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Robust Output Feedback Consensus for Networked
Negative-Imaginary Systems

Jianan Wang, Member, IEEE, Alexander Lanzon, Senior
Member, IEEE, and Ian R. Petersen, Fellow, IEEE

Abstract—A robust output feedback consensus problem for networked
homogeneous Negative-Imaginary (NI) systems is investigated in this
technical note. By virtue of NI systems theory, a set of reasonable yet
elegant conditions are derived for output consensus under L2 external
disturbances as well as NI model uncertainty. As a byproduct, this
technical note also reaffirms a previous result in [1] which shows the
robustness of networked systems is always worse than that of single agent
system. Furthermore, the eventual convergence sets are also characterised
for several special NI systems that are commonly studied in the literature.
It is shown how the results in this work embed and generalise earlier
results for these classes of systems. We show that the natural convergence
set boils down to the centroid of the initial pattern when the initial
conditions of the controllers are zero. Numerical examples are given to
showcase the main results.

Index Terms—Consensus, Cooperative Control, Negative-Imaginary
Systems, Robust Control.

I. INTRODUCTION

NI systems are, broadly speaking, systems with a negative imagi-

nary frequency response. This class of systems has received extensive

attention in recent years [2], [3] since it was introduced in [4]

and found its most successful application in the area of nano-

positioning control [5] where co-located force actuation and position

measurement are typical [6]. NI systems theory has also been widely

applied to the control of flexible structures with highly-resonant

dynamics, which is typically a challenging task to tackle via classical

methods. Robust stability analysis of interconnected systems with

mixed NI and small-gain properties has also been studied in [7].

The area of cooperative control has been very active over the past

decade and it was immediately evident that distributed control and

communication networks play an important role in stability analysis.

The output feedback consensus problem, or more precisely, the output

synchronization problem was first studied in [8], and a solution for

weakly minimum phase nonlinear systems with relative degree one

was presented. Later, [9] extended the result to heterogeneous cases

even with uncertainties. The output feedback consensus problem that

we consider is to have all the outputs naturally converge to a common

trajectory (not necessarily constant) which is entirely determined by

the subsystems themselves as well as the graph properties. Although

similar approaches were presented in [1], [10] and [11] using a state-

space representation, this work can be distinguished from these works

via the following aspects: (a) a much simpler D.C. gain condition for

robust output feedback consensus is given, while the aforementioned

works mainly build on the existence of a matrix or matrices such that

the error dynamics are stable, which is usually hard to find; (b) [10]

and [11] do not study a robust control law, whereas this article does;
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(c) this work also captures the result of [1] regarding the robustness

of the multi-agent systems is never better than that of single agent

systems. Recently, a robust consensus problem for heterogeneous

multi-agent systems was discussed in [12]. However, the agents

considered are constrained to second-order systems, which is just

an example of NI systems and the consensus algorithm is based on

full state information which is infeasible in most cases, whereas here

we handle output feedback. Another work [13] addressed an output

consensus problem of heterogeneous uncertain linear multi-agent

systems. However, this work requires the following assumptions:

(a) [13] makes a minimum phase assumption on all plants which

allows the use of high gain control whereas the NI systems in this

work are not necessarily minimum phase; (b) [13] only studies a

class of unmodelled dynamics but does not explicitly tackle L2

external disturbances whereas this work studies both; (c) again, [13]

deals with an output synchronization problem to a limited class of

trajectories, such as constant, sinusoidal and diverging signals which

are polynomial functions of time due to technical reasons whereas

this work studies a consensus problem naturally converging to an

unspecified trajectory.

This technical note is motivated by applications in which the

system goal cannot be accomplished by a single NI system due to

limitations in its capability, such as coverage or precision. This in turn

requires the coordination of multiple NI systems, which in this work

involves output feedback consensus under external disturbances and

model uncertainty. In this technical note, a homogeneous network of

NI systems and a fixed communication topology are assumed. The

ith NI system is described in the s-domain:

yi = P (s)ui, i = 1, · · · , n, (1)

where P (s) is the transfer function (generally MIMO), yi ∈ R
m×1

and ui ∈ R
m×1 are the output and input of the system with the

dimension m ≥ 1, n > 1 is the number of agents. Then, an elegant

problem formulation, using the Laplacian matrix and Kronecker

product, is adopted such that the output feedback consensus problem

is cast into a robust stability problem, which can be solved via NI

systems theory as detailed in [4], [14] and [15]. The contributions of

this technical note can be summarized as follows: (a) it provides a

novel viewpoint where consensus problems can be studied as internal

stability problems, (b) it only exploits output feedback information as

opposed to the full state feedback which is common in the literature,

(c) it gives a class of consensus protocols that can be tuned for

performance and/or robustness, (d) it provides a robustness guarantee

via NI systems theory, and (e) it characterises the convergence sets.

Notation: R
m×n and C

m×n denote the sets of m × n real and

complex matrices respectively. In is the n × n identity matrix and

1n is the n× 1 vector with all elements being 1. Given M ∈ R
n×n,

M > (<)0 means M is positive (negative) definite and M ≥ (≤)0
means M is positive (negative) semi-definite. λ̄(M) denotes the

largest eigenvalue of M when M has only real eigenvalues and

σ̄(M), σ(M) represent the maximum and minimum singular values

of M respectively. N(M) denotes the null space of M . MT and

M∗ are the transpose and the complex conjugate transpose of M . In

addition, given s ∈ C, Re[s] is the real part of s. Given a1, a2 ∈ C,

diag(a1, a2) =

[
a1 0
0 a2

]
. Finally, given a ∈ R

n×1, ave(a) is the

average operation of all elements of a. OLHP is short for open left

half plane and MIMO is short for multi-input and multi-output.

Preliminaries of graph theory: A graph can be mathematically

expressed by G = (V, E) where V = {v1, v2, . . . , vn} is a nonempty

finite set of n nodes and an edge set E ⊆ V × V is used to

model the communications links among nodes. The adjacency matrix

A = [aij ] ∈ R
n×n, where aii = 0 and ∀i, j with i �= j,

Authors' Camera Ready Manuscript.
Please cite using bibliographic data of the associated published version.



Camera ready manuscript. Published in IEEE Transactions on Automatic Control. Use appropriate citation data. c© 2015 IEEE. 2

aij = 1 if (vi, vj) ∈ E and 0 otherwise. The in-degree of node i
is defined as di =

∑
j aij and D = diag{d1, d2, · · · , dn} ∈ R

n×n

is the in-degree matrix. The Laplacian matrix of graph G is given

by Ln = D −A. A sequence of successive edges of E in the form

of {(vi, vk), (vk, vl), . . . , (vm, vj)} is defined as a path from node i
to node j. An undirected graph is said to be connected if there is a

path from node i to node j for all the distinct nodes vi, vj ∈ V . It

is well-known that Ln has the following properties when the graph

is undirected and connected:

Ln ≥ 0, N(Ln) = span{1n}. (2)

II. ROBUST OUTPUT FEEDBACK CONSENSUS PROTOCOL

In this section, a class of output feedback consensus protocols

for networked NI systems under external disturbances and NI model

uncertainty is considered. To this end, let us first recall the definitions

of NI and SNI (short for Strictly Negative-Imaginary) systems:

Definition 1: ([15]) A square, real, rational, proper transfer function

P (s) is NI if the following conditions are satisfied:

1) P (s) has no pole in Re[s] > 0;

2) ∀ω > 0 such that jω is not a pole of P (s), j(P (jω) −
P (jω)∗) ≥ 0;

3) If s = jω0 with ω0 > 0 is a pole of P (s), then it is a simple

pole and the residue matrix K = lim
s→jω0

(s − jω0)jP (s) is

Hermitian and positive semi-definite;

4) If s = 0 is a pole of P (s), then lim
s→0

skP (s) = 0, ∀k ≥ 3 and

P2 = lim
s→0

s2P (s) is Hermitian and positive semi-definite.

It can be observed that Definition 1 captures the definitions of NI

systems in [4] and [14]. Examples of NI systems can be found in

[6] and include single-integrator systems, double-integrator systems,

undamped and damped flexible structures, to name a few typically

considered in the consensus literature.

Definition 2: ([4]) A square, real, rational, proper transfer function

Ps(s) is SNI if the following conditions are satisfied:

1) Ps(s) has no pole in Re[s] ≥ 0;
2) ∀ω > 0, j(Ps(jω)− Ps(jω)

∗) > 0.

Homogeneous NI agents are defined in the s-domain in the form

of (1). Since P (s) is in general a MIMO plant, the Laplacian matrix

describing the network interconnection is modified via a Kronecker

product to Ln⊗Im and the total networked plant under consideration

is depicted in Fig. 1 with

Fig. 1. Networked NI systems

ỹ = P̄ (s)u = (Ln ⊗ Im)(In ⊗ P (s))u = (Ln ⊗ P (s))u, (3)

where P̄ (s) is the augmented plant, y = [yT
1 , · · · ,yT

n ]
T ∈ R

nm×1

and u = [uT
1 , · · · ,uT

n ]
T ∈ R

nm×1. In general, robust output

feedback consensus is defined as follows:

Definition 3: A distributed output feedback control law achieves

robust output feedback consensus for a network of systems when

1) output consensus is achieved, i.e., yi → yss, ∀i ∈ {1, · · · , n}
for a family of plant dynamics with no external disturbance,

where yss is the final convergence trajectory.

2) yss is perturbed by additive L2[0,∞] signals when L2[0,∞]
disturbances are present on both input and output.

It can be seen that the output y reaches consensus when ỹ → 0 via

the properties of the Laplacian given in (2). This formulation actually

converts the output consensus problem to an internal stability problem

which is easier to tackle and investigate the robustness property via

standard control theoretic methods. We now impose the following

standing assumption:

Assumption 1: G is undirected and connected.

The following preliminary lemmas are needed:

Lemma 1: ([16]) Let λj and γk, j = 1, · · · , n, k = 1, · · · ,m, be

eigenvalues of matrices Λn×n and Γm×m respectively, the eigenval-

ues of Λ⊗ Γ are λjγk.

Note that Lemma 1 also applies to the singular values [16].

Lemma 2: Given Λ ∈ R
n×n and Γ ∈ R

m×m, then

N(Λ⊗ Γ) ={a⊗ b : b ∈ R
m×1,a ∈ N(Λ)}

∪ {c⊗ d : c ∈ R
n×1,d ∈ N(Γ)}.

Proof: the proof simply follows from the definition of null space

and the properties of Kronecker product.

The following lemma states that the augmented networked plant

P̄ (s) = Ln ⊗ P (s) is NI if and only if every single system P (s) is

NI.

Lemma 3: P̄ (s) is NI if and only if P (s) is NI.

Proof: First note that Ln ≥ 0 due to Assumption 1 in (3). Then,

the sufficiency and necessity are straightforward by applying Lemma

1 to Definition 1.

Since Lemma 3 requires positive semi-definiteness of Ln, this work

cannot be applied to directed graphs. The output ỹ → 0 if internal

stability is achieved for P̄ (s) with some controller. From [4], [14]

and [15], the following internal stability results are summarized:

Lemma 4: Given an NI transfer function P (s) and an SNI transfer

function Ps(s) with P2 = lim
s→0

s2P (s), P1 = lim
s→0

s(P (s)− P2
s2

) and

P0 = lim
s→0

(P (s) − P2
s2

− P1
s
), the positive feedback interconnection

[P (s), Ps(s)] is internally stable if and only if any of the following

conditions is satisfied:

1) λ̄(P (0)Ps(0)) < 1 when P (s) has no pole(s) at the origin,

P (∞)Ps(∞) = 0 and Ps(∞) ≥ 0;

2) JTPs(0)J < 0 when P (s) has pole(s) at the origin and is

strictly proper, P2 �= 0, P1 = 0,N(P2) ⊆ N(PT
0 ), where P2 =

JJT with J having full column rank;

3) FT
1 Ps(0)F1 < 0 when P (s) has pole(s) at the origin and is

strictly proper, P2 = 0, P1 �= 0, N(PT
1 ) ⊆ N(PT

0 ), where

P1 = F1V
T
1 with F1 and V1 having full column rank and

V T
1 V1 = I .

Note that the above result is actually a robust stability result

because an NI plant P (s) can be perturbed by any unmodelled

dynamics Δ(s) such that the perturbed plant PΔ(s) which then

replaces the nominal plant P (s) in Lemma 4 retains the NI system

property and still fulfills any one of the conditions in Lemma 4.

Similarly, Ps(s) can be perturbed to any SNI controller subject to

1), 2), 3). Henceforth, we do not distinguish between P (s) and PΔ(s)
for simplicity of notation, though it is stressed that P (s) could be

the resulting perturbed dynamics of some simpler nominal plant.

There is clearly a huge class of permissible dynamic perturbations

to the nominal dynamics as conditions 1), 2) and 3) impose a

restriction on P (s) only at the frequency ω = 0 or on the associated

residues of P (s) at ω = 0 and the NI class has no gain or order

restriction [4]. A few examples of permissible perturbations are
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additive perturbations where the uncertainty is also NI [4], feedback

perturbations where both systems in the feedback interconnection

are NI [6] and more general perturbations based on Redheffer Star-

products and Linear Fractional Transformations [6]. For example,
1

s+5
and

(2s2+s+1)

(s2+2s+5)(s+1)(2s+1)
are both NI with the same D.C. gain.

Now, we are ready to state the first main result of this work:

Fig. 2. Closed-loop system with SNI controllers

Theorem 1: Given a graph G which satisfies Assumption 1 and

models the communication links for networked homogeneous NI

systems, and given any SNI control law Ps(s), robust output feedback

consensus is achieved via the protocol

U cs = P̄s(s)ỹ = Ccs(s)y = (Ln ⊗ Ps(s))y (4)

shown in Fig. 2, or in a distributed manner for each agent i,

ui = Ps(s)

n∑
j=1

aij(yi − yj), (5)

under any external disturbances d1,d2 ∈ L2[0,∞) and any model

uncertainty which retains the NI system property of the perturbed

plant P (s) if and only if P (s) and Ps(s) satisfy 1), 2) or 3) in

Lemma 4 except that

λ̄(P (0)Ps(0)) <
1

λ̄(Ln)
(6)

replaces λ̄(P (0)Ps(0)) < 1 in case 1).

Proof: Before presenting the consensus result, let us first prove

the internal stability of [P̄ (s), P̄s(s)] using Lemma 4. From Fig. 2,

we have P̄ (s) = Ln ⊗ P (s) which has been shown to be NI in

Lemma 3 and it is straightforward to see P̄s(s) = In⊗Ps(s) is SNI

since Ps(s) is SNI.

(⇐) Sufficiency: From Lemma 4, we can conclude that [P̄ (s), P̄s(s)]
is internally stable since

1) when P (s) has no pole(s) at the origin, P̄ (s) has no

pole(s) at the origin as well. Also, P̄ (∞)P̄s(∞) = (Ln ⊗
P (∞))(In ⊗ Ps(∞)) = Ln ⊗ (P (∞)Ps(∞)) = 0 and

P̄s(∞) = Ln ⊗ Ps(∞) ≥ 0 due to Lemma 1 as well as

the pair of [P (s), Ps(s)] satisfies condition 1) of Lemma 4.

Finally, λ̄(P̄ (0)P̄s(0)) = λ̄(Ln ⊗ (P (0)Ps(0))) < 1 since

λ̄(P (0)Ps(0)) <
1

λ̄(Ln)
due to Lemma 1.

2) when P (s) has pole(s) at the origin, P̄ (s) has pole(s) at the ori-

gin as well. In the case of P2 �= 0, P1 = 0, it is straightforward

to see N(Ln⊗P2) = N(P̄2) ⊆ N(P̄T
0 ) = N(Ln⊗PT

0 ) due to

Lemma 2 and N(P2) ⊆ N(PT
0 ). Furthermore, P̄2 = Ln⊗P2 =

(JLJT
L )⊗ (JJT ) = (JL⊗J)(JL⊗J)T = J̄ J̄T since Ln and

P2 are both Hermitian and positive semi-definite, where JL has

full column rank being n−1. With the definition of J̄ = JL⊗J ,

we have J̄T P̄s(0)J̄ = (JL ⊗ J)T (In ⊗ Ps(0))(JL ⊗ J) =

(JT
L InJL)⊗(JTPs(0)J) = (JT

L JL)⊗(JTPs(0)J) < 0 since

JT
L JL > 0 (with full rank of n− 1) as well as Lemma 1 and

condition 2) of Lemma 4.

3) The case of P2 = 0, P1 �= 0 follows in the similar manner as

case 2) by noting that F̄1 = JL ⊗ F1.

(⇒) Necessity is trivial by reversing the above arguments.

The internal stability of [P̄ (s), P̄s(s)] implies output consensus

when d1 = d2 = 0, by noting that ỹ → 0 ⇐⇒ y → 1n ⊗ yss, i.e.,

yi → yss ∈ R
m×1, which is the null space of Ln ⊗ Im when G is

undirected and connected.

Robustness to model uncertainty which retains the NI property of

P (s) is assured as the result is applicable to any NI plant P (s).
Furthermore, the external disturbances d2,d1 in Fig. 2 on input u
and output y are equivalent to d2, (Ln ⊗ Im)d1 on input u and

output ỹ, which is a subset of L2 disturbances. Hence, the control

protocol (4) or (5) will achieve a perturbed L2 consensus signal on

output y (due to superposition principle of linear systems) for all L2

disturbances d1,d2.

Remark 1: It can be seen that the condition in inequality (6) is

stricter than that in the inequality of case 1) of Lemma 4 due to

the network interconnection. If originally Ps(0) was such that 0 <
λ̄(P (0)Ps(0)) < 1, the controller Ps(0) needs to be tuned for smaller

eigenvalues in order to satisfy inequality (6). On the other hand, if

λ̄(P (0)Ps(0)) < 0, there is no need to tune further.

From Fig. 2 and [17], it is convenient to define the input loop trans-

fer matrix, Li = −(In⊗Ps(s))(Ln⊗P (s)) = −Ln⊗(Ps(s)P (s)),
and output loop transfer matrix, Lo = −(Ln⊗P (s))(In⊗Ps(s)) =
−Ln ⊗ (P (s)Ps(s)), respectively. The input and output sensitivity

matrices are defined as Si = (I + Li)
−1 and So = (I + Lo)

−1. If

the closed-loop system is internally stable, the following equations

hold:

ỹ = So(Ln ⊗ Im)d1 + So(Ln ⊗ P (s))d2

u = Si(Ln ⊗ Ps(s))d1 + Sid2.
(7)

Good robustness to high frequency unmodelled dynamics is given by

the condition in [17]:

σ(−Ln ⊗ P (jω)Ps(jω)) � 1, σ(−Ln ⊗ Ps(jω)P (jω)) � 1

and σ(−Im ⊗ Ps(jω)) � M

⇐⇒σ(P (jω)Ps(jω)) � 1

σ(Ln)
, σ(Ps(jω)P (jω)) � 1

σ(Ln)

and σ(Ps(jω)) � M

σ(Ln)
(8)

where M is sufficiently small and σ(Ln) = λ(Ln) for the undirected

and connected graph.

Remark 2: Inequality (8) implies that the robust condition for

networked systems is always more stringent than that for a single

system by noting that σ(Ln) = λ(Ln) > 1 ([18]), which reaffirms

the result of [1].

III. CONVERGENCE SET STUDY

Section II provides a class of general robust output feedback

consensus protocols that guarantees the convergence of the NI

systems’ outputs yi under external disturbances as well as NI model

uncertainty. This section mainly aims at investigating the steady state

nominal values of yss under the proposed output feedback consensus

protocol. In order to specify the exact convergence set, the external

disturbances and model uncertainty will not be considered in this

section.

Given a minimal realization of the ith NI plant P (s),{
ẋp×1

i = Ap×pxp×1
i +Bp×mum×1

i

ym×1
i = Cm×pxp×1

i +Dm×mum×1
i

, i = 1, · · · , n, (9)
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and a minimal realization of the ith SNI controller Ps(s),{
˙̄xq×1
i = Āq×qx̄q×1

i + B̄q×mūm×1
i

ȳm×1
i = C̄m×qx̄q×1

i + D̄m×mūm×1
i

, i = 1, · · · , n, (10)

where p and q are the dimensions of the states of the NI plant and

the SNI controller, respectively. The closed-loop system of Fig. 2 is

given as[
˙̄x
ẋ

]
=

[
In ⊗ Ā+ Ln ⊗ B̄DC̄ Ln ⊗ B̄C

In ⊗BC̄ In ⊗A+ Ln ⊗BD̄C

] [
x̄
x

]

� Ψ

[
x̄
x

]
.

(11)

The spectrum of Ψ is of importance since it will determine the

equilibria. In particular, in this work, the eigenvalues of Ψ on the

imaginary axis will determine the steady-state behaviour. To this end,

the following lemma is given to characterise the spectrum of Ψ.

Lemma 5: Let λi
L be the ith eigenvalue of Ln associated with

eigenvector vi
L. The spectrum of Ψ is given by the union of spectra

of the following matrices:

ψi =

[
Ā+ λi

LB̄DC̄ λi
LB̄C

BC̄ A+ λi
LBD̄C

]
, i = 1, · · · , n.

Furthermore, let [vi
1
T

vi
2
T
]T be an eigenvector of ψi. Then, the

corresponding eigenvector of Ψ is

[
vi
L ⊗ vi

1

vi
L ⊗ vi

2

]
.

Proof: Let λψi be the eigenvalue of ψi and

Ψ

[
vi
L ⊗ vi

1

vi
L ⊗ vi

2

]
=

[
vi
L ⊗ (Āvi

1 + λi
LB̄DC̄vi

1 + λi
LB̄Cvi

2)
vi
L ⊗ (BC̄vi

1 +Avi
2 + λi

LBD̄Cvi
2)

]

=

[
vi
L ⊗ λψiv

i
1

vi
L ⊗ λψiv

i
2

]
= λψi

[
vi
L ⊗ vi

1

vi
L ⊗ vi

2

]

which shows that λψi is also an eigenvalue of Ψ with the associated

eigenvector being

[
vi
L ⊗ vi

1

vi
L ⊗ vi

2

]
.

It is well known in [19] that there is only one zero eigenvalue in

Ln, λi
L = 0, when the graph G satisfies Assumption 1. In this case,

ψi has eigenvalues λA and λĀ associated with eigenvectors

[
0
vA

]

and

[
vĀ

(λĀIn −A)−1BC̄vĀ

]
respectively since ψi =

[
Ā 0
BC̄ A

]
,

where λA and λĀ are the eigenvalues of A and Ā, vA and vĀ are

the corresponding eigenvectors of A and Ā, respectively. This also

shows that eigenvalues of Ψ include λA and λĀ with the associated

eigenvectors being

[
0

1⊗ vA

]
and

[
1⊗ vĀ

1⊗ (λĀIn −A)−1BC̄vĀ

]
. It

is worth noting that the invertibility of A − λĀIn follows since an

SNI controller can always be chosen such that λĀ �= λA.

In the case of λi
L > 0 and det(A) �= 0, it can be shown in a

similar manner as Theorem 5 of [4] that

ψi =

[
Ā+ λi

LB̄DC̄ λi
LB̄C

BC̄ A+ λi
LBD̄C

]

=

[
Ā 0
BC̄ A

]
+ λi

L

[
B̄
BD̄

] [
DC̄ C

]
= ΦT

(12)

where T =

[
Ȳ −1 − λi

LC̄
∗DC̄ −λi

LC̄
∗C

−C∗C̄ Y −1 − λi
LC

∗D̄C

]
and Φ =[

ĀȲ 0
0 AY

]
. ψi is Hurwitz if and only if λ̄(P (0)Ps(0)) < 1

λi
L

,

which coincides with the condition in Theorem 1 when λi
L = λ̄(Ln).

In the case of λi
L > 0 and det(A) = 0, it can be verified in a

similar manner as [15] that

ψi =

[
Ā λi

LB̄C
BC̄ A+ λi

LBD̄C

]
(13)

due to D = 0. ψi is also Hurwitz when the conditions 2) and 3) in

Lemma 4 hold. A detailed proof is omitted due to page limitations.

One direct observation from the above analysis: the number of

eigenvalues of Ψ on the imaginary axis is equal to the number

of eigenvalues of A on the imaginary axis and all of the other

eigenvalues lie in the OLHP since Ā is Hurtwiz [14]. Thus, the steady

state of the closed-loop system (11) in general depends only on the

eigenvalues of A on the imaginary axis as shown in the following

theorem:

Theorem 2: Given the closed-loop system in (11), the steady state

can be expressed in the general form

[
x̄(t)
x(t)

]
t → ∞−−−−→

[
wj , · · · , wg

k

]
eJ

′t

⎡
⎢⎣
vT
j

...

vg
k
T

⎤
⎥⎦
[
x̄(0)
x(0)

]
, (14)

where J ′ is the Jordan block associated with n0 eigenvalues of Ψ
on the imaginary axis denoted by λA, wj and vj are the right and

left eigenvector of Ψ associated with λA given by

wj =

[
0

1⊗ vr
A

]
,vj =

[
1⊗ ( 1

n
(λAIq − Ā)−1C̄TBTvl

A)

1⊗ 1
n
vl
A

]
, (15)

∀j = 1, · · · , n0 − (na −ng), where na and ng denote the algebraic

and geometric multiplicity of λA respectively. vr
A,v

l
A are the right

and left eigenvectors of A associated with λA. Moreover, in the

case that na > ng , wg
k and vg

k are the generalised right and left

eigenvectors given by

wg
k =

[
0

1⊗ v
rg
A

]
,vg

k =

[
1⊗ ( 1

n
(λAIq − Ā)−1C̄TBTv

lg
A )

1⊗ 1
n
v
lg
A

]
,

(16)

where k = 1, · · · , na − ng , v
rg
A and v

lg
A are the generalised right

and left eigenvectors of A associated with λA.

Proof: It is straightforward that

[
x̄(t)
x(t)

]
= eΨt

[
x̄(0)
x(0)

]
=

PeJtP−1

[
x̄(0)
x(0)

]
t → ∞−−−−→P

[
eJ

′t 0
0 0

]
P−1

[
x̄(0)
x(0)

]
, where J ′

r×r is

the Jordan block associated with n0 eigenvalues on the imaginary

axis. Also, P = [w1, · · · ,wn0 , · · · ,w(p+q)n], where wi is the right

eigenvector of Ψ and P−1 = [v1, · · · ,vn0 , · · · ,v(p+q)n]
T , where

vi is the left eigenvector of Ψ.

It can be found, without loss of generality, that the right and left

eigenvectors of Ψ associated with the eigenvalues on imaginary axis

are given in (15). Thereby, the steady state generally converges to

[
x̄(t)
x(t)

]
t → ∞−−−−→

[
w1, · · · , wn0

]
eJ

′t

⎡
⎢⎣
vT
1

...

vT
n0

⎤
⎥⎦
[
x̄(0)
x(0)

]
. (17)

However, in the case that na > ng , the generalised right and left

eigenvectors are given in (16). Thus, the steady state converges to

(14) instead of (17).

Next, convergence sets of several special cases of NI systems are

given in detail:

Corollary 1: In the case that the NI plant is a single-integrator, i.e.,

ẋi = ui, yi = xi, the convergence set of (11) is yss = −C̄Ā−T ·
ave(x̄(0)) + ave(x(0)).

Proof: The convergence set can be obtained by noting the

eigenvectors wj =
[
0T 1T

n

]T
,vj =

[− 1
n
C̄Ā−T1T

n
1
n
1T
n

]T
and applying (17) in Theorem 2.



Camera ready manuscript. Published in IEEE Transactions on Automatic Control. Use appropriate citation data. c© 2015 IEEE. 5

Corollary 2: In the case that the NI plant is a double-integrator,

i.e., ξ̇i = ζi, ζ̇i = ui, yi = ξi, the convergence set of (11) is

yss = −C̄Ā−T · ave(x̄(0))t+ ave(ξ(0)) + ave(ζ(0))t.
Proof: For double-integrator plants, na = 2 > 1 = ng

for λ(A) = 0. The convergence set is straightforward by not-

ing wj =
[
0T 1T

n 0T
]T

,vj =
[
0T 1

n
1T
n 0T

]T
, wg

k =[
0T 0T 1T

n

]T
,vg

k =
[− 1

n
C̄Ā−T1T

n 0T 1
n
1T
n

]T
after rear-

ranging x = [ξT ζT ]T and applying (14).

Corollary 3: In the case that the NI plant is a damped flexible

structure, the convergence set of (11) is yss = 0.

Proof: This is straightforward and thus omitted.

IV. ILLUSTRATIVE EXAMPLES

In this section, numerical examples of typical NI systems are given

to illustrate the main results of this technical note. A scenario of 3

NI systems is considered and the communication graph G is given

as in Fig. 3. Therefore, the Laplacian matrix of G can be derived

according to the definition in Section I:

L3 =

⎡
⎣ 1 −1 0
−1 2 −1
0 −1 1

⎤
⎦

Fig. 3. Communication topology G and associated Laplacian matrix

A. Multiple Single-Integrator Systems

Suppose that the NI systems have identical single-integrator dy-

namics as shown in Corollary 1 with the initial condition being

x(0) = [1 2 3]T . The SNI controller is designed as indicated

in Theorem 1 to be Ā = −2, B̄ = 1, C̄ = 1, D̄ = −1,

with the initial condition being x̄(0) = [0.1 0.2 0.3]T . Without

considering disturbances firstly, it can be verified as Corollary 1 that

yss = −C̄Ā−T ·ave(x̄(0))+ave(x(0)) = 1
2
∗0.2+2 = 2.1, which is

shown at the top left of Fig. 4. If external disturbances are inserted,

robust output feedback consensus is also achieved with the steady

state consensus value perturbed by filtered disturbances as shown at

the top right of Fig. 4. The robust performance of the control law can

be improved by tuning the SNI controller to, for example D̄ = −5,

which are shown in the bottom left and right of Fig. 4, respectively.

One may notice that when the initial condition of the controller

x̄(0) is set to 0 (a reasonable choice as the controller is determined

by the designer), the convergence set naturally becomes the centroid

of the initial pattern, i.e., yss = ave(x(0)), which in turn implies that

the result for the average consensus protocol in [19] is a special case

of the proposed result. Alternatively, the desired convergence point

can be chosen by properly initialising the SNI controller, which can

be seen as a more general result.

B. Multiple Double-Integrator Systems

Suppose that the NI systems have identical double-integrator

dynamics as shown in Corollary 2 with the initial conditions being

ξ(0) = [1 2 3]T , ζ(0) = [0.1 0.2 0.3]T . The same SNI controller can

be adopted as in Subsection IV.A. Without considering disturbances

firstly, it can be verified using Corollary 2 that yss = ξi(∞) =
−C̄Ā−T ·ave(x̄(0))+ave(ξ(0))+ave(ζ(0))t = 1

2
∗0.2+2+0.2t =

2.1 + 0.2t and ζi(∞) = −C̄Ā−T · ave(x̄(0)) + ave(ζ(0)) =
1
2
∗ 0.2 + 0.2 = 0.3, which is exactly as shown at the top of Fig. 5.

If the same disturbances as in Subsection IV.A are inserted, output

consensus is also achieved with the steady state values perturbed

Fig. 4. Robust output consensus for networked single-integrator systems

by filtered disturbances as shown at the bottom of Fig. 5. Again,

appropriate choices of the SNI controller can be made to minimise

the effects of external disturbances, which is omitted here due to the

page limitations.

One can also choose the initial condition of the controller to be

x̄(0) = 0 to obtain the natural convergence set as yss = ξss =
ave(ξ(0)) + ave(ζ(0))t and ζss = ave(ζ(0)). The same conclusion

can hence be drawn as in Subsection IV.A.

Fig. 5. Robust output consensus for networked double-integrator systems

C. Multiple Flexible Structures Systems

Suppose that the NI systems are damped flexible structures as

shown for example in Fig. 2 of [4]: M ẍi + Cẋi + Kxi =

ui, yi = xi, i = 1, · · · , 3 where xi = [x1
i
T

x2
i
T
]T , ui =

[u1
i
T

u2
i
T
]T , M = diag(m1,m2), C =

[
c1 + c −c
−c c2 + c

]
, K =[

k1 + k −k
−k k2 + k

]
with m1 = 1, m2 = 0.5, k1 = k2 = k = 1

and c1 = c2 = c = 0.1. The initial conditions are given as

x(0) = [1 2 3 4 5 6]T and ẋ(0) = [0.1 0.2 0.3 0.4 0.5 0.6]T .

The SNI controller can be designed as indicated in Theorem 1 to be

Ā = −4I2, B̄ = I2, C̄ = I2, D̄ = 02 since λ̄(P (0)) = 1 and thus

λ̄(P (0)Ps(0)) = 1
4
< 1

λ̄(Ln)
= 1

3
with the initial condition being

[0 0 0 0 0 0]T . Robust output feedback consensus can be achieved

as shown at the top of Fig. 6 under external disturbances, which also

validates Corollary 3.

If the NI systems are considered as undamped flexible structures

as shown in Fig. 2 of [14], which correspond to the above damped

flexible structure dynamics without the damping term C, robust

output feedback consensus can be achieved as shown at the bottom

of Fig. 6 under external disturbances.

V. CONCLUSION

NI systems include a wide range of LTI systems that are com-

monly studied in the consensus literature. This class of systems
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Fig. 6. Robust output consensus for networked flexible structures

and corresponding theory also include a large class of dynamical

systems that have not been studied in consensus literature to date.

The robust output feedback consensus problem for this class of

systems is hence of interest. The advantage of using NI systems

theory for solving the consensus problem is four-fold: (a) it only

uses output feedback information as opposed to full-state feedback

information; (b) it provides robustness guarantees w.r.t. L2 external

disturbance; (c) it allows tuning of a whole class of SNI control laws

for performance; and (d) it bypasses traditional searches for Lyapunov

candidate functions. In addition, the characterised convergence set

also makes it possible to initialise the controller state to achieve the

desired final consensus target.

Future research directions include robust output feedback consen-

sus for networked heterogeneous NI systems as well as the impact

of switching topologies and time delays.
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