alternatives. This relation leaves, in general, many
alternatives incomparable, and thus one needs a method that would account for preferences
of the decision maker (DM), making the alternatives more comparable. Thus, the DM is the
main actor of the decision aiding process in whose name or for whom the decision aiding
must be given. (S)he is usually assisted by an analyst who represents a facilitator of the
process and needs to perform her/his role in the interaction with the DM.

MCDA is of essential help in preference elicitation, constructing a model of user’s pref-
erences, and its subsequent exploitation which leads to a recommendation, e.g., a ranking
of the considered alternatives. Thus, it is often defined as an activity of using some models
which are appropriate for answering questions asked by stakeholders in a decision process
(Roy 2005). As noted by Stewart (2005), MCDA includes a comprehensive process involv-
ing a rich interplay between human judgment, data analysis, and computational processes.

Dealing with DM’s preferences is at the core of MCDA. However, it is exceptional that
facing a new decision problem, these preferences are well structured. Hence, the questions
of an analyst and the use of dedicated methods should be oriented towards shaping these
preferences. In fact, MCDA proceeds by progressively forming a conviction and commu-
nicating about the foundations of these convictions. The models, procedures, and provided
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results constitute a communication and reflection tool. Indeed, they allow the participants of
the decision process to carry forward their process of thinking, to discover what is important
for them, and to learn about their values. Such elements of responses obtained by the DMs
contribute to recommending and justifying a decision, that increase the consistency between
the evolution of the process and objectives and value systems of the stakeholders. Thus, de-
cision aiding should be perceived as a constructive learning process, as opposed to machine
discovery of an optimum of a pre-existing preference system or a truth that exists outside
the involved stakeholders.

The above says that MCDA requires active participation of the stakeholders, which
is often organized in an interactive process. In this process, phases of preference elicita-
tion are interleaved with phases of computation of a recommended decision. Preference
elicitation can be either direct or indirect. In case of direct elicitation, the DM is ex-
pected to provide parameters related to a supposed form of the preference model. How-
ever, a majority of recently developed MCDA methods (see, e.g., Ehrgott et al. 2010;
Siskos and Grigoroudis 2010), require the DM to provide preference information in an indi-
rect way, in the form of decision examples. Such decision examples may either be provided
by the DM on a set of real or hypothetical alternatives, or may come from observation of
DM’s past decisions. Methods based on the indirect preference information are considered
more user-friendly than approaches based on explicitly provided parameter values, because
they require less cognitive effort from the DM at the stage of preference elicitation. More-
over, since the former methods assess compatible instances of the preference model repro-
ducing the provided decision examples, the DM can easily see what are the exact relations
between the provided preference information and the final recommendation.

Robust ordinal regression One of the recent trends in MCDA concerning the develop-
ment of preference models using examples of decisions is Robust Ordinal Regression (ROR)
(Greco et al. 2010). In ROR, the DM provides some judgments concerning selected alter-
natives in the form of pairwise comparisons or rank-related requirements, expressed either
holistically or with respect to particular criteria. This is the input data for the ordinal regres-
sion that finds the whole set of value functions being able to reconstruct the judgments given
as preference information by the DM. Such value functions are called compatible with the
preference information. The reconstruction of the DM’s judgments by the ordinal regression
in terms of compatible value functions is a preference learning step. The DM’s preference
model resulting from this step can be used on any set of alternatives. Within the framework
of ROR, the model aims to reconstruct as faithfully as possible the preference information
of the DM, while the DM learns from the consequences of applying all compatible instances
of the model on the set of alternatives.

A typical application scenario of the ROR method is the following. Suppose a DM wants
to rank countries with respect to their trend for innovation. Three criteria are used to eval-
uate the countries: innovation performance, direct innovation inputs, and innovation envi-
ronment. The DM is sure of some pairwise comparisons between countries which do not
dominate each other. Moreover, (s)he claims that some countries should be placed in a spec-
ified part of the ranking, e.g., at the bottom 5. This preference information is a starting point
for the search of a preference model, which is a value function. If there is no instance of the
preference model reproducing the provided holistic judgments, the DM could either decide
to work with the inconsistency or revise some pieces of preference information impeding the
incompatibility. Then, using ROR, i.e. solving a series of special optimization problems, one
obtains two preference relation in the set of countries, called necessary and possible. While
the first is true for all value functions compatible with the DM’s preference information, the
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other is true for at least one such compatible value function. Moreover, ROR provides ex-
treme ranks of particular countries and a representative compatible value function. Thanks
to the analysis of the both outcomes of ROR at the current state of interaction as well as
the form of the displayed representative preference model, the DM gains insights on her/his
preferences. This stimulates reaction of the DM who may add a new or revise the old prefer-
ence information. Such an interactive process ends when the necessary preference relation,
extreme ranks, and/or a representative ranking yield a recommendation which, according to
the DM, is decisive and convincing. This application example is developed in Sect. 7.

Preference learning in machine learning When it comes to Machine Learning (ML), a
“learning to rank” task is also involved with learning from examples, since it takes as an
input a set of items for which preferences are known (Liu 2011). Precisely, the training data
is composed of lists of items with some partial order specified between items in each list.
Preference Learning in ML (PL-ML) consists in discovering a model that predicts preference
for a new set of items (or the input set of items considered in a different context) so that the
produced ranking is “similar” in some sense to the order provided as the training data. In PL-
ML, learning is traditionally achieved by minimizing an empirical estimate of an assumed
loss function on rankings (Doumpos and Zopounidis 2011).

Aim of the paper While there exist many meaningful connections and analogies between
ROR-MCDA and PL-ML, there is also a series of noticeable differences concerning the
process of learning a decision/prediction model from data. The aim of this paper is twofold.
Firstly, we wish to draw attention of the ML community upon recent advances in ROR with
respect to modeling DM’s preferences and interacting with her/him in the constructive learn-
ing process. Our goal is to introduce ROR to specialists of PL in ML, so that they are aware
of an alternative technique coming from a different field (MCDA), but aiming at learning
preferences with respect to a similar problem. In fact, we review all previous developments
in ROR, combining them under a unified decision support framework that permits to learn
preferences by taking advantage of the synergy between different types of admitted pref-
erence information and provided outcomes. Secondly, we compare philosophies of prefer-
ence learning adapted in ROR and ML. In this way, we follow the preliminary comparisons
between MCDA and ML made be Waegeman et al. (2009) and Doumpos and Zopounidis
(2011). However, we focus the attention on ROR, which is closer to PL practiced in ML than
many other MCDA methods, because it exploits preference information of similar type.

The contribution of the paper is methodological, and reference to PL-ML is at a philo-
sophical level rather than at an experimental one. Note that an empirical comparison with
respect to the output of ROR and PL-ML would not be meaningful, because there is no
common context of their use and no objective truth is to be attained. Moreover, each method
(ROR and PL-ML) is transforming the input preference information in a different way and
introduces some instrumental bias in interactive steps, thus leading to different results. Fur-
thermore, the concept of “learning” is implemented in different ways in PL-ML and in ROR.
In ROR, learning concerns not only the preference model, but also the decision maker. Since
the progress in learning of the DM is non-measurable, the experimental comparison of dif-
ferent methods is ill-founded. Consequently, instead of providing an empirical comparison,
our aim is rather to well explain and illustrate the steps of ROR.

Organization of the paper The remainder of the paper is organized as follows. In the next
section, we present some basic concepts of ROR and MCDA. We also compare different as-
pects of ranking problems and preference learning as considered in ROR and PL-ML. This
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comparison is further continued throughout the paper with respect to the input preference in-
formation, exploitation of the preferences, and evaluation of the provided recommendation.
In particular, in Sect. 3, we focus on different types of preference information admitted by
the family of ROR methods. At the same time, we present the approach for learning of a set
of compatible value functions. Section 4 describes the spectrum of procedures for robust-
ness and sensitivity analysis that can be employed within the framework of ROR to support
arriving at the final recommendation. In Sect. 5, we put emphasis on the interactivity of the
process of preference information specification. Section 6 reveals how ROR deals with in-
consistency in the preference information provided by the DM. A case study illustrating the
presented methodology is presented in Sect. 7. The last section concludes the paper.

2 Basic concepts in MCDA and ROR and their comparison with preference learning

in ML

2.1 Problem formulation

In the multiple criteria ranking problem, alternatives are to be ranked from the best to the
worst. Precisely, the ranking of alternatives from set A results from the ordering of indiffer-
ence classes of A which group alternatives deemed as indifferent (Roy 2005).

Comparison: formulation of a ranking problem A ranking problem considered in MCDA
corresponds most closely to an object ranking in PL-ML (see, e.g., Fürnkranz and Hüller-
meier 2011; Kamishima et al. 2011), that aims at finding a model returning a ranking order
among analyzed items. On the other hand, an instance ranking in PL-ML is about ordering
a set of instances according to their (unknown) preference degrees (see, e.g., Waegeman
and De Baets 2011). This, in turn, is equivalent to a definition of a multiple criteria sorting
problem (Zopounidis and Doumpos 2002).

Let us formulate the problem that is considered in Robust Ordinal Regression (its detailed
explanation is provided subsequently along with the comparative reference to PL-ML):

Given:

– a finite set of alternatives A,
– a finite set of reference alternatives AR ⊆ A,
– a finite set of pairwise comparisons for some reference alternatives, expressed either holis-

tically or with respect to a subset of criteria,
– a finite set of intensities of preference for some pairs of reference alternatives, expressed

either holistically or with respect to a subset of criteria,
– a finite set of rank-related requirements for some reference alternatives, referring either

to the range of allowed ranks or comprehensive values.

Find:

– a set of additive value functions UAR compatible with the preference information provided
by the DM, i.e. value functions for which the pre-defined misranking error is equal to
zero; each value function U ∈ UAR assumes as input a set of alternatives A and returns a
permutation (ranking) of this set,

– necessary and possible preference relations, for pairs or quadruples of alternatives in A,
– extreme ranks and values for all alternatives in A,
– representative value function returning a complete ranking of the set of alternatives A,
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– minimal sets of pieces of preference information underlying potential incompatibility of
preference information.

Performance measure:

– margin of the misranking error comparing the provided pieces of preference information
with the target ranking.

Technique:

– loop by interaction: analyze results provided in the previous iteration and supply prefer-
ence information incrementally.

2.2 Data set

Generally, decision problems considered in MCDA involve a finite set A = {a1, a2, . . . ,

ai, . . . , an} of n alternatives, i.e., objects of a decision, which are possible to be implemented
or have some interest within the decision aiding process.

Comparison: size of the data set Sets of alternatives in MCDA consist of modestly-sized
collections of choices. In fact, multiple criteria ranking problems considered in Operations
Research and Management Science (OR/MS) usually involve several dozens of alternatives
(Wallenius et al. 2008). Consequently, MCDA methods, including ROR, are designed to
deal with the relatively small data sets, and the development of the computationally efficient
algorithms that scale up well with the number of alternatives is not at the core of these
approaches. On the other hand, real world applications of PL-ML often involve massive
data sets (Waegeman et al. 2009). Typical ML applications are related to the Internet, in
particular to recommender systems and information retrieval, and, thus, the scalability of
the algorithms is a fundamental issue. Nevertheless, it is worth noting the complementarity
of MCDA and ML from the viewpoint of the data size: the previous is more appropriate for
several dozens of alternatives and over hundreds, the latter is more suitable.

Let us additionally note that in case of large data sets, it is very rare that the whole
ranking is analyzed by the user. In fact, the rank of at most several dozens of alternatives
is of interest to the DM, while the rest of the alternatives is neglected and, in fact, can
remain unordered. Thus, to overcome the curse of dimensionality, in case of over hundreds
of alternatives it might be useful first to filter out some significant subsets of alternatives,
consisting of these less relevant to the DM. For this purpose, one may take advantage of
some simple classification methods, or elimination by dominance (with the benchmarks in
form of some artificial alternatives whose attractiveness should be evaluated directly by the
DM). This would lead to limiting down the data set to several dozens relevant alternatives,
which can be directly handled by ROR.

2.3 Data description

In MCDA, an important step concerns selection or construction of attributes describing the
alternatives, based on the set of their elementary features. The aim is to obtain a consistent
family of m attributes G = {g1, g2, . . . , gj , . . . , gm} which permits a meaningful evaluation
and comparison of alternatives. Such attributes represent goals to be attained, objectives,
impacts of considered alternatives, and points of view that need to be taken into account. In
MCDA, one assumes that some values of attributes are more preferred than others, and thus,
the corresponding value sets are transcoded into real-valued monotonic preference scales.
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Such attributes are called criteria. Let us denote by Xj = {xj ∈ R : gj (ai) = xj , ai ∈ A}

the set of all different evaluations on criterion gj , j ∈ J = {1,2, . . . ,m}. We will assume,
without loss of generality, that the greater gj (ai), the better alternative ai on criterion gj , for
all j ∈ J .

Comparison: monotonicity of attributes/criteria In ROR (or, more generally, MCDA) one
constructs criteria with explicit monotonic preference scales, whereas in ML the relation-
ships between value sets of attributes and DM’s preferences (if any) are discovered from
data for a direct use in classification or ranking. This means that in the majority of ML
methods (e.g., approaches proposed in Chu and Ghahramani (2005a) and Herbrich et al.
(1999), which solve the problem of ordinal regression), the monotonic preference scales
converting attributes to criteria are neither used nor revealed explicitly.

Nevertheless, in the recent years, learning of predictive models that guarantee the mono-
tonicity in the input variables has received increasing attention in ML (see, e.g., Feelders
2010; Tehrani et al. 2012a). In fact, the difficulty of ensuring such monotonicity increases
with the flexibility or nonlinearity of a model. In PL-ML, it is obtained either by a modifi-
cation of learning algorithms or a modification of the training data.

Apart from the monotonicity of criteria, the family G considered in MCDA is supposed
to satisfy another two conditions: completeness (all relevant criteria are considered) and non-
redundancy (no superfluous criteria are taken into account). The set of attributes considered
in ML, in general, does not have to satisfy such strict requirements.

Comparison: complexity of the considered alternatives/items As noted by Waegeman et al.
(2009), ML is also concerned with more complex structures than alternatives described over
a number of criteria. This includes, e.g., graphs in the prediction problems in bio-informatics
or texts and images in the retrieval problems. Nevertheless, it is worth to note the recent
effort of the MCDA community to apply decision aiding methods to geographical (spatial)
data (Malczewski 2010).

2.4 Preference/prediction model

The most straightforward way of ranking the alternatives in MCDA consists in aggregat-
ing their individual performances on multiple criteria into a comprehensive (overall) perfor-
mance. In particular, Multiple Attribute Utility Theory (MAUT) models the decision making
situation with an overall value function U (Keeney and Raiffa 1976), and assigns a numer-
ical score to each alternative. Such a score serves as an index used to decide the rank in a
complete preorder. In ROR, in order to model the DM’s preference information, we use the
additive value function:

U(a) =

m
∑

j=1

uj

(

gj (a)
)

(1)

where the marginal value functions uj , j ∈ J , are monotone, non-decreasing and normalized
so that the additive value (1) is bounded within the interval [0,1]. Note that for simplicity
of notation, one can write uj (a), j ∈ J , instead of uj (gj (a)). Consequently, the basic set of
constraints defining general additive value functions has the following form:

uj (x
k
j ) − uj (x

(k−1)

j ) ≥ 0, k = 2, . . . , nj (A),

uj (x
1
j ) = 0,

∑m

j=1 uj (x
nj (A)
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where x1
j , x

2
j , . . . , x

nj (A)

j are the ordered values of Xj , xk
j < xk+1

j , k = 1,2, . . . , nj (A) − 1
(nj (A) = |Xj | and nj (A) ≤ n). General monotonic marginal value functions defined in this
way do not involve any arbitrary or restrictive parametrization. On the contrary, the majority
of existing methods employ marginal value functions which are linear or piecewise linear
(Siskos et al. 2005). Note that piecewise linear functions require specification of the number
of characteristic points which is not easy for most DMs.

Comparison: interpretability and regularization of the model The preference model in the
form of an additive value function is appreciated by the MCDA community for both an
easy interpretation of numerical scores of alternatives and a possibility of assessing relative
importance of each evaluation on a particular criterion understood as its share in the compre-
hensive value. Indeed, the interpretability and descriptive character of preference models is
essential in MCDA, since it encourages the participation of the DM in the decision process.

On the contrary, ML has mainly focused on the development of non-linear models, such
as support vector machines (SVMs) (see, e.g., Herbrich et al. 2000; Joachims 2002) or neural
networks. The higher predicting ability and possibility of capturing complex interdependen-
cies by such models results, however, in less confidence in their employment by the users
who need to interpret and understand the underlying process (Waegeman et al. 2009).

Note that in a regression learning problem in ML, the task of finding the utility function
corresponds just to learning an appropriate mapping from data to real numbers. Thus, the
utility function is used in a rather instrumental way, and the model is not deeply analyzed
by the user in order to gain insights on the character of the alternatives.

The researchers in ML indicate also the need for the regularization, which takes into
account the trade-offs between complexity and performance of the model, preventing over-
fitting on the data (Waegeman et al. 2009). In MCDA the focus is put on the explicative char-
acter of the employed models, rather than statistically predictive PL. Thus, MCDA models
do not involve regularization, being, however, vulnerable to noise.

2.5 Input data

A preference elicitation process in MCDA consists in an interaction between the DM and the
analyst, and leads the DM to express information on her/his preferences within the frame-
work of the assumed preference model. Such information is materialized by a set of plausible
values of the parameters related to the formulation of the model. At the end of the decision
aiding process, the use of a preference model for the inferred parameters should lead to a
result which is compatible with the DM’s preferential system.

In case of an additive value function, some MCDA methods require the DM to provide
constraints on the range of weights of linear marginal value functions, or on the range of
variation of piecewise linear marginal value functions. The DM may have, however, diffi-
culties to analyze the link between a specific value function and the resulting ranking. Thus,
ROR implements the preference disaggregation analysis, which is a general methodological
framework for the development of a decision model using examples of decision made by
the DM. In fact, ROR admits and enhances the variety of indirect preference information
concerning the set of reference alternatives AR = {a∗, b∗, . . .} (usually, AR ⊆ A).

This information may have the form of pairwise comparisons of reference alternatives
stating the truth or falsity of the weak preference relation (Greco et al. 2008). Such a com-
parison may be related to the holistic evaluation of alternatives on all considered criteria or
on a subset of criteria considered in a hierarchical structure (Corrente et al. 2012). In the
same spirit, the DM may provide holistic or partial comparisons of intensities of preference
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between some pairs of reference alternatives (Figueira et al. 2009). Furthermore, (s)he is
admitted to refer to the range of allowed ranks that a particular alternative should attain, or
to constraints on the final value scores of the alternatives. In this way, the DM may rate a
given alternative individually, at the same time collating it with all the remaining alternatives
(Kadziński et al. 2013a). Finally, ROR accounts for the preference information regarding in-
teractions between n-tuples (e.g., pairs or triples) of criteria (see, e.g., Greco et al. 2013).

ROR methods are intended to be used interactively, with an increasing subset of reference
alternatives and a progressive statement of holistic judgments. The DM may assign gradual
confidence levels to pieces of preference information provided in the subsequent iterations
(Greco et al. 2008; Kadziński et al. 2013a).

The paradigm of learning from examples which is implemented in ML is a counterpart
approach to preference modeling and decision aiding (Fürnkranz and Hüllermeier 2010).
Traditional machine learning of preferences was motivated by the applications where de-
cision examples come from observation of people’s behavior rather than from direct ques-
tioning. For example, typical ML applications are related to the Internet, in particular to
recommender systems and information retrieval. In the previous, the task is to recommend
to the user a new item (like movie or book) that fits her/his preferences. The recommenda-
tion is computed on the base of the learning information describing the past behavior of the
user. In the latter, the task is to sort (or rank) the documents retrieved by the search engine
according to the user’s preferences. Nevertheless, recently in PL-ML one also develops the
procedures which require direct human assessment (Liu 2011). For example, in information
retrieval, one uses pooling methods whose role is to collect documents that are more likely
to be relevant. Considering the query, human annotators specify whether a document is rel-
evant or not, or whether a document is more relevant than the other, or they provide the total
order of the documents.

Comparison: inferring a faithful model Both ROR and PL-ML aim at inferring a (prefer-
ence or prediction) model that permits to work out a final recommendation (e.g., a ranking
of alternatives) being concordant with a value system of the DM; thus, both of them deal
with the same decision problem.

Comparison: learning of a model from examples Both ROR and PL-ML try to build a
DM’s preference model from decision examples (exemplary judgments) provided by the
DM—in ML decision examples form a training data set, while in ROR, preference infor-
mation; thus, both of them comply with the paradigm of learning by example. In both ap-
proaches learning concerns the model, because one integrates into it the expressed/collected
preferences.

Comparison: amount of the available human preferences The number of decision exam-
ples forming the training set or the preference information is quite different in ML and ROR:
while the first is big enough for statistical learning, the second is usually limited to small
sets of items, which excludes statistical analysis.

Comparison: preference elicitation for the utility functions Preference elicitation can be
perceived as one of the main links between decision analysis and PL-ML. An extensive
survey on the utility elicitation techniques is presented in Braziunas and Boutilier (2008).
The authors classify the elicitation methods in different ways. For example, they distinguish
the local and global queries. The previous involve querying only single attributes or small
subsets of attributes, whereas the latter concern the comparison of the complete outcomes
over all attributes. ROR takes advantage of both types of techniques.
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As for the representation of uncertainty over user preferences, two main approaches have
been proposed. On the one hand, in a Bayesian approach, uncertainty over utilities is quan-
tified probabilistically (see, e.g., Braziunas and Boutilier 2005). On the other hand, in a
feasible set uncertainty, the space of feasible utilities is defined by some constraints on the
parameters of the user’s utility function (this approach is also called Imprecisely Specified
Muti-Attribute Utility Theory (ISMAUT) (see, e.g., White et al. 1983). ROR represents the
latter approach.

2.6 Performance measure

Disaggregation analysis in MCDA aims at constructing a preference model that represents
the actual decisions made by the DM as consistently as possible. To measure the perfor-
mance of this process, ROR considers a margin of the misranking on a deterministic pref-
erence information. When the margin is not greater than zero, this means that for a given
preference information, no compatible value function exists. This is considered as a learning
failure. Subsequently, the DM could either decide to work with the inconsistency (agreeing
that some of the provided pieces would not be reproduced by the inferred model) or re-
move/revise some pieces of preference information impeding the incompatibility. In fact, in
ROR the application of the learned preference model on the considered set of alternatives
makes greater sense when there is no inconsistency, and misranking error is reduced to zero
(i.e. the margin of the misranking error is greater than zero).

On the other hand, in ML the predictive performance of a ranker is measured by a loss
function. Indeed, any distance or correlation measure on rankings can be used for that pur-
pose (Fürnkranz and Hüllermeier 2010). When it comes to the inconsistencies in training
data, PL-ML treats it as noise and hard cases that are difficult to learn.

Comparison: minimization of a learning error Both ROR and ML try to represent pref-
erence information with a minimal error—ML considers a loss function, and ROR a mis-
ranking error. In this way, both of them measure the distance between the DM’s preferences
and the recommendation which can be obtained for the assumed model. However, the loss
function considered in ML is a statistical measure of the performance of preference learning
on an unknown probabilistic distribution of preference information, whereas a margin of the
misranking error is a non-statistical measure.

Obviously, it is possible to optimize the error considered in ROR within a standard ML
setting. Nevertheless, such an optimization is not conducted, because it would lead to select
a single instance of the preference model. Instead, our aim is to work with all instances of
the preference model for which the value of the margin of the misranking error is greater
than the acceptable minimal threshold (i.e., zero in case the inconsistency is not tolerated).
That is why, in ROR we analyze the mathematical constraints on the parameters of the
constructed preference model to which the preference information of the DM was converted.
Precisely, the preference relations in the whole set of alternatives result from solving some
mathematical programming problems with the above constraints.

Comparison: dealing with inconsistencies ROR treats inconsistencies explicitly during
construction of the preference model. In this case, the DM may either intentionally want
to pursue the analysis with the incompatibility or (s)he may wish to identify its reasons with
the use of some dedicated procedures, which indicate the minimal subsets of troublesome
pieces of preference information. As emphasized in Sect. 6, analysis of such subsets is in-
formative for the DM and it permits her/him to understand the conflicting aspects of her/his
statements.
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PL-ML methods process noise in the training data in a statistical way. In fact, the ML
community perceives the noise-free applications as uncommon in practice and the way of
tolerating the inconsistencies is at the core of ML methods.

Let us additionally note that the noise-free ROR is well adapted to handing preferences
of a single DM. There are several studies (e.g. Pirlot et al. 2010) proving great flexibility of
general value functions in representing preference information of the DM. Consequently, if
preferences of the DM do not violate dominance and are not contradictory, it is very likely
that they could be reproduced by the model used in ROR. Nevertheless, ROR has been also
adapted to group decision (Greco et al. 2012; Kadziński et al. 2013b).

2.7 Ranking results

In case of MCDA methods using a preference model in form of a value function, tra-
ditionally, only one specific compatible function or a small subset of these functions
has been used to determine the final ranking (see, e.g., Beuthe and Scannella 2001;
Jacquet-Lagrèze and Siskos 1982). To avoid such arbitrary limitation of the instances under-
lying the provided recommendation and to prevent the DMs from an embarassing selection
of some compatible instances, which requires interpretation of their form, ROR (Greco et al.
2010) postulates taking into account the whole set of value functions compatible with the
provided indirect preference information. Then, the recommendation for the set of alterna-
tives is worked out with respect to all these compatible instances.

When considering the set of compatible value functions, the rankings which can be ob-
tained for them can vary substantially. To examine how different can those rankings be, ROR
conducts diverse sensitivity and robustness analysis. In particular, one considers two weak
preference relations, necessary and possible (Greco et al. 2008). Whether for an ordered pair
of alternatives there is necessary or possible preference depends on the truth of preference
relation for all or at least one compatible value function, respectively. Obviously, one could
reason in terms of the necessary and the possible, taking into account only a subset of cri-
teria or a hierarchical structure of the set of criteria (Corrente et al. 2012). In this case, the
presented results are appropriately adapted to reflect the specificity of a particular decision
making situation.

However, looking at the final ranking, the DM is usually interested in the position which
is taken by a given alternative. Thus, one determines the best and the worst attained ranks for
each alternative (Kadziński et al. 2012a). In this way, one is able to assess its position in an
overall ranking, and not only in terms of pairwise comparisons. Finally, to extend original
ROR methods in their capacity of explaining the necessary, possible and extreme results,
one can select a representative value function (Kadziński et al. 2012b). Such a function
is expected to produce a robust recommendation with respect to the non-univocal prefer-
ence model stemming from the input preference information. Precisely, the representative
preference model is built on the outcomes of ROR. It emphasizes the advantage of some al-
ternatives over the others when all compatible value functions acknowledge this advantage,
and reduces the ambiguity in the statement of such an advantage, otherwise.

Comparison: considering the plurality of compatible models In traditional ML rank loss
minimization leads to a choice of a single instance of the predictive model. This corresponds
to the traditional UTA-like procedures in MCDA, which select a “mean”, “central”,“the most
discriminant”, or “optimal” value function (see Beuthe and Scannella 2001; Despotis et al.
1990; Siskos et al. 2005).
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Nevertheless, in PL-ML one can also indicate some approaches that account for the plu-
rality of compatible instances. For example, Yaman et al. (2011) present a learning algo-
rithm that explicitly maintains the version space, i.e., the attribute-orders compatible with
all pairwise preferences seen so far. However, since enumerating all Lexicographic Prefer-
ence Models (LPMs) consistent with a set of observations can be exponential in the number
of attributes, they rather sample the set of consistent LMPs. Predictions are derived based
on the votes of the consistent models; precisely, given two objects, the one supported by
the majority of votes is preferred. When comparing with a greedy algorithm that produce
the “best guess” lexicographic preference model, the voting algorithm proves to be better
when the data is noise-free.

Furthermore, Viappiani and Boutilier (2010) present a Bayesian approach to adaptive
utility selection. The system’s uncertainty is reflected in a distribution, or beliefs, over the
space of possible utility functions. This distribution is conditioned by information acquired
from the user, i.e. (s)he is asked questions about her preference and the answers to these
queries result in updated beliefs. Thus, when an inference is conducted, the system takes into
account multiple models, which are, however, weighted by their degree of compatibility.

Comparison: generalization to the new users/stakeholders The essence of the decision
aiding process is to help a particular DM in making decision with respect to her/his pref-
erences. In fact, ROR is precisely addressed to a given user and the generalization to other
users is neither performed nor even desired. On the contrary, in some applications of PL-
ML, the aim is to infer the preferential system of a new user on the basis of preferences of
other users.

2.8 Interaction

ROR does not consider the DM’s preference model as a pre-existing entity that needs to
be discovered. Instead, it assumes that the preference model has to be built in course of an
interaction between the DM and the method that translates preference information provided
by the DM into preference relations in the set of alternatives. ROR encourages the DM
to reflect on some exemplary judgments concerning reference alternatives. Initially, these
judgments are only partially defined in the DM’s mind. The preferences concerning the
alternatives are not simply revealed nor they follow any algorithm coming from the DM’s
memory. Instead the DM constructs her/his judgments on the spot when needed. This is
concordant with both the constructivist approach postulated in MCDA (Roy 2010b) and
the principle of posterior rationality postulated by March (1978). The provided preference
information contributes to the definition of the preference model. In ROR, the preference
model imposes the preference relations in the whole set of alternatives.

In this way, ROR emphasizes the discovery of DM’s intentions as an interpretation of
actions rather than as a priori position. Analyzing the obtained preference relations, the
DM can judge whether the suggested recommendation is convincing and decisive enough,
and whether (s)he is satisfied with the correspondence between the output of the preference
model and the preferences that (s)he has at the moment. If so, the interactive process stops.
Otherwise, the DM should pursue the exchange of preference information. In particular,
(s)he may enrich the preference information by providing additional exemplary judgments.
Alternatively, if (s)he changed her/his mind or discovered that the expressed judgments were
inconsistent with some previous judgments that (s)he considers more important, (s)he may
backtrack to one of the previous iterations and continue from this point. In this way, the
process of preference construction is either continued or restarted.



Mach Learn (2013) 93:381–422 393

The use of the preference model shapes the DM’s preferences and makes her/his con-
victions evolve. As noted by Roy (2010b), the co-constructed model serves as a tool for
looking more thoroughly into the subject, by exploring, reasoning, interpreting, debating,
testing scenarios, or even arguing. The DM is forced to confront her/his value system with
the results of applying the inferred model on the set of alternatives. This confrontation leads
the DM to gaining insights on her/his preferences, providing reactions in the subsequent it-
eration, as well as to better understanding of the employed method. In a way, ROR provokes
the DM to make some partial decisions that lead to a final recommendation. The method
presents its results so that to invite the DM to an interaction—indeed, comparing the nec-
essary and possible relations, the DM is encouraged to supply preference information that
is missing in the necessary relation. Let us emphasize that the knowledge produced during
the constructive learning process does not aim to help the DM discover a good approximate
decision that would objectively be one of the best given by her/his value system. In fact, the
“true” numerical values of the preference model parameters do not exist, and thus it is not
possible to refer directly to the estimation paradigm. Instead, the DM is provided with a set
of results derived from applying some working assumptions and different reasoning modes,
and it is the course of the interactive procedure that enhances the trust of the DM in the final
recommendation.

Comparison: preference construction in ROR vs. preference discovery in typical ML In
fact, ROR can be qualified as preference construction method, whereas the typical meth-
ods of ML can be named as preference discovery. The main differences between the two
approaches are the following:

– preference construction is subjective while preference discovery is objective: within pref-
erence construction, the same results can be obtained (i.e., accepted, rejected, doubted,
etc.) in a different way by different DMs, while within preference discovery, there is no
space for taking into account the reactions of the DM;

– preference construction is interactive while preference discovery is automatic: the DM
actively participates in the process of preference construction, while in the preference
discovery the DM is asked to give only some preference information that are transformed
in a final result by the adopted methodology without any further intervention of the DM;

– preference construction provides recommendations while preference discovery gives pre-
dictions: the results of a preference construction give to the DM some arguments for
making a decision, while the results of preference discovery give a prevision of what will
be some decisions;

– preference construction is DM-oriented while preference discovery is model-oriented:
preference construction aims the DM learns something about her/his preferences, while
preference discovery assumes the model would learn something about the preferences of
the DM.

In the view of above remarks, let us emphasize that preference learning in MCDA does not
only mean statistical learning of preference patterns, i.e. discovery of statistically validated
preference patterns. MCDA proposes a constructivist perspective of preference learning in
which the DM takes part actively.

Comparison: recommendation vs. elicitation The main objective of the majority of PL-
ML methods is to exploit current preferences and to assess a preference model applicable
on the set of alternatives in a way that guarantees the satisfying concordance between the
discovered/predicted results and the observed preferences. Thus, PL-ML is focused rather
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on working out a recommendation, being less sensitive to gaining explanation of the results.
On the other hand, the role of preference elicitation within ROR is to acquire enough knowl-
edge and arguments for explanation of the decision. This enables the DM to establish the
preferences that previously had not pre-existed in her/his mind, to accept the recommenda-
tion, and to appropriately use it (and possibly share with the others). ROR (or, generally,
“preference construction”) is a mutual learning of the model and the DM to assess and un-
derstand preferences on the considered set of alternatives.

Nevertheless, this issue has been also considered in PL-ML especially with respect to
the setting of recommender systems and product search. In fact, there are several works that
advocate for eliciting user preferences, suggesting an incremental and interactive user sys-
tem. Although the context of their use and the feedback presented to the user is significantly
different than in ROR, they can be classified as “preference construction” as well.

For example, Pu and Chen (2008) formulate a set of interaction design guidelines which
help users state complete and sound preferences with recommended examples. They also
describe strategies to help users resolve conflicting preferences and perform trade-off deci-
sions. These techniques allow gaining a better understanding of the available options and
the recommended products through explanation interfaces.

Moreover, there are also noticeable advances in the active learning, which deals with the
algorithms that are able to interactively query the user to obtain the desired outputs for new
items (Settles 2012). In particular, in Viappiani and Boutilier (2010) one presents Bayesian
approaches to utility elicitation that involve an interactive preference elicitation in order to
learn to make optimal recommendation to the user. The system is equipped with an active
learning component which is employed to find relevant preference queries that are asked
to the user. Similar task has been considered, e.g., in Radlinski and Joachims (2007) and
Tian and Lease (2011). These studies report that active exploration strategy substantially
outperforms passive observation and random exploration, and quickly leads to a presentation
of the improved ranking to a user.

Comparison: user interface vs. truly interactive process Obviously, an interaction with the
user in the PL-ML methods that have not considered this aspect can be modeled with the
use of an interface accounting for user preferences. However, in our understanding a truly
interactive process requires exploitation of the learned models, delivering to the user con-
sequences of such exploitation, and encouraging her/him to the further involvement. Note
that the feedback that can be provided by the majority of PL-ML methods is formed by the
results predicted by the single optimized model. The user can then react by reinforcing or
neglecting some parts of the outcome. Nevertheless, such a feedback is rather poor, because
it does not guide the user through the process. Moreover, since PL-ML setting admits noise,
there is no guarantee that the provided preferences will be integrated into the model in the
subsequent iteration. On the other hand, noise-free ROR reveals the possible, necessary, ex-
treme, and representative consequences of the preference information provided at the current
stage of interaction. In this way, it leads the DM to have a better understanding of her/his
preferences and invites her/him to a deeper exploitation of the preference model.

Comparison: analyst vs. user interface Let us also note that real-world MCDA problems
involve an analyst, who interacts with the DM in order to guide the process. Once the analyst
enters into the interaction with the DM, (s)he becomes a co-constructor of the knowledge
produced; thus, (s)he cannot be perceived as being outside the decision aiding process. It is
difficult to imagine that a software interface can play the same role.
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Comparison: validation of the results In MCDA it is assumed that the analyst cooperates
with the DM and the quality of the model is validated by an interactive process during
which (s)he judges the correspondence between the output of the preference model and
one’s preferential system. On the other hand, the generalizing ability of the model is the
core issue in the validation stage of all statistical learning models. In PL-ML the validation
stage involves, e.g., additional testing sets or the use of resampling methods.

2.9 Features of preference learning in robust ordinal regression

Belton et al. (2008) consider some important features of a preference learning process within
MCDA. Let us recall them, pointing out how they are extant in ROR:

– flexibility of the interactive procedure, which is related to the capacity of incorporating
any preference information coming from the DM: ROR admits the DM to provide a wide
spectrum of indirect preference information; note that flexibility can be decomposed in
generality, reversibility and zooming capacity;

– generality of the preference model, which is related to the universality and the plurality
of the decision model: for the features of plurality of instances and universality of value
functions in ROR, there is a large credit for generality;

– universality of the preference model, which considers the non-specificity of the form of
the value function, in the sense that the less specific the form, the greater the chance that
the model learns in a sequence of iterations: the additive value function with monotone
marginal value functions considered within ROR constitutes a very general preference
model and consequently it reaches a very good level of universality, which is far more
universal than the model admitting only linear marginal value functions;

– plurality of instances of value functions which regards consideration of only one, sev-
eral, or even all compatible instances of the considered preference model: ROR takes into
account the whole set of additive value functions compatible with the preference informa-
tion provided by the DM, which is evidently more plural than considering only one value
function as in the traditional approaches;

– reversibility which is understood as the possibility for the DM to return to a previous
iteration of interaction with the method: ROR permits in any moment to retract, to modify
or to remove the already expressed pieces of preference information;

– zooming which regards the possibility to represent preferences in a limited zone of the
evaluation spaces of considered criteria: ROR enables to add preference information rela-
tive to alternatives from a particular region of the evaluation space of considered criteria,
which results in a more precise representation of preferences in this local region.

3 Preference information

In this section, we present a variety of preference information admitted by the family of ROR
methods designed for dealing with multiple criteria ranking problems. The wide spectrum
of the accounted types of preference information guarantees the flexibility of the interac-
tive procedure. We discuss the usefulness of each accounted type of preference information,
and we present mathematical models which are able to reproduce preferences of the DM,
i.e. translate the exemplary decisions of the DM into parameters of the value function. The
constraints related to every new piece of preference information can reduce the feasible
polyhedron of all compatible value functions. Let us denote the holistic set of constraints
obtained in this way by EAR

and the corresponding set of value functions compatible with
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the provided preference information by UAR . Although the considered set of additive value
functions composed of marginal monotone value functions already ensures a large credit for
generality, plurality, and universality, we extend the basic model by accounting for interac-
tions between criteria.

Comparison: variety of preference information admitted by the method ROR admits the
variety of indirect preference information concerning the set of reference alternatives. This
means that the DM can use pairwise comparisons or rank-related requirements or magni-
tudes of preference if (s)he feels comfortable with this kind of information and (s)he is able
to provide it for the problem at hand. However, (s)he is not obliged to specify preference in-
formation of each type. On the contrary, ML methods consider rather preference information
of a given type and the user has to express her/his preferences in the precise form required
by the employed approach (e.g., solely pairwise comparisons or only the magnitudes of
preference).

3.1 Pairwise comparisons

Comparing alternatives in a pairwise fashion, which is admitted by numerous decision-
theoretic methods, is consistent with intuitive reasoning of DMs, and requires from the DM
relatively small cognitive effort (Fürnkranz and Hüllermeier 2010). In the UTAGMS method
(Greco et al. 2008), which initiated the stream of further developments in ROR, the ranking
of reference alternatives does not need be complete as in the original UTA method (Jacquet-
Lagrèze and Siskos 1982). Instead, the DM may provide pairwise comparisons just for those
reference alternatives (s)he really wants to compare. Precisely, the DM is expected to pro-
vide a partial preorder � on AR such that, for a∗, b∗ ∈ AR, a∗ � b∗ means a∗ is at least as
good as b∗.

Obviously, one may also refer to the relations of strict preference ≻ or indifference ∼,
which are defined as, respectively, the asymmetric and symmetric part of �. The transition
from a reference preorder to a value function is done in the following way: for a∗, b∗ ∈ AR ,

U(a∗) ≥ U(b∗) + ε, if a∗ ≻ b∗,

U(a∗) = U(b∗), if a∗ ∼ b∗,

}

EAR

GMS

where ε is a (generally small) positive value.

Comparison: use of pairwise comparisons in PL-ML Learning by pairwise comparisons
paradigm is a ML counterpart of MCDA. Thus, the rankers in ML require exemplary pair-
wise preferences of the form a∗ ≻ b∗ suggesting that a∗ should be ranked higher than b∗.
Then, the algorithm needs to care about preserving the relative order between the compared
pairs of items. Such decomposition of the original problem into a set of presumably simpler
subproblems is not only advantageous for human decision making, but it is also useful from
a ML point of view (Fürnkranz and Hüllermeier 2010). It is the case, because the resulting
learning problem (i.e. operating on every two items under investigation and minimizing the
number of misranked pairs) can typically be solved in a more accurate and efficient way.
In PL-ML, one has proposed several algorithms, whose major differences are in the loss
function. Let us mention a few of them.

Fürnkranz and Hüllermeier (2010) discuss various standard loss functions on ranking that
can be minimized in expectation. In particular, they consider the expected Spearman rank
correlation between the true and the predicted ranking, or the number of pairwise inversions,
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i.e., Kendall’s tau, which is traditionally considered in the UTA-like methods. Furthermore,
RankBoost (Freund et al. 2003) formalizes learning to rank as a problem of binary classifica-
tion on instance pairs. By adopting the boosting approach, it trains one weak ranker at each
iteration. After each round, the item pairs are re-weighted in order to relatively increase the
weight of wrongly ranked pairs. In fact, RankBoost minimizes the exponential loss. When
it comes to the model of Ranking SVM (Joachims 2002), it uses representation of the ex-
amples as points in space, which carry the rank information. These labeled points are used
to find a boundary that specifies the order of the considered points. Precisely, Ranking SVM
employs the loss function in the form of a hinge loss defined on item pairs. Finally, instead
of explicitly defining the loss function, LambdaRank (Burges et al. 2006) directly defines
the gradient. The authors note that it is easier to specify rules determining how to change the
rank order of documents than to construct a smooth loss function. Some improvements of
the “learning to rank” algorithms that enable better ranking performance consist in empha-
sizing likely top-ranked items and balancing the distribution of items pairs across queries
(Liu 2011).

3.2 Intensities of preference

In some decision making situations the DMs are willing to provide more information than
a partial preorder on a set of reference alternatives, such as “a∗ is preferred to b∗ at least
as much as c∗ is preferred to d∗”. The information related to the intensity of preference is
accounted by the GRIP method (Figueira et al. 2009). It may refer to the comprehensive
comparison of pairs of reference alternatives on all criteria or to a particular criterion only.
Precisely, in the previous case, the DM may provide a partial preorder �∗ on AR × AR ,
whose meaning is: for a∗, b∗, c∗, d∗ ∈ AR ,

(

a∗, b∗
)

�∗
(

c∗, d∗
)

⇔ a∗ is preferred to b∗ at least as much as

c∗ is preferred to d∗.

When referring to a particular criterion gj , j ∈ J , rather than to all criteria jointly, the mean-
ing of the expected partial preorder �∗

j on AR ×AR is the following: for a∗, b∗, c∗, d∗ ∈ AR ,

(

a∗, b∗
)

�∗
j

(

c∗, d∗
)

⇔ a∗ is preferred to b∗ at least as much as

c∗ is preferred to d∗ on criterion gj .

In both cases, the DM is allowed to refer to the strict preference and indifference relations
rather than to weak preference only. The transition from the partial preorder expressing
intensity of preference to a value function is the following: for a∗, b∗, c∗, d∗ ∈ AR ,

U(a∗) − U(b∗) ≥ U(c∗) − U(d∗) + ε, if (a∗, b∗) ≻∗ (c∗, d∗),

U(a∗) − U(b∗) = U(c∗) − U(d∗), if (a∗, b∗) ∼∗ (c∗, d∗),

uj (a
∗) − uj (b

∗) ≥ uj (c
∗) − uj (d

∗) + ε,

if (a∗, b∗) ≻∗
j (c∗, d∗) for gj ∈ G,

uj (a
∗) − uj (b

∗) = uj (c
∗) − uj (d

∗),

if (a∗, b∗) ∼∗
j (c∗, d∗) for gj ∈ G,
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EAR

GRIP

where ≻∗ and ∼∗ are defined, respectively, as the asymmetric and symmetric part of �∗.
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Comparison: use of intensities/magnitudes of preference in PL-ML When using the pref-
erence information in the form of pairwise comparisons, one loses the granularity in the
relevance judgments (any two items with different relevance/attractiveness degrees can con-
struct an item pair). Thus, several algorithms have been proposed in PL-ML to tackle the
problem of considering the magnitude of preference. In particular, Qin et al. (2007) sug-
gested the use of leveraged multiple hyperplanes to preserve the magnitude of rating differ-
ences on the basis of the Ranking SVM algorithm and demonstrated the importance of pref-
erence magnitude. Further, Cortes et al. (2007) analyzed the stability bounds of magnitude
preserving loss functions for generalization error. They proposed two magnitude-preserving
ranking algorithms, MPRank and SVRank, with reports of the improvement on mis-ordering
loss. Finally, in the MPBoost method (Zhu et al. 2009) one applies the preference magnitude
into the exponential loss function of boosting to improve the accuracy of ranking.

Note that introducing a quaternary relation �∗, ROR considers the intensity of preference
in an ordinal way. On the contrary, in PL-ML it is supposed that there exists a cardinal
rating such that the magnitude of preference is a monotonic function of difference between
the cardinal ratings. Moreover, in ROR the intensity of preference can be referred also to a
single criterion, while this option has not been yet considered in PL-ML.

3.3 Rank-related requirements

When looking at the final ranking, the DM is mainly interested in the position which is
attained by a given alternative and, possibly, in its comprehensive score. Therefore, in the
RUTA method (Kadziński et al. 2013a), the kind of preference information that may be sup-
plied by the DM have been extended by information referring to the desired rank of reference
alternatives, i.e. final positions and/or scores of these alternatives. In fact, when employing
preference disaggregation methods in the context of sorting problems in MCDA (instance
ranking in PL-ML), the DM is allowed to refer to the desired final assignment (label) of the
reference alternatives. In this perspective, it was even more justified to adapt similar idea to
multiple criteria ranking problems, and to allow DMs expressing their preferences in terms
of the desired ranks of reference alternatives.

In fact, people are used to refer to the desired ranks of the alternatives in their judgments.
In many real-world decision situations (e.g., evaluation of candidates for some position) they
use statements such as a∗ should be among the 5 % of best/worst alternatives, or b∗ should
be ranked in the second ten of alternatives, or c∗ is predisposed to secure the place between
4 and 10. These statements refer to the range of allowed ranks that a particular alternative
should attain. When using such expressions, people do not confront “one vs one” as in
pairwise comparisons or “pair vs pair” as in statements concerning intensity of preference,
but rather rate a given alternative individually, at the same time somehow collating it with
all the remaining alternatives jointly.

Moreover, specification of the desired ranks of the alternatives addresses one of the com-
monly encountered disadvantages of using traditional UTA-like methods. On the one hand,
very often all reference alternatives or their significant subsets are grouped together in the
upper, or middle, or lower part of the ranking. As a result, the positions of reference alter-
natives in the final ranking are very close to each other. On the other hand, some UTA-like
procedures (Beuthe and Scannella 2001) allow discrimination of the comprehensive values
of reference alternatives. This usually results in the uniform distribution of their positions in
the final ranking, e.g., one alternative is placed at the very top, the other just in the middle,
and the third one at the very bottom. If the rankings obtained in the two above described
scenarios are inconsistent with the DM’s expectations, accounting for the rank-related re-
quirements may be used as a tool to prevent such situations. It is the case, since the ranks
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specified by the DM may be interpreted in terms of the desired “parts” of the final ranking
in which reference alternatives should be placed.

Finally, there is a correspondence between the input in form of rank-related requirements
and the output presented as the extreme ranks (see Sect. 4.2). Consequently, the presentation
of the extreme ranks may constitute a good support for generating reactions from the part of
the DM, who may incrementally supply rank-related requirements.

Let us denote the range of desired ranks for a particular reference alternative a∗ ∈ A

provided by the DM with [P ∗
DM(a∗),P∗,DM(a∗)]. The constraints referring to the desired

values of some reference alternatives may be expressed as follows:

U
(

a∗
)

∈
[

U∗,DM

(

a∗
)

,U ∗
DM

(

a∗
)]

,

where U∗,DM(a∗) ≤ U ∗
DM(a∗) are precise values from the range [0,1] that are provided

by the DM. Formally, these requirements are translated into the following constraints: for
a∗ ∈ AR

U(a∗) − U(b) + M · v>
a∗,b ≥ ε,

for all b ∈ A \ {a∗}
∑

b∈A\{a∗} v
>
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U(b) − U(a∗) + M · v<
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∑
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<
a∗,b ≤ n − P ∗
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⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

if a∗ ⇒
[

P ∗
DM

(

a∗
)

,P∗,DM

(

a∗
)]

,

U(a∗) ≥ U∗,DM(a∗)

U(a∗) ≤ U ∗
DM(a∗)

}

if U
(

a∗
)

∈
[

U∗,DM

(

a∗
)

,U ∗
DM

(

a∗
)]

,

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

EAR

RUT A

where M is an auxiliary variable equal to a big positive value, v>
a∗,b and v<

a∗,b are binary
variables associated with comparison of a∗ to alternative b. Using these binary variables,
the above set of constraints guarantees that there are at most P∗,DM(a∗) − 1 alternatives
which are ranked better than a∗, and at most n − P ∗

DM(a∗) alternatives which are ranked
worse than a∗.

Comparison: use of rank-related requirements in PL-ML Rank-related requirements con-
cerning positions of the alternative have not been yet considered as an input information in
PL-ML. Nevertheless, some algorithms (see, e.g., Rudin 2009; Usunier et al. 2009) do con-
sider the positions of items in the final ranking. Precisely, since top positions are important
for users, the focus is put on the top-ranked items by punishing the errors occurring in the
head of the ranking. Moreover, the direct feedback in form of exemplary utility degrees is
admitted by several PL-ML methods.

3.4 Hierarchy of criteria

Complex real-world decision problems, such as choosing a new product pricing strategy,
deciding where to locate manufactoring plants, or forecasting the future of a country, involve
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factors of different nature. These factors may be political, economic, cultural, environmental,
technological, or managerial. Obviously, it is difficult for the DMs to consider so different
points of view simultaneously when assessing the quality of the alternatives.

By applying a hierarchical structure, such complex decision problems can be decom-
posed into a hierarchy of more easily comprehended sub-problems, each of which can be
analyzed independently (Saaty 2005). It is the matter of fact that a hierarchy is an efficient
way to organize complex systems, being efficient both structurally, for representing a sys-
tem, and functionally, for controlling and passing information down the system. Once the
hierarchy is built, the DMs may first judge the alternatives and then receive feedback about
them, with respect to their impact on a particular element in the hierarchy.

In fact, practical applications are often explicitly imposing a hierarchical structure of cri-
teria. For example, in economic ranking, alternatives may be evaluated on indicators which
aggregate evaluations on several sub-indicators, and these sub-indicators may aggregate an-
other set of sub-indicators, etc. In this case, the marginal value functions may refer to all
levels of the hierarchy, representing values of particular scores of the alternatives on in-
dicators, sub-indicators, sub-sub-indicators, etc. In order to treat this case, we extend the
previously introduced notation:

– l is the number of levels in the hierarchy of criteria,
– G is the set of all criteria at all considered levels,
– IG is the set of indices of particular criteria representing position of criteria in the hierar-

chy,
– m is the number of the first level criteria, G1, . . . ,Gm,
– Gr ∈ G , with r = (i1, . . . , ih) ∈ IG , denotes a subcriterion of the first level criterion Gi1 at

level h; the first level criteria are denoted by Gi1 , i1 = 1, . . . ,m,
– n(r) is the number of subcriteria of Gr in the subsequent level, i.e. the direct subcriteria

of Gr are G(r,1), . . . ,G(r,n(r)),
– gt : A → R, with t = (i1, . . . , il) ∈ IG , denotes an elementary subcriterion of the first level

criterion Gi1 , i.e a criterion at level l of the hierarchy tree of Gi1 ,
– EL is the set of indices of all elementary subcriteria:

EL =
{

t = (i1, . . . , il) ∈ IG

}

where

⎧

⎪

⎪

⎨

⎪

⎪

⎩

i1 = 1, . . . ,m,

i2 = 1, . . . , n(i1),

. . .

il = 1, . . . , n(i1, . . . , il−1)

– E(Gr) is the set of indices of elementary subcriteria descending from Gr, i.e.

E(Gr) =
{

(r, ih+1, . . . , il) ∈ IG

}

where

⎧

⎨

⎩

ih+1 = 1, . . . , n(r),

. . .

il = 1, . . . , n(r, ih+1, . . . , il−1)

thus, E(Gr) ⊆ EL.

In case of hierarchy of criteria, the DM may provide a partial preorder �r on AR or a partial
preorder �∗

r on AR × AR , which should be interpreted analogously as pairwise compar-
isons or statements regarding the intensity of preference, however, limited only to a crite-
rion/subcriterion Gr. In this context, the value function of an alternative a ∈ A with respect
to criterion/subcriterion Gr is:

Ur(a) =
∑

t∈E(Gr)

ut

(

gt(a)
)

.
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The transition from the partial preorders to a value function is the following: for a∗, b∗,

c∗, d∗ ∈ AR ,

Ur(a
∗) ≥ Ur(b

∗) + ε, if a∗ ≻r b∗, for Gr ∈ G,

Ur(a
∗) = Ur(b

∗), if a∗ ∼r b∗, for Gr ∈ G,

Ur(a
∗) − Ur(b

∗) ≥ Ur(c
∗) − Ur(d

∗) + ε,

if (a∗, b∗) ≻∗
r (c∗, d∗), for Gr ∈ G,

Ur(a
∗) − Ur(b

∗) = Ur(c
∗) − Ur(d

∗),

if (a∗, b∗) ∼∗
r (c∗, d∗), for Gr ∈ G.
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Note that limiting the preference information only to a criterion/subcriterion Gr allows more
precise representation of preferences in this region which is of great importance for the
zooming capacity of a preference construction process.

Comparison: use of a hierarchical attribute structure in PL-ML PL-ML has not been con-
cerned with the organization of the attributes into a hierarchical structure. Nevertheless, one
has developed approaches that decompose the complex problem into a set of simpler sub-
problem, and then aggregate the partial results into the final ranking. For example, in Qin
et al. (2007) one trains a set of Ranking SVM models; each one for the item pairs with two
categories of judgments. Subsequently, rank aggregation is used to merge the ranking results
given by each model to produce the final ranking result. It seems straightforward to account
for the hierarchical structure of attributes within such setting.

3.5 Interaction between criteria

Even if the additive model is among the most popular ones, some critics have been addressed
to this model because it has to obey an often unrealistic hypothesis about preferential inde-
pendence among criteria. In consequence, it is not able to represent interactions among
criteria. For example, consider evaluation of cars using such criteria as maximum speed,
acceleration and price. In this case, there may exist a negative interaction (negative synergy)
between maximum speed and acceleration because a car with a high maximum speed also
has a good acceleration, so, even if each of these two criteria is very important for a DM
who likes sport cars, their joint impact on reinforcement of preference of a more speedy and
better accelerating car over a less speedy and worse accelerating car will be smaller than
a simple addition of the two impacts corresponding to each of the two criteria considered
separately in validation of this preference relation. In the same decision problem, there may
exist a positive interaction (positive synergy) between maximum speed and price because a
car with a high maximum speed usually also has a high price, and thus a car with a high
maximum speed and relatively low price is very much appreciated. Thus, the comprehen-
sive impact of these two criteria on the strength of preference of a more speedy and cheaper
car over a less speedy and more expensive car is greater than the impact of the two criteria
considered separately in validation of this preference relation.

To handle the interactions among criteria, one can consider non-additive integrals, such
as Choquet integral and Sugeno integral (see, e.g., Grabisch 1996). However, the non-
additive integrals suffer from limitations within MCDA (see Roy 2009); in particular, they
need that the evaluations on all criteria are expressed on the same scale. This means that in
order to apply a non-additive integral it is necessary, for example, to estimate if the maxi-
mum speed of 200 km/h is as valuable as the price of 35,000 euro.
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Thus, in the UTAGMS -INT method (Greco et al. 2013), one has proposed to consider a
value function, composed not only of the sum of marginal non-decreasing value functions
uj (a) (j = 1, . . . ,m), but also of sums of functions

syn+
j1,j2

:
[

x1
j1

, x
nj1 (A)

j1

]

×
[

x1
j2

, x
nj2 (A)

j2

]

→ [0,1],

and syn−
j1,j2

:
[

x1
j1

, x
nj1 (A)

j1

]

×
[

x1
j2

, x
nj2 (A)

j2

]

, (j1, j2) ∈ J × J, j1 > j2.

Functions syn+
j1,j2

(xj1 , xj2) and syn−
j1,j2

(xj1 , xj2), are non-decreasing in both their two ar-

guments, for all pairs of (possibly) interacting criteria (j1, j2) ∈ J × J , such that j1 > j2.
They correspond to positive or negative interactions, respectively, and add to or subtract
from the additive component of the value function. This is why one can call them bonus or
penalty functions with respect to the main additive component. Obviously, a pair of interact-
ing criteria can either be in positive or negative synergy, which means that syn+

j1,j2
(·, ·) and

syn−
j1,j2

(·, ·) are mutually exclusive:

syn+
j1,j2

(xj1 , xj2) × syn−
j1,j2

(xj1 , xj2) = 0,

for all (j1, j2) ∈ J × J, j1 > j2, and (xj1 , xj2) ∈ Xj1 × Xj2 .

Under these conditions, for all a ∈ A, the value function is defined as:

U int (a) =

m
∑

j=1

uj (a) +
∑

(j1,j2)∈J×J,j1>j2

syn+
j1,j2

(

gj1(a), gj2(a)
)

−
∑

(j1,j2)∈J×J,j1>j2

syn−
j1,j2

(

gj1(a), gj2(a)
)

.

U int should satisfy usual normalization and monotonicity conditions of value functions.
Moreover, to ensure both non-negativity of U int (a), for all a ∈ A, and the monotonicity
for the components concerning positive and negative interactions, it is necessary to impose
some additional constraints:

U int (a) ≥ 0, for all a ∈ A,

syn+
j1,j2

(gj1(a), gj2(a)) ≥ syn+
j1,j2

(gj1(b), gj2(b)),

syn−
j1,j2

(gj1(a), gj2(a)) ≥ syn−
j1,j2

(gj1(b), gj2(b)), (j1, j2) ∈ J × J,

j1 > j2, if gj1(a) ≥ gj1(b) and gj2(a) ≥ gj2(b), for all a, b ∈ A,

syn+
j1,j2

(xj1∗, xj2∗) = 0, syn−
j1,j2

(xj1∗, xj2∗) = 0,

(j1, j2) ∈ J × J, j1 > j2,

uj1(gj1(a)) + uj2(gj2(a)) − syn−
j1,j2

(gj1(a), gj2(a))

≥ uj1(gj1(b)) + uj2(gj2(b)) − syn−
j1,j2

(gj1(b), gj2(b)),

(j1, j2) ∈ J × J, j1 > j2, for all a, b ∈ A, syn+
j1,j2

(x∗
j1

, x∗
j2

) ≤ δ+
j1,j2

,

syn−
j1,j2

(x∗
j1

, x∗
j2

) ≤ δ−
j1,j2

,

δ−
j1,j2

+ δ+
j1,j2

≤ 1,

δ−
j1,j2

, δ+
j1,j2

∈ {0,1} for (j1, j2) ∈ J × J, j1 > j2.
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Obviously, using U int it is possible to incorporate preference information of the DM in the
same way as with the use of a traditional additive value function.

Although U int takes into account all possible positive and negative interactions between
pairs of criteria, in practical decision situations a limited number of interacting criteria would
be preferable. One can easily identify a minimal set of pairs of criteria for which there is
either positive or negative interaction using a procedure discussed in (Greco et al. 2013).
Such a set is presented to the DM for validation. If the DM accepts the proposed solution
as relevant set of interacting pairs of criteria, it is fixed for computing recommendation on
the whole set A of alternatives. Alternatively, (s)he may either deny or impose interaction
between a specific pair of criteria, posing requirements that need to be taken into account by
the method in the next proposal.

Comparison: interactions between the inputs in PL-ML In order to properly capture the
dependencies between the inputs and the output, in ML one employs complex non-linear
models such as neural networks or kernel machines. While being sufficient for this purpose,
their comprehensibility to the user is very limited, the monotonicity is difficult to assure,
some non-desired restrictions on the model space are imposed, and, moreover, some of
these models fail to account for the negative interactions. To address these problems, one
has advocated in PL-ML for the use of the Choquet integral (Tehrani et al. 2012a) (for an
application of ROR to Choquet integral see Angilella et al. 2010). The presented experi-
mental results suggest that the combination of monotonicity and flexibility offered by this
operator facilitates strong performance in practical applications.

While modeling interactions between attributes in ROR inherits the aforementioned ad-
vantages, it compares positively to the Choquet integral for two main reasons:

– it does not require that all criteria are expressed on the same scale, which is a serious
burden for the use of the Choquet integral in real-world decision problems,

– it offers greater flexibility than the Choquet integral, being able to represent preferences
of the DM in some simple scenarios in which preference independence is not satisfied,
when the Choquet integral fails to reproduce such preferences (see Greco et al. 2013).

3.6 Margin of the misranking error

In order to verify that the set of value functions UAR compatible with preference information
provided by the DM is not empty, we consider the following mathematical programming
problem:

Maximize: ε, subject to EAR

, (2)

where EAR
is composed of EAR

BASE (monotonicity and normalization constraints), EAR

GMS (the

set of constraints encoding the pairwise comparisons as in the UTAGMS method), EAR

GRIP

(intensities of preference in GRIP), EAR

RUT A (rank-related requirements in RUTA), EAR

HIER

(judgments in Hierarchical ROR), and EAR

INT (interactions between criteria in UTAGMS-INT).
Let us denote by ε∗ the maximal value of ε obtained from the solution of the above MILP

problem, i.e., ε∗ = max ε, subject to EAR
. It corresponds to a margin of the misranking error.

We conclude that UAR is not empty, if EAR
is feasible and ε∗ > 0. In such a case, there exists

ε greater than 0 for which the set of constraints is feasible, which means that all pieces of
preference information could be reproduced by at least one value function. On the contrary,
when EAR

is infeasible or the margin of the misranking error is not greater than zero, some
pieces of DM’s preference on the set of reference alternatives AR are conflicting (thus, a
misranking error is greater than zero).
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Comparison: interpretation of the notion of “ordinal regression” in ROR-MCDA and ML

The original meaning of the regression analysis by Linear Programming (LP) has been given
by Charnes et al. (1955), who applied goal programming to estimate salaries of new employ-
ees in an enterprise; their model explains both a numerical variable (typical salary) and an
ordinal variable (hierarchy of the enterprise) by numerical variables, and aims at minimizing
the sum of absolute spreads between typical and estimated salaries. The original meaning of
the ordinal regression has been given by Srinivasan (1976), who applied the ideas of Charnes
et al. (1955) in a model called ORDREG; this model used goal programming to explain in
terms of numerical variables (weights of multiple attributes) a set of pairwise comparisons
of some stimuli.

In statistics, the ordinal regression based on LP has been used to find a numerical rep-
resentation (encoding) of ordinal variables while minimizing an error function. This idea
has been rigorously applied in the UTA method (Jacquet-Lagrèze and Siskos 1982), where
a LP model is used to find an optimal additive encoding in ordinal regression. In UTA, a
total preorder is explained by a sum of monotone functions involving both qualitative and
quantitative variables having the meaning of (also monotonic) criteria. In the same spirit, a
partial pre-order is explained in the UTAGMS method (Greco et al. 2008). Let us remind that
this approach initiated the stream of further developments in ROR, providing a name for the
whole spectrum of methods.

In the ML community, ordinal regression (also known as ordinal classification) is con-
sidered as a supervised learning task that consists in determining the implied ordinal rating
of items on a fixed, discrete rating scale. A closely related problem, which is also considered
in ML as an ordinal regression, focuses more on the relative order between pairs of items
rather than on the accurate assignment of an item to one of the ordered categories. The latter
interpretation is analogous to the one considered in ROR.

Let us briefly recall a few PL-ML methods designed for dealing with the ordinal regres-
sion problems. Comparing them to ROR, they take into account neither the monotonicity nor
the variability of the input information. Moreover, most of them deal with a single model
instance (Herbrich et al. 2000; Joachims 2002), and even when taking into account multiple
instances (Chu and Ghahramani 2005a), they consider a probability distribution on these
instances, which is not the case in ROR.

In particular, Herbrich et al. (2000) applied the principle of Structural Risk Minimization
to ordinal regression leading to a new distribution-independent learning algorithm based on
a loss function between pairs of ranks. A similar kernel approach for representing ranking
functions of the generalized form within the context of SVM formulations, was presented
in Joachims (2002). Further, Waegeman et al. (2009) extended this method to relational
models.

A different approach consists in applying Gaussian process for ordinal regression (Chu
and Ghahramani 2005a). Its fundamental assumption is that there is an unobservable latent
function value f (a∗) associated with each training sample a∗, and that the function values
{f (a∗)} preserve the preference relations observed in the data sets (Chu and Ghahramani
2005b). One imposes a Gaussian process prior on these latent function values, and employs
an appropriate likelihood function to learn from the pairwise preference between samples.
Then, all the parameters are estimated by using a Bayesian approach.

4 Recommendation

Any value function belonging to the set of compatible value functions UAR reproduces all
pieces of preference information given by the DM. Considering all compatible instances of
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the preference model involves the trade-off between acting with prudence and arriving at a
complete recommendation in a fast way, which is, however, vulnerable to some risks. In fact,
selection of a single model instance is usually attained by solving a kind of an optimization
problem. Such approach fails to investigate whether there are other optimal (or slightly
sub-optimal) models and it sticks to a rather arbitrary rule for the selection (e.g., a specific
formulation of the loss function). In this way, the user is not provided with the possible
results in case some other optimal model or selection rule was considered. Moreover, in a
constructive learning perspective, where the aim is not to predict, but rather to construct the
preferences from scratch, the user has the interest in investigating what are the consequences
of her/his partial preferences. Thus, in this case providing immediately a complete order of
alternatives is not desirable.

Obviously, the final ranking may vary substantially depending on which solution is se-
lected. ROR applies all compatible functions to work out a recommendation for the set of
alternatives A, and examines the influence of input variability or imprecision on variability
of the proposed recommendation. In this section, we discuss the wide spectrum of proce-
dures for robustness and sensitivity analysis that could be employed within the framework
of ROR.

Comparison: credibility of the compatible models ROR does not consider a probability
distribution on the set of all compatible value functions, assigning to all of them the same
credibility. On the other hand, as already mentioned in Sect. 3.6, some approaches that con-
sider multiple instance of the model in PL-ML, such as the Gaussian processes for ordinal
regression (Chu and Ghahramani 2005a), provide a full probability distribution conditioned
on the observed data.

4.1 Necessary and possible preference relations

When comparing a pair of alternatives (a, b) ∈ A × A in terms of the recommendation
that is provided by any compatible value function, it is reasonable to verify whether a is
ranked at least as good as b for all or at least one compatible value function. Answering
these questions, UT AGMS (Greco et al. 2008) produces two preference relations in the set
of alternatives A:

– necessary weak preference relation �N holds for a pair of alternatives (a, b) ∈ A × A, in
case U(a) ≥ U(b) for all compatible value functions,

– possible weak preference relation �P holds for a pair of alternatives (a, b) ∈ A × A, in
case U(a) ≥ U(b) for at least one compatible value function.

Thus defined, the necessary relations specify the most certain recommendation worked out
on the basis of all compatible value functions, while the possible relations identify a recom-
mendation provided by at least one compatible value function. Consequently, the necessary
outcomes can be considered as robust with respect to the preference information, as they
guarantee that a definite relation is the same whichever compatible model would be used.
To verify the truth of the necessary and possible weak preference relations the following
programs need to be solved:

Maximize: ε

s.t. U(b) − U(a) ≥ ε

EAR

}

EN (a, b),
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and

Maximize: ε

U(a) − U(b) ≥ 0

EAR

}

EP (a, b).

We conclude that a �N b, if EN (a, b) is not feasible or ε∗ = max ε, s.t. EN (a, b), is not
greater than 0, and that a �P b, if EP (a, b) if feasible and ε∗ = max ε, s.t. EP (a, b), is
greater than 0.

Let us remark that preference relations �N and �P are meaningful only if there exists
at least one compatible value function. Observe also that in this case, for any a, b ∈ AR ,
a � b ⇒ a �N b and a ≻ b ⇒ not(b �P a). In fact, if a � b, then for any compatible value
function U(a) ≥ U(b), and, therefore, a �N b. Moreover, if a ≻ b, then for any compatible
value function U(a) > U(b), and, consequently, there is no compatible value function such
that U(b) ≥ U(a), which means ¬(b �P a).

The necessary weak preference relation �N is a partial preorder (i.e., it is reflexive (a �N

a, since for all a ∈ A, U(a) = U(a)), and transitive (for all a, b, c ∈ A, if a �N b and
b �N c, then a �N c). Possible weak preference relation �P is a strongly complete binary
relation (i.e. for all a, b ∈ A, a �P b or b �P a), and negatively transitive (i.e. ∀a, b, c ∈ A,
if ¬(a �P b) and not (b �P c), then ¬(a �P c)).

In the same spirit, in GRIP (Figueira et al. 2009) one may consider the necessary and
possible weak preference relations connected to the comprehensive (on all criteria) or partial
(on a particular criterion) intensity of preference. For example, (a, b) �∗N (c, d), if U(a) −

U(b) ≥ U(c) − U(d) for all compatible value functions. On the other hand, (a, b) �∗P
j

(c, d), if uj (a) − uj (b) ≥ uj (c) − uj (d) for at least one compatible value function and
j ∈ J .

In the case of hierarchy of criteria (Corrente et al. 2012), for each criterion/subcriterion
Gr ∈ G one could also introduce the necessary and possible preference relations related to
the pairwise comparisons (�N

r and �P
r ) or comparison of intensities of preference between

pairs of alternatives (�∗N

r and �∗P

r ). For example, the necessary weak preference relation
�N

r holds for a pair of alternatives (a, b) ∈ A × A, in case Ur(a) ≥ Ur(b) for all compatible
value functions. Furthermore, the possible weak preference relation �∗P

r holds for two pairs
of alternatives (a, b), (c, d) ∈ A×A, in case Ur(a)−Ur(b) ≥ Ur(c)−Ur(d) for at least one
compatible value function. Obviously, when verifying the truth or falsity of these relations,
one should refer to Ur defined in Sect. 3.4, rather than to U being the sum of all marginal
values.

4.2 Extreme ranking analysis

An interesting approach to examine how different can be rankings provided by all compat-
ible value functions is to determine the highest and the lowest ranks, and the score that an
alternative can attain. Such an analysis of extreme results (Kadziński et al. 2012a) provides
information about its relative performance in comparison to all the remaining alternatives
simultaneously rather than in terms of separately conducted pairwise comparisons. In order
to identify the range of ranks that a particular alternative a ∈ A could attain (we denote it by
[P ∗(a),P∗(a)]), we propose some mixed-integer programming models:
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Minimize: f rank
max =

∑

b∈A\{a}

vb

s.t. U(a) − U(b) + Mvb ≥ ε, for all b ∈ A \ {a}

EAR

}

EAR

max,

and

Minimize: f rank
min =

∑

b∈A\{a}

vb

s.t. U(b) − U(a) + Mvb ≥ ε, for all b ∈ A \ {a}

EAR

}

EAR

min,

where M is an auxiliary variable equal to a big positive value, and vb is a binary variable
associated with comparison of a to alternative b. Note that in both above problems there are
n − 1 such variables, each corresponding to b ∈ A \ {a}. We conclude that:

P ∗(a) = f rank
max + 1 and P∗(a) = n − f rank

min .

Obviously, one may also analyze the ranges of comprehensive values [U∗(a),U ∗(a)] that
a particular alternative a could attain. Identification of the bounds of such a range requires
minimization and maximization of U(a), subject to EAR

.
Let us remark that the ranges of allowed ranks and comprehensive values for reference

alternatives constitute the subsets of the ranges desired by the DM, i.e.: for all a∗ ∈ AR ,

[

P ∗
DM

(

a∗
)

≤ P ∗
(

a∗
)

and P∗

(

a∗
)

≤ P∗,DM

(

a∗
)]

and
[

U∗

(

a∗
)

≥ U∗,DM

(

a∗
)

and U ∗
DM

(

a∗
)

≥ U ∗
(

a∗
)]

.

In Kadziński and Tervonen (2013) the analysis of the possible and necessary preference
relations and the ranges of ranks the alternatives may obtain has been enriched with expo-
sition of probabilities of the possible relations and distribution of the ranks. Moreover, one
has proved that we do not need to assess whether an alternative can obtain ranks between
the extreme ones; assuming no shared ranks, an alternative can obtain them all.

Comparison: risk of erroneous predictions The preference relations and extreme ranks
resulting from ROR minimize the risk of a false declaration that:

– a is preferred to b when there is no compatible value function for which a is preferred to
b, i.e. ¬(a �P b);

– a is not preferred to b when for all compatible value functions a is preferred to b, i.e.
a �N b;

– a should be ranked outside the calculated interval of positions, i.e. [P ∗(a),P∗(a)].

Let us note that such a risk is not considered by default in the majority of ML methods (it
is not exhibited to the DM as it is done in ROR), which apply a single preference model
minimizing the loss function on the set of alternatives.

Nevertheless, within a ML setting, it is possible to equip the prediction with information
about its uncertainty. For example, a confidence interval in regression is used to indicate
the reliability of an estimate, i.e. how much an estimator can deviate from a “true” value.
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Moreover, there exist approaches which admit a refusal of a prediction in case of uncertainty.
For example, Herbei and Wegkamp (2006) consider classifiers that render three possible
outputs: 0, 1 and R. The option R expresses doubt and is used to distinguish observations
that are hard to classify in an automatic way. The possibility of taking no decision (“I do
not know”) is of great importance in practice, for instance, in case of medical diagnoses.
This option has been subsequently considered, e.g., in the context of SVMs (see Bartlett and
Wegkamp 2008; Grandvalet et al. 2008).

Comparison: interpretation of the concept of “robustness” in ROR-MCDA and ML Al-
though the term “robust” is widely used in the MCDA context, it does not have a unique
definition and clear interpretation. As noted by Vincke (1999), a decision is robust if it keeps
open for the future as many good plans as possible, whereas a solution is robust if it is good
for all or most plausible sets of values for the data in the model. Furthermore, conclusion is
said to be robust if it is valid for all or most acceptable sets of values for the parameters of
the model. Note that these explanations are valid for both the necessary preference relations
and the range of extreme ranks.

According to another related interpretation, robustness concerns the capacity for with-
standing “vague approximations” or “zone of ignorance” in order to prevent undesirable
impacts (Roy 2010a). In ROR, the vague approximation and zone of ignorance regard the
considered set of value functions. The concepts of the necessary, possible, and extreme
results are appropriate for avoiding undesirable impacts related to mis-ranking of some al-
ternatives in case of neglecting some compatible value function.

The above interpretation of robustness is similar to an understanding of this concept in
different domains. In statistics, robustness regards the search for methods that are not un-
duly affected by outliers or other small departures from model assumptions (Hampel et al.
1986). Indeed in statistics, and consequently in PL based on the statistical methods, an esti-
mation relies heavily on the assumptions which are often not met in practice, such as normal
distribution of data errors.

Within the theory of decision under uncertainty, robustness is also related to an assump-
tion about probabilities of various outcomes, particularly if rare but extreme-valued events
are highly influential. In this context several approaches have been proposed. Some of them
do not consider any probability distribution on the states of the world, proposing criteria
such as Wald maxmin criterion or Savage minimax of regrets. In other models a family of
probability distributions is considered suggesting a cautious decision such as maxmin of ex-
pected utility (Gilboa and Schmeidler 1989) or a partial order representing the preferences
that hold for all the considered probability distributions (Bewley 2002). Note that the latter
corresponds to the necessary preference relation in ROR. Finally, let us mention the concept
of “fairness” that is used to describe decisions which are fair with respect to uncertainty. It
is related, e.g., to the Lorenz dominance which refines Pareto dominance and favors well-
balanced alternatives allowing to establish a preliminary preference relation (Ogryczak and
Ruszczyński 1999).

In PL-ML, the concept of robustness has been considered with respect to the sensitivity
to noise in learning. In this perspective, a model is robust if it avoids that few noisy data can
lead to a large number of mis-rankings (Carvalho et al. 2008) or it minimizes the probability
of switching neighboring pairs in a search result when ranking score turbulence happens (Li
et al. 2009). In any case, it is acknowledged that the results of research on robustness within
PL-ML are still very preliminary (Liu 2011).
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4.3 Representative value function

The necessary, possible and extreme results may be difficult to understand by some DMs.
To address these potential problems, we propose to select a representative value function
(Kadziński et al. 2012b). The motto underlying our proposal is “one for all, all for one”.
The representative value function represents all compatible value functions, which also do
contribute to its definition. Precisely, this function makes use of the necessary and possible
preference relations and extreme ranks. Consideration of these outcomes leads us to for-
mulation of a few targets to be possibly attained by a representative value function. They
concern enhancement of differences between comprehensive values of two alternatives. In
particular, the DM may wish to emphasize the advantage of some alternatives over the oth-
ers, which is acknowledged by all compatible value functions, or reduce the ambiguity in
the statement of such an advantage, if in the context of all rankings determined by the set of
compatible value functions, the result of the comparison of a pair of alternatives is not uni-
vocal. In this way, the introduced concept does not contradict the rationale of ROR, because
we do not lose the advantage of knowing all compatible instances of the preference model.

Within an interactive procedure for selection of the representative value function, the DM
may either wish that the targets are attained one after another, according to a given priority
order, or that a compromise between the targets is attained according to some aggregation
formula. We propose the following policy with respect to selection of the representative
value function: for each pair of alternatives (a, b) ∈ A × A, the desired difference between
their values U(a) and U(b) is conditioned by the target corresponding to one of five relations
that is imposed for the pair. In particular, for pairs (a, b) such that:

– a ≻N b (i.e., a ≻N b and ¬(b ≻N a)), or a ≻P b (i.e., a ≻P b and ¬(b ≻P a)), or P∗(a) <

P ∗(b), the difference between U(a) and U(b) should be maximized to emphasize the
advantage of a over b in the rankings provided by all compatible value functions;

– a?Nb (i.e., ¬(a ≻N b) and ¬(b ≻N a)), or P ∗(a) < P ∗(b) and P∗(a) > P∗(b), the differ-
ence between U(a) and U(b) should be minimized to reduce the ambiguity in designating
a better alternative among a and b, when using all compatible value functions.

The optimizations are performed on an incrementally changing set of constraints, which
accounts for results from previous optimizations. In case the DM wants to maximize or
minimize the difference between values of alternatives a, b ∈ A related by one of the five
relations, the optimization is straightforward. On the other hand, if the DM wishes to ob-
tain a compromise solution with respect to maximization of the difference between U(a)

and U(b) for pairs (a, b) ∈ A × A, such that P∗(a) < P ∗(a), or a ≻P b, or a ≻N b, and
minimization of the difference between U(c) and U(d) for pairs (c, d) ∈ A × A, such that
a?Nb or P ∗(a) < P ∗(b) and P∗(a) > P∗(b), we add the following constraint to the linear
programming constraints considered at the current stage of interaction:

U(a) − U(b) ≥ U(c) − U(d) + ν.

Then, we maximize ν. The comprehensive values assigned to the alternatives by the repre-
sentative value function can be used to obtain a complete ranking. The suggested score and
position reflect a reasonable compromise between all states of this alternative.

Comparison: use of linear programming in ROR and ML The preference relations in the
whole set of alternatives, extreme ranks, as well as a representative value function result
from solving some Linear Programming problems. This technique has been also applied in
several PL-ML methods. This includes:
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– a linear programming-based ranking method proposed in Ataman et al. (2006), which is
designed to train a scoring function that ranks all positive points higher than all negative
points (from data that is assumed to have binary output);

– a 1-norm SVM (Mangasarian 1998) which is a popular approach for classification; it is
well known to be effective in reducing the input space features;

– a method for modeling a utility function with the Choquet integral (Tehrani et al. 2012b);
the authors solve an optimization problem whose formulation is in the spirit of ROR
mathematical models.

5 Credibility of preference information and recommendation

Robust ordinal regression methods enhance the DM to provide incrementally the preference
information by possibly small pieces. This allows both avoiding the necessity of dealing
with a large set of reference alternatives already at the initial stages of the interaction as well
as controlling the impact of each piece of information (s)he supplied on the result. Such a
control is desirable for a truly interactive process.

In particular, the nature of the necessary and possible relations enhances interactive spec-
ification of pairwise comparisons. The suggested way of proceeding is to state the truth of
the preference relation for a pair of alternatives for which the possible relation was satisfied,
but not the necessary one. When it comes to the analysis of extreme results, the DM may
wish to narrow down the allowed ranges of ranks or values obtained at the current stage
by specifying some new rank-related requirements. Finally, presentation of the complete
ranking determined by the representative value function is a good support for generating
reactions from the part of the DM. Namely, (s)he could wish to enrich the necessary rank-
ing or to contradict some possible relations, so that these statements are reflected by the
representative value function in the next iteration.

Let us denote the preference information provided by the DM in a particular iter-
ation t , t = 1, . . . , s, by PIDM

t and the corresponding set of constraints by EAR

t . Let
PIDM

1 ⊆ PIDM
2 ⊆ . . . ⊆ PIDM

s , be embedded sets of pieces of preference information. In
particular, they may represent the pairwise comparisons (�DM

1 ⊆ �DM
2 ⊆ . . . ⊆ �DM

s )
and/or the desired ranges of possible ranks or scores ([RU ]DM

1 ⊆ [RU ]DM
2 ⊆ . . . ⊆ [RU ]DM

s ) for
some reference alternatives. Clearly, PIDM

t contains more credible pieces of preference in-
formation than PIDM

t−1 , t = 2, . . . , s. Any new piece of preference information makes the

information more precise, and puts additional constraints to EAR

t , which possibly reduces
the set of compatible value functions U AR

t , t = 1, . . . , s. Thus, the sets of compatible value
functions are embedded in the inverse order of the related sets of pieces of preference infor-
mation, i.e. U AR

1 ⊇ U AR

2 ⊇ · · · ⊇ U AR

s . We suppose that U AR

s �= ∅.
For each iteration t , we can compute the corresponding results in the same way as pre-

sented in Sect. 4, but referring to the set of constraints EAR

t rather than EAR
. An important

property of these outcomes is stated by Proposition 1.

Proposition 1 For t = 1, . . . , s:

– �N
t and �P

t are nested relations: �N
t−1 ⊆ �N

t and �P
t−1 ⊇ �P

t (Greco et al. 2008);
– �N

r,t and �P
r,t for each criterion/subcriterion Gr ∈ G are nested relations: �N

r,t−1 ⊆ �N
r,t

and �P
r,t−1 ⊇ �P

r,t (Corrente et al. 2012);
– [P ∗

t (a),P∗,t (a)] and [U∗,t (a),U ∗
t (a)] are nested intervals: [P ∗

t (a),P∗,t (a)] ⊆ [P ∗
t−1(a),

P∗,t−1(a)] and [U∗,t (a),U ∗
t (a)] ⊆ [U∗,t−1(a),U ∗

t−1(a)] (Kadziński et al. 2013a).
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As a consequence, it is easier for the DMs to associate pieces of their preference informa-
tion with the result and, therefore, to control the impact of each piece of information (s)he
provides on the result.

Obviously, we admit that the DM may remove or modify previously provided pieces of
preference information. This is likely to happen, e.g., when the DM changed her/his point
of view or in case of inconsistent judgments (see Sect. 6).

6 Dealing with the inconsistency in ROR

In case of incompatibility in ROR, the set of value functions consistent with the provided
preference information is empty. This may occur if the preference information of the DM
does not match the underlying preference model, or the DM has violated the dominance in
her/his statements, or the provided statements are contradictory. Dealing with the inconsis-
tency, the DM may want either to pursue the analysis with such an incompatibility or to
identify its reasons in order to remove it.

If the DM wants to pursue the analysis with the incompatibility, (s)he has to accept that
some of her/his pairwise comparisons or rank-related requirements will not be reproduced
by any value function. From a formal viewpoint, if the polyhedron generated by the set
of constraints is empty, then the necessary and possible preference relations as well as ex-
treme ranks are meaningless. The acceptance of inconsistency means that the DM does not
change the preference information, and rather uses a set of constraints EAR

ext differing from
the original one EAR

by an additional constraint on the acceptable margin of the misranking
error:

ε ≥ εext ,

where εext < ε∗, such that ε∗ = max ε, subject to EAR
, so that the resulting new constraints

EAR

ext are feasible.
Obviously, the provided results would not fully restore the provided pairwise compar-

isons or rank-related requirements. For instance, there may exist at least one pair a, b ∈ AR ,
such that a � b, but it is false that for all the compatible value functions U(a) ≥ U(b), or
there may exist at least one a ∈ AR , such that a ⇒ [P ∗

DM(a),P∗,DM(a)], but a value function
satisfying EAR

ext ranks a better than P ∗
DM(a) or worse than P∗,DM(a).

If the DM does not want to pursue the analysis with the incompatibility, it is necessary
to identify the troublesome pieces of preference information responsible for this incompat-
ibility, so as to remove or revise some of them. There may exist several sets of preference
information pieces which, once removed, make the set of compatible value functions non-
empty. Identifying the troublesome pieces amounts at finding a minimal subset of constraints
that, once removed, leads to a set of constraints generating a non-empty polyhedron of com-
patible value functions.

For this reason, let us associate with each piece of preference information (e.g., the de-
sired range of ranks or pairwise comparisons of reference alternatives) a new binary variable
wC . Using these binary variables, we rewrite a constraint or a set of constraints correspond-
ing to a particular preference statement so that in case wC = 1 it is satisfied whatever the
value function is, which is equivalent to its elimination. For example, the pairwise compari-
son a∗ ≻ b∗, for a∗, b∗ ∈ AR , is translated into the following constraint:

M · wa∗,b∗ + U
(

a∗
)

≥ U
(

b∗
)

+ ε, (3)
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whereas a rank-related requirement a∗ ⇒ [P ∗
DM(a∗),P∗,DM(a∗)] is translated into the fol-

lowing set of constraints:

M · wP(a∗) + U(a∗) − U(b) + M · v>
a∗,b ≥ ε,

for all b ∈ A \ {a∗}
∑

b∈A\{a∗} v
>
a∗,b ≤ P∗,DM(a∗) − 1

M · wP(a∗) + U(b) − U(a∗) + M · v<
a∗,b ≥ ε,

for all b ∈ A \ {a∗}
∑

b∈A\{a∗} v
<
a∗,b ≤ n − P ∗

DM(a∗)

v>
a∗,b + v<

a∗,b ≤ 1, for all b ∈ A \ {a∗}

⎫
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(4)

where M is an arbitrarily big positive value.
Then, identifying a minimal subset of troublesome pieces of preference information can

be performed by minimizing the sum of all wC , subject to the rewritten set of constraints
EAR

. The optimal solution of such problem indicates one of the subsets of smallest cardi-
nality being the cause of incompatibility. Searching for the smallest subset of constraints is
consistent with the idea according to which the DMs will first consider the “less complex”
ways to solve inconsistency. Other subsets can be obtained following the general scheme for
dealing with incompatibility presented in Mousseau et al. (2003). In general, in the subse-
quent steps we forbid finding again the same solutions which have been already identified
in the previously conducted optimizations, which permits to discover new minimal subsets
of incompatible constraints. All these subsets of pieces of preference information are to be
presented to the DM as alternative ways of removing incompatibility.

Revealing such different possibilities is informative for the DM. Knowing the various
ways of solving inconsistency permits her/him to understand the conflicting aspects of
her/his statements, to question previously expressed judgments, and to make the elicitation
process more flexible. Thus, analyzing and confronting the alternative solutions for remov-
ing inconsistency provides opportunity for the DM to learn about her/his preferences as the
interactive process evolves.

7 Illustrative case study

In this section, we report results of an illustrative case study concerning innovation. We re-
consider data set published by the Economist Intelligence Unit (EIU) in 2007 (EIU 2007).
The study aims to measure application of knowledge in a novel way for economic benefit,
which is important for both governments and firms. For clarity, we focus on 28 European
countries. They are evaluated on two main criteria: innovation performance (g1) and inno-
vation enablers (g2). The previous one is based on the international patent data which is
the single best available proxy measure for innovation outputs. The natural logarithms of
patents per million population are converted by EIU into an index on a 1–10 scale. The
other criterion is composed of two other sub-criteria: direct innovation inputs (g21) and in-
novation environment (g22). They combine several other factors such as: quality of the local
research infrastructure, education and technical skills of the workforce (for g21) or political
and macroeconomic stability, tax regime, and flexibility of labour market (for g22). The per-
formance matrix is provided in Table 1. To address the problem, we will take advantage of
different types of preference information. We will also present a variety of results discussed
in this paper.
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Table 1 The evaluation matrix, extreme ranks and representative comprehensive values for the problem of
evaluating innovation of European countries

Country g1 g21 g22 P ∗
1 P∗,1 P ∗

2 P∗,2 UR
1 UR

2

SWI 9.71 9.88 8.50 1 5 1 4 0.917 0.857

SWE 9.45 9.94 8.24 2 6 2 5 0.917 0.929

FIN 9.43 10.0 8.48 1 4 1 2 1.000 1.000

GER 9.38 9.56 7.95 4 7 4 6 0.833 0.786

DEN 9.29 9.94 8.61 1 5 2 5 1.000 0.929

NET 9.12 9.63 8.37 4 7 4 6 0.833 0.786

AUT 8.91 8.69 7.31 11 14 11 14 0.583 0.571

FRA 8.90 9.44 7.52 7 9 7 9 0.750 0.714

BEL 8.80 9.06 7.69 7 10 7 9 0.667 0.714

NOR 8.73 8.44 7.38 11 14 11 14 0.583 0.571

UK 8.72 8.81 8.52 2 9 7 9 0.833 0.714

IRE 8.46 8.44 8.42 9 10 10 10 0.667 0.642

SLO 7.68 7.50 6.26 13 20 13 19 0.417 0.428

SPA 7.47 7.94 7.44 11 15 11 15 0.583 0.571

HUN 7.26 6.94 6.76 14 16 14 16 0.500 0.499

EST 6.75 6.94 7.54 11 16 11 16 0.500 0.571

CRO 6.73 6.00 5.54 17 22 17 21 0.250 0.357

POR 6.58 6.75 6.75 16 18 16 18 0.417 0.428

SVK 6.26 6.50 6.70 17 19 17 19 0.333 0.357

RUS 6.07 6.06 4.59 19 23 19 23 0.250 0.285

LAT 5.89 5.63 6.59 18 22 20 22 0.250 0.285

BUL 5.79 5.63 5.51 21 23 21 23 0.167 0.214

POL 5.65 6.25 6.57 18 23 18 23 0.250 0.285

LIT 5.52 5.63 6.43 24 24 24 24 0.083 0.143

UKR 5.37 5.25 3.82 25 28 25 27 0.000 0.071

ROM 5,25 4.69 5.85 25 28 25 28 0.000 0.000

TUR 5.21 4.38 5.93 25 28 26 28 0.000 0.000

SER 4.52 4.94 4.59 25 28 25 28 0.000 0.000

7.1 First iteration

7.1.1 Preference information

In order to rank all alternatives, the DM has to provide preference information concerning
some reference alternatives. This information could take the form of pairwise comparisons,
or intensities of preference, or desired ranks, or constraints referring to the desired scores
of these alternatives. Let us assume, that the DM is familiar with innovation level of some
countries, and having analyzed their evaluation profiles, (s)he is able to provide two pairwise
comparisons: FRA ≻ IRE and FIN ≻ SWE, as well as an imprecise judgment about the
desired ranks of two other countries: “AUT should not be ranked in top 10” and “LIT should
be ranked among bottom 5 alternatives”.
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7.1.2 Necessary and possible preference relations

Let us first discuss the necessary and possible preference relations. The Hasse diagram of
the necessary relation obtained for the preference information provided in the first iteration
is presented in Fig. 1 (to the left). The matrix of the necessary relation is rather rich. The
valid necessary relation �N for a pair of alternatives (a, b) ∈ A × A, means that a and b are
compared in the same way for all compatible value functions. The graph confirms that the
inferred compatible instances of the preference model reproduce the relations which stem
from the provided pairwise comparisons, i.e.: FRA ≻N IRE and FIN ≻N SWE.

The necessary preference relation is transitive. Let us remind that the arrows that can be
obtained by transitivity are not represented in the Hasse diagram (see, e.g., (SWI, FRA),
(DEN, SER)). Moreover, if the necessary relation held for a given pair of alternatives, then
possible relation holds as well. On the other hand, if there was no arrow representing the
necessary relation between two countries a, b ∈ A (e.g., (NET, UK), (EST, SLO)), then
these alternatives are incomparable in terms of the necessary relation. This means that for at
least one compatible value function a is preferred to b, whereas for some other compatible
value function the preference relation is reversed. When analyzing the necessary relation,
alternatives SWI, FIN, and DEN should be perceived as the best ones, SWE, NET, UK, and
GER should be viewed as relatively good countries, whereas alternatives UKR, ROM, TUR,
and SER need to be considered as the worst ones.

7.1.3 Extreme ranking analysis

The results of extreme ranking analysis in the first iteration are presented in Table 1 (columns
P ∗

1 and P∗,1). One can see that the range of allowed ranks for reference alternatives consti-
tutes the subset of the ranks desired by the DM, i.e.:

[

P ∗
1 (AUT ),P∗,1(AUT )

]

= [11,14] ⊆ [11,28] =
[

P ∗
1,DM(AUT ),P∗,1,DM(AUT )

]

,

[

P ∗
1 (LIT ),P∗,1(LIT )

]

= [24,24] ⊆ [24,28] =
[

P ∗
1,DM(LIT ),P∗,1,DM(LIT )

]

.

In fact, for this particular problem, the actual range of attained ranks is a proper subset of
the range specified by the DM. Furthermore, since alternatives FRA and FIN were required
to be preferred to IRE and SWE, respectively, their best and worst ranks are strictly better
(e.g., P ∗

1 (FRA) = 7 < P ∗
1 (IRE) = 9 and P∗,1(FRA) = 9 < P∗,1(IRE) = 10). The aver-

age difference between the worst P∗(a) and the best P ∗(a) rank that could be attained by
the considered countries is equal to 3.4. Countries SWI, FIN, and DEN are potential top
alternatives. Furthermore, SWE, UK, GER, and NET possibly take place in top 5, but UK
is more sensitive to the choice of a compatible value function because its rank may drop to
9. Another 8 countries (e.g., AUT, SLO, HUN) are always ranked in the second ten. Finally,
UKR, ROM, TUR, and SER are the least ranked alternatives.

7.1.4 Representative value function

We will suppose that the DM wants to select a function that emphasizes the evident advan-
tage of some alternatives over the others acknowledged by all compatible value functions
(i.e., maximizes the difference between comprehensive values of alternatives a, b ∈ A, such
that a ≻N b), and reduces the ambiguity in the statement of such and advantage, otherwise
(i.e., minimizes the difference between comprehensive values of alternatives c, d ∈ A, such
that a?Nb). The comprehensive values of the alternatives obtained for the representative
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Fig. 1 Hasse diagram of the necessary relation for the problem of evaluating innovation of European coun-
tries—first iteration (to the left) and second iteration (to the right)

value function are presented in Table 1 (column UR
1 ). Alternatives FIN and DEN are ranked

first with score 1.0. Then, SWI and SWE are placed third with score 0.917. They are fol-
lowed by GER, NET, and UK which share the same score 0.833. On the other hand, LIT is
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Fig. 2 Representative marginal value functions for the problem of evaluating innovation of European coun-
tries—first iteration (dashed line) and second iteration (continuous line)

ranked 24-th, whereas UKR, ROM, TUR, and SER are ranked at the four bottom place with
score 0.0. This value function is the most discriminant with respect to the comprehensive
values of alternatives which are related by the necessary preference. Note that the minimal
difference between values of alternatives U(a) and U(b) for (a, b), such that a ≻N b, is
equal to 0.083. On the other hand, one can notice that there are a few groups of alternatives
which share the same comprehensive value, e.g., {CRO, RUS, LAT, POL}. This is intended,
because these alternatives are possibly indifferent, so we wished to minimize the difference
between their comprehensive values.

Representative comprehensive values constitute a synthetic representation of the result
of the robust ordinal regression. It is the case, because the corresponding ranking “flattens”
the graph of the necessary relation to a complete order according to some reasonable as-
sumptions and requirements. As a result, we can focus on a single value function which
represents all compatible models. Moreover, the DM may analyze corresponding marginal
value functions of the evaluation criteria, which is less abstract than analysis of the whole
set of such compatible functions, and may help to justify the decision to the counterparts.
These functions are presented in Fig. 2 (dashed line). The constructed functions are usu-
ally not strictly monotonic. The characteristic points marked in the figure correspond to the
performances of the considered alternatives. In the first iteration, direct inputs (g21) has the
greatest share in the comprehensive values and the greatest variation of marginal values.

7.2 Second iteration

Robust ordinal regression methods are intended to be used interactively, that is, the DM
can provide progressively new pieces of preference information or change already provided
ones. Let us imagine that considering the graph of the necessary relation and the extreme
ranks obtained in the first iteration, (s)he provided two additional pairwise comparisons:
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CRO ≻ LAT and BEL ≻ IRE (note that these preferences are missing in the graph of the
necessary relation after the first iteration). Moreover, (s)he supplied another three compar-
isons referring only to the two sub-criteria grouped as innovation enablers (g2): GER ≻g2

UK, UKR ≻g2 TUR, FIN ≻g2 DEN. Finally, analyzing the complete preorder determined by
the representative value function, the DM referred to the comprehensive intensity of pref-
erence, requiring that (DEN, UK) ≻ (SVK, LIT) (in this way, (s)he reinforces the intensity
imposed by the representative value function at the current stage of internaction).

The possible and necessary relations converge with the growth of preference informa-
tion (see Fig. 1 (to the right)). In particular, the necessary partial preorder is enriched (e.g.,
GER �N UK), and the possible relation is impoverished (e.g. ¬(LAT �P CRO)). When it
comes to the outcomes of extreme ranking analysis, the range of possible ranks in the second
iteration is narrower for 13 out of 28 countries. For example, UK and LAT are ranked only
7-th and 20-th in the best case, respectively, whereas in the first iteration they could attain
2-nd and 18-th positions. Furthermore, there are only two countries that could be ranked
at the very top (SWI and FIN) and only three alternatives that could be placed at the very
bottom (ROM, TUR, and SER). The representative comprehensive values obtained at this
stage are provided in Table 1 (column UR

2 ) and the corresponding marginal value functions
are given in Fig. 2 (continuous line). With respect to the first iteration, one could observe
slightly greater variation of the comprehensive values and even greater share of criterion g21

in the overall score of the alternatives. In general, incremental specification of preference in-
formation allowed obtaining more precise recommendation. It is the case, since new pieces
of preference information constrained the set of compatible value functions. Obviously, the
interactive process can be pursued until the obtained results are decisive enough for the DM.

Comparison: conducting experimental comparison of different methods In MCDA compu-
tational experiments based on comparison of recommendations given by different methods
is not advised for:

– different axioms characterizing the methods,
– instrumental bias of the DM, which is unavoidable in a dialogue “question of the

method—response of the DM”,
– unrealistic assumption that the DM’s preferences pre-exist, are stable, have an objective

reality, and are insensitive to pieces of results communicated to the DM in the interactive
process.

On the other hand, PL-ML methods can be compared in terms of the quality of the discov-
ered and predicted preferences, since these preferences have an autonomous reality.

7.3 Computational cost

Let us denote the number of the provided pairwise comparisons of reference alternatives
(related either to the holistic evaluation or to a subset of criteria) by PC, the number
of statements concerning intensities of preference by INT , the number of rank related
requirements by RR, and the number of value related requirements by V R. The num-
ber of constraints corresponding to these pieces of preference information is equal to
PI = PC + INT + 5 · RR + 2 · V R.

In order to check the truth or falsity of the necessary and possible preference relations one
needs to solve 2 · n · (n − 1) LP problems (to verify the truth or falsity of a given relation,
a mathematical problem needs to be solved for each pair of alternatives (a, b) ∈ A × A,
a �= b). However, each of these LP problems is relatively small—the range of dimensions
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is n · m + PI constraints and n · m + n · RR variables. On the other hand, to determine
the extreme ranks, one needs to solve 2 · n MILP problems. Their range of dimension is
n · m + PI + n constraints and n · m + n · RR + n variables (with n · RR + n binary
variables). Finally, depending on the target chosen by the DM within the procedure for
selection of a representative value function, a few LP problems are solved to determine
representative comprehensive and marginal values. Additional computational effort in terms
of new variables and new LP problems to solve needs to be taken into account in case of
considering interactions between criteria and hierarchy of criteria, respectively.

Obviously, solving all these problems is not a burden for contemporary solvers in case
the size of the problem is typical for MCDA (i.e., up to hundreds alternatives, and not thou-
sands). For greater sets of alternatives, the mathematical programs would be too big and
too many, and thus ROR cannot be used to solve problems in information retrieval, natural
language processing, or bio-informatics. Moreover, in case of the big data problems, ROR
is loosing its advantage, because one cannot present to the DM the ranking of all items.
Obviously, then one can employ a representative value function that determines a complete
order of the alternatives, but to calculate it is a great burden. Nevertheless, for greater data
sets one can take advantage of the two-stage approach mentioned in Sect. 2.2.

8 Conclusions

In this paper, we have reviewed a non-statistical methodology of preference learning de-
signed for multiple criteria ranking. The methodology, called Robust Ordinal Regression, is
based on learning of a set of value functions from decision examples given by the DM. Pref-
erence information may be composed of pairwise comparison of some alternatives, intensi-
ties of preference, rank-related requirements, or statements concerning interaction between
criteria. These judgments are represented by a compatible form of a set of value functions,
each one defining a complete ranking on the set of alternatives. A value function prefer-
ence model is of particular interest in MCDA because of an easy interpretation of numerical
scores of alternatives and straightforward translation of pieces of preference information to
the final result. Moreover, our methodology admits the most general form of an additive
model which does not involve any arbitrary parametrization. The marginal value functions
composing the additive model are general monotone functions. The result of application of
the set of compatible value function on the set of alternatives is presented in the form of
the necessary and possible preference relations, extreme ranks, and a representative value
function. These outcomes provide a clear justification of recommended rankings at different
levels of certainty, and stimulate the DM to interact with the method by incrementally en-
riching the preference information and observing its necessary and possible consequences
on the recommended rankings. These features reveal a specific aspect of learning adopted
in ROR. As shown in the paper they contrast with ML which is oriented towards preference
discovery without interaction with the DM, but also share many features with the recently
proposed PL-ML algorithms that can be used for preference construction.

We would like to end with a conclusion suggesting a consideration of some specific
aspects of ROR in PL-ML:

– consideration of a plurality of instances of the considered preference model compatible
with preference information within an acceptable probabilistic error;

– exploiting the concepts of the necessary and possible preference relation and of the ex-
treme ranking analysis to ensure a proper trade-off between the completeness and pru-
dence of the recommendation;
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– accounting for types of preference information that are considered in ROR; for exam-
ple, in ROR the DM can refer to rank-related requirements or intensities of preference
on a single criterion, which is not the case in PL-ML methods; moreover, it seems to
be challenging for ML-PL to account simultaneously for different types of preference
information;

– considering some specific concepts introduced in ROR-MCDA, such as hierarchy of crite-
ria, which seem not explored in PL-ML, while being useful for decomposing the complex
problems, or interactions between different criteria;

– adopting the idea of preference construction, understood as a mutual learning of the DM
and the model; this is related to the development of an interface that would surrogate an
analyst and supply the user with the consequences of applying her/his preference in a way
that would invite her/him to the interaction.
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