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摘 要       
隨著半導體製程的不斷演進，和電腦輔助設計工具(EDA)的持續發展，使得現今

的數位積體電路設計可以在有限的矽晶圓面積容納更多的功能，然而動輒百萬的

邏輯閘也加重了晶片測試的困難度，因此可測試性設計(DFT)也就廣氾受到眾多

數位設計工程師的注意,透過適度掃描串列(SCAN CHAIN)的設計，可大幅降低複

雜晶片測試上的困難，然而隨著邏輯閘的不斷增加，這些掃描串列結構佔全部晶

片面積的比重也持續上升，因此這些串列結構能否正常工作也將影響晶片測試的

最終良率(Yield)，所以需要發展一些機制來找出無法正常運作的掃描串列結構‧

在先前的機制發展中，Stuck-At 錯誤模型是發展最成熟，也是最廣為人知的一個

模型，但在深次微米的先進製程及高速晶片操作的要求下，舊有錯誤模型已難以

解釋新產生的問題，所以又有一些新的錯誤模型被發展出來，諸如暫態模型，路

徑延遲模型，橋接模型(Bridging)，資料保持模型(Hold-Time) 等等，在過去的文

獻資料中，資料保持模型較少被討論，因此本篇論文將探討資料保持模型的錯誤

診斷，並提出一種貪婪(Greedy)的錯誤診斷機制來找出無法正常運作的掃描串列

結構，此外該機制也可在非理想的環境中擁有不錯的診斷結果 ‧ 
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ABSTRACT  

 
 As the continuing improvement on the semiconductor process technology and 

EDA (Electronic Design Automation) industry, it allows the current digital IC design 

to put more functions within the limited silicon die area. However, a million-gate- 

count design makes the chip testing become more difficult , so DFT(Design for Testability) has 

gained a lot of popularity recently. The use of the scan chain structure can lower down the difficulty 

in testing and/or diagnosing complex chips, as the gate count grows, the overhead of scan chains 

increases accordingly as well. Thus, whether these scan chains function correctly or not will affect 

the final yield of the chip. Therefore, some mechanisms are needed in order to find out the faulty 

scan chains if necessary. In the literature, the stuck-at fault is the most popular fault model. For 

today’s DSM (deep sub-micron) or even nanometer designs, however, this traditional stuck-at fault 

model is often not adequate when it comes to the fault diagnosis. Other more realistic fault models 

have been in use, such as the transition fault model (slow to rise, slow to fall), the path delay fault 

model, the bridge fault model, and the hold- time violation fault model, etc. In the past, the hold-time 

violation fault model is rarely discussed. But today, it occurs more often and has been one of the 

main targets in scan chain diagnosis. This thesis will particularly focus on this type of fault model.  

We propose a new greedy algorithm to explore the faulty flip-flops in the scan chains. As compared 

to the previous methods, this algorithm is particularly robust and able to identify the fault with a 

higher success rate, even under some non-ideal situations, e.g., when there are multiple hold-time 

faults in the scan chain, when the core logic is also faulty, or when the hold-time faults are 

intermittent. 
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Chapter 1 

Introduction 

    As the semiconductor manufacturing process advances to the DSM (deep sub-micron) or even 

the nanometer scale (sub-100nm), it is common to have more and more multi-million gates count 

designs in today’s electronic products. Inevitably, this will lead to more difficult IC testing. In order 

to improve the testability of such complex designs, the DFT (Design for Testability) technology has 

been widely used. Among various DFT techniques, the scan chain architecture is the most popular 

one. Though the proper arrangement of scan chains, we can use less IO pins to access more inside 

the chip. The EDA (Electronic Design Automation) companies currently can provide pretty mature 

DFT solutions to help scan chain insertions and automatic test pattern generations (ATPG) to handle 

the testing problems with the complex design. As the gate count increases to the multi-million level, 

the overhead of scan chains grows accordingly as well, so not only the functionality of the chip, but 

the scan chains need to be tested in full chip testing. There are numerous reasons for chips to fail the 

testing, some are design related and some are process related. The root cause of the failures may fall 

in the core logic (i.e. these logic cannot behave as the expected functionality) or in the DFT circuitry 

such as the scan chains. For DFT circuitry, typically a so-called flush test can be used to validate the 

scan chains. It uses a set of random patterns or specific patterns to shift in and out of the scan chains. 

If the scan chain functions well, we may receive expected shift out patterns. Otherwise, the scan 

chain diagnosis is followed. 

    In order to diagnose the faulty scan chains, some fault models on a scan chain have been 

thoroughly investigated recently as in Huang [3] and, Kundu [7]. These fault types can be classified 

by two factors (as shown in Fig 1.1). (1) functional faults or timing faults (2) permanent faults or 

intermittent faults.  



 
 

Each fault could be perm anent or interm ittent.
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Fig. 1.1: Common fault types for scan chain diagnosis 

For functional faults, i.e., the logics cannot perform the desired functionality, the stuck-at 

fault and the bridge fault models are mostly used. The stuck-at fault means the logic node may be 

tied to power (logic 1) or ground (logic 0) via some contaminations such as particles and it causes 

the node to behave the constant logic 1 or 0 (i.e. the stuck-at 1 fault model and stuck-at 0 fault model) 

to violate its expected behavior. The bridge fault model is considering the un-expected connection 

between two nodes, which are caused by specific sensitive layout geometry or conductive materials, 

created by imperfect process such as etching. For timing faults, two types of timing violation 

associated with flip-flops need to be considered: setup time violation and hold-time violation. Setup 

time violation is mostly due to the too-late signal arrival at a flip-flop’s input while the hold-time 

violation is due to too-early signal change at a flip-flop’s input. For a complex design in today, it is 

more difficult to predict the timing accurately before the tape out. The timing may change after 

physical layouts to cause the delay to increase or to decrease between scan cells. An excessive 

increase in delay could result in the slow-to-rise or slow-to-fall timing faults and an excessive 

decrease in delay could result in fast-to-rise or fast-to-fall timing faults. For the former situation, the 
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mostly used solution is to lower down the frequency in the scan chain shifting to compensate for the 

extra delay. For the latter condition, the mostly used solution is to insert some buffers to eliminate 

the timing problems. For some faults, the probability of being activated is not 100%. These faults are 

called intermittent faults. In general, different kinds of faults may have different faulty syndrome (i.e. 

failing response) during the flush test. Thus, fault type is mostly known already when it comes to 

locate the positions of failing scan flip-flops. 

In the past, there are many approaches proposed to address the scan chain diagnosis problem. It 

can be classified into two major categories, one is the hardware-assisted method and the other is 

purely software approach. For the hardware-based methods, Schafer [12] recommend to add extra 

routings from one scan chain to another, i.e. so-called partner scan chain, so the output of each scan 

cell of master scan chain can connect to the partner chain for diagnosis. However if both chains are 

defective, this method could fail. Edirisooriva [1] suggested to add the XOR (Exclusive-OR) at the 

input of some or all scan cells, so these scan cells could flip their contents before next shifting 

operation to following scan cell. Wu [15] and Narayanan [11] recommend implementing specific 

scan cell design so as to flip the contents of scan cells sometime during the scan chain test. These 

approaches can be performed quite efficiently with the supporting circuitry for certain types of faults 

such as stuck-at faults. They may not be suitable for the hold-time violation faults, which is the main 

target of this thesis. 

    For software methods, Kundu [7] proposed to use sequential ATPG to generate a proper test 

sequence to set the flip-flops to some specific values then shift out these values for analysis. 

However the sequential ATPG is more difficult than combinational ATPG, in order to overcome the 

high complexity of sequential ATPG, Cheney [18] proposed to use random test patterns instead of 

diagnostic patterns, using fault simulations and response matching heuristics to gauge the most likely 

candidates. In general, such a process is time-consuming since it has to enumerate a large number of 

fault candidates in the faulty scan chain. Stanley [14] proposed to run fault simulations for all latches 
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in the scan chain. It takes the fault-free scan chains as vehicle to set the threshold values for faulty 

scan chains, so if the score is higher than the threshold values, it will be diagnosed. Thereby it 

lowers down the difficulty of the diagnostic test generation process. So only combinational ATPG is 

required for most cases. Guo [2] further proposed three steps for scan chain diagnosis. The 1st step is 

to determine faulty chain and faulty type. The 2nd step is to identify upper and lower bounds via 

some modified patterns, and the last step is using matching skills to score and rank the fault 

candidates. So it can reduce the fault simulation time significantly. Huang [3,4,5] proposed the 

statistical concepts to use probability for modeling the intermittent faults. Additionally the authors 

also proposed an enhanced calculation to determine the upper and lower bound. Recently, Li [9][10] 

further optimized the framework by incorporating the so-called single-excitation patterns and 

modified ATPG techniques to provide a better scan chain diagnosis resolution. Beyond these 

hardware and software assisted methods for scan chain diagnosis, there are other some techniques 

used to localize the faulty flip-flop in scan chains. Hirase [8] proposed an IDDQ measurement 

technique to diagnose the faulty scan chains. Song [13] proposed another point of view for scan 

chain diagnosis. Since either the hardware-based or the software methods need to modify the 

latch/flip-flops or require extensive data collection for post processing, the proposed technology use 

the detection of light emission on the off-state leakage current to localize the faulty scan chain 

problems. 

    In general, the whole scan chain diagnosis flow is shown in Fig 1.2. At the first phase, generate 

diagnostic test sequence to set the values of flip-flops in the scan chain (i.e. the fault-free snapshot 

images) to be more random as much as possible, then apply the same test sequence to a failing chip 

and collect observed images of the failing response, then use some specific algorithm to trace the 

difference profile between the fault-free and faulty images, then with the power of statistics to sort 

out the predicted possible fault candidates in scan chains.  
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Fig. 1.2: Overall scan chain diagnosis flow. 

 

1.1 Motives 

    In this thesis, we propose a new paradigm for diagnosing hold time faults in particular. The 

most distinct feature of my method as opposed to previous work is that we assume less on the faulty 

behavior, so we can be more robust for certain non-ideal conditions in the real world. Such as they 

might have some multiple faults in a burst or the core logic may not be fault-free during the scan 

chain diagnosis. The core logic may also have faults to cause the scan chain diagnosis more 

challenging. Besides, the intermittent faults due to signal coupling can be dealt with in our approach 

as well. In our approach, the scan chain diagnosis problem is formatted as a delay insertion 

formulation. With some statistical analysis, we can isolate the locations of hold-time faults even 

when the condition is not ideal such as multiple faults or a burst of faults. Since the approach 

proposed does not have to enumerate any faults, so it can be very efficient in terms of CPU times. 
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1.2 Thesis Organization 

    The rest of the thesis is organized as follows. 

In chap 2, we present the basic diagnosis flow and also discuss two kinds of DFT test methodologies, 

one is scan-capture-scan methodology which is used in current DFT test solution, another one is the 

run-and-scan methodology which is used in the thesis for the diagnosis purpose. 

In chap 3, we discuss the hold-time fault definitions, the fault modeling and the problem 

formulation. 

In chap 4, we present the principal of our greedy algorithm and also illustrate the operation of the 

greedy algorithm in hold-time fault diagnosis. 

In chap 5, we discuss the experimental setup and several experiment results of hold-time fault 

diagnosis with greedy algorithm under ideal and non-ideal situations. It also considers the 

intermittent faults problems with another experiment results. 

In chap 6, we provide the conclusion.  

 

 

 

 

 

 

 

 

 



 

Chapter 2 

Basic Diagnosis Flow   

    In this chapter, we will define the necessary terminology on scan chains and the fundamental 

diagnosis flow. 

    For a large design, there might be a large number of scan chains as shown in Fig 2.1. It is 

common that only a small number of them can be classified as faulty scan chains after the flush test. 

So one can take the advantage of these fault-free chains as the channels to diagnose the faulty one, as 

proposed in Guo [2], Stanley [14]. At the beginning the flip-flop values in the identified fault chains 

are all set to an unknown value “X”. Then the flip-flop outputs of these fault-free chains are regarded 

as pseudo inputs. So the combinational ATPG techniques can be used to find a proper test sequence 

in terms of the primary inputs and these pseudo inputs to set a deterministic value (i.e. either ‘0’ or 

‘1’) to every flip-flop in the faulty scan chains.    

Fig. 2.1: Architecture of scan chains.
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2.1 Terminology 

    For simplicity without losing generality, we assume only one scan chain exists in the CUD 

(Circuit Under Diagnosis) in the thesis as shown in Fig 2.2. So there is only one scan input (SI) and 

one scan output (SO), respectively. Input pins are referred to as primary inputs and output pins as 

shown are referred as primary outputs. The flip-flops in the scan chain are ordered from SI to SO 

sequentially, denoted as (f1, f2…, fn) assuming there are n flip-flops. The diagnosis test sequence 

will be discussed in the later section. 

Definition 1: (Snapshot Image) The Snapshot image of a scan chain is the value combination of the 

flip-flops at certain time instance. For a fault-free circuit under diagnosis, the snapshot image is 

available through the functional simulation as long as the test sequence is given. However for a 

failing chip, the snapshot image of a scan chain is not available actually. 

Definition 2: (Observed Image) The observed image of a scan chain is the shifted-out version of a 

snapshot image. For a fault-free circuit, it is equivalent to the snapshot image. However, for a failing 

chip, the bit streams collected at the scan output pin might be different from the snapshot images 

fault-free. The main reason is that the presence of faults in the scan chain could distort the bit 

streams observed at the scan output pin. 
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Fig. 2.2: Snapshot image and observed image of scan chain. 

 

Example 1: In Fig 2.2, we assume there is a stuck-at–0 fault in the scan chain path between flip-flop 

2 (F2) and flip-flop 3 (F3), and the fault here will distort the bit stream propagation from scan input 

to scan output. In this case, we apply some test sequence to the circuit and the mission logic will 

apply the update results back to the scan chain after some combinational operation. The update 

contents in these scan flip-flops are the snapshot images we defined previously, say {(F1, F2, F3, F4) 

| (0,1,0,1)}. Then we shift out the contents of these flip-flops in the scan chain sequentially and get 

the observed image at the scan output after 4 cycles, say {(F1, F2, F3, F4) | (0,1,0,1)}, so It is 

obvious that the observed image is different from the snapshot image and It is caused by the 

stuck-at-0 fault we assume in the scan chain and this fault distorts the shifted-out bit streams.  

    The quality of scan chain diagnosis depends on how the test patterns are applied and how the 

responses are accumulated at the scan output pins. Regarding the test application, one can use either 

functional patterns applied in the primary input pins or scan patterns applied to the scan input pins. 

The latter one is what we call scan-capture-scan methodology and the former one is what we call 

run-and-scan methodology. We will explain the two methodologies in more detail in the following 

section and determine why we choose the run-and-scan as our test sequence generation flow 

9 9
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2.2 test sequence methodology   

   In this section, we will clarify the difference between the two test sequence generation 

methodologies. And for simplicity, we will also assume one stuck-at fault existing in our scan chain 

to illustrate the two methods.   

    In Fig 2.3, we will illustrate the operation of scan-capture-scan technology and in Fig 2.4; we 

will illustrate the operation of run-and-scan technology. For SCS (scan-capture-scan), It is the 

typical procedure used in scan testing. Basically, it can be divided into the following steps. In step 1 

as shown in Fig 2.3(a), we shift in (or scan-in) an ATPG pattern, say (1,0,1,1) in this example. 

Initially, the contents of the flip-flops are unknown, so after the scan-in operation, the contents of the 

flip-flop should be (1,0,1,1) from SI to SO, denoted as {f1, f2, f3, f4}. However, there is one 

stuck-at-0 fault in the scan path between flip-flops f2 and f3. It distorted the contents to be (1,0,0,0) 

and the down-stream part (i.e., f3 and f4) will be distorted due to the fault effect. In step 2 as shown 

in Fig 2.3(b), we apply the primary input (PI) patterns, so the core combinational logic will be 

executed in some way based on the distorted scan chain values, and then capture the response to 

those flip-flops as (0,1,1,0). The contents of the flip-flops have been distorted once again. In Fig 

2.3(c), we shift out (or scan out) the contents of those flip-flops and compare the shift-out bit stream 

with expected fault-free bit stream to determine whether the scan test is passed or not. In the case, 

there is a fault in the scan chain, so eventually the shift-out value will be (0, 0, 1, 0) and as we can 

see, the flip-flops f1 and f2 were distorted again. So in general, the SCS (scan-capture-scan) 

technology will inevitably cause two distortions during two scan-chain shifting operation (i.e. 

shift-in first and shift-out later). Comparing these two observed images, there is no obvious different 

signature to highlight the possible failing locations of faulty scan flip-flops. So scan-capture-scan 

will cause scan chain diagnosis not so straightforward due to the multiple distortions.  
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Fig. 2.3(a): Scan-in an ATPG pattern. 
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Fig. 2.3(b): Capture the response of FF’s. 
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Fig. 2.3(c): Scan-out and compare. 

    In Fig 2.4, we propose a RAS (Run-And-Scan) approach to ease the diagnosis process. We use 



 
the same circuit as an example to illustrate the operation of RAS. In Fig 2.4(a), after the reset, the 

initial contents of these flip-flops have been determined, then we apply the functional patterns 

through PI pins, and the core logic will compute accordingly and we capture the results into the 

flip-flops as (0, 1, 1, 0). In step 2 as shown in Fig 2.4(b), we shift out the contents of those flip-flops, 

and due to the one stuck-at fault in the scan chain, the image we observe will be (0, 0, 1, 0), 

Comparing the two images and using the different profiles between the two images, we can isolate 

the faulty suspicious candidates in a more efficient way. 
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Fig. 2.4(a): Apply a test sequence at PI 
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Fig. 2.4(b): Scan-out and observe image 
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 Based on the analysis and illustration shown above, we adopt the run-and-scan method instead of 

scan-capture-scan method to be our test application methodology for the scan chain diagnosis.  

2.3 Run-And-Scan Diagnosis Flow 

    The diagnosis process used in the thesis is shown as Fig 2.5. Certain snapshot images are 

assigned to the faulty chain first through the core logic in the functional mode before scanning out 

for further analysis, as in the approach first proposed by Kundu [7]. 

    Here, we first assume 500 diagnostic test sequences have been generated in advance. These 

diagnostic sequences are derived from the test bench. Then, the fault-free images can be collected by 

examining the VCD (Value Change Dump) file produced after the RTL simulation. These test 

sequences are hoped to set the value of each flip-flop as random as possible, as in Cheney [18]. For 

each test sequence, we apply it to the failing chip in the functional mode through primary input pins 

(i.e. PI), after the core logic computation, and then scanning out the snapshot images as observed 

images at the scan output pins (i.e. SO). Eventually we will have a large number of fault-free 

snapshot images and failing observed images. Then we can analyze these images to produce 

different profiles to identify the faulty locations. 

 



 

Fig. 2.5: Basic run-and-scan diagnosis flow.
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Chapter 3 

Problem Formulation 

    In this section, we will first review the behavior of a hold-time violation fault and then 

formulate the diagnosis as a delay insertion process. 

3.1 Hold-time Fault Definitions 

    First we have the timing diagrams for a flip-flop and two flip-flops on a scan chain are shown 

as Fig 3.1 and Fig 3.2 respectively (Huang [3]) 

 

Fig. 3.1 Timing diagram for a single flip-flop 
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Fig. 3.2 Timing diagram for a scan chain  

 

    In Fig 3.1, we observe whether the data at the input port D of the flip-flop can be propagated 

and registered to its output port Q correctly. The data must be stable after the clock is active. 

Otherwise the data registered at port D may be incorrect. In Fig 3.2, during the scan chain with 

multiple flip-flops connected, the statement must be true to cause the hold-time error.  

If tsk + tH – tCQ > td, then we will trigger the hold-time faults in which tsk is the clock skew 

between clocks driving the adjacent flip-flops on the scan chain, tH is the required hold-time, tCQ is 

the delay from activating clock to register the data for the driving flip-flop, and td is the propagation 

delay from the output of the driving flip-flop to the input of the driven flip-flop. So why the 

hold-time fault will be more common in today’s design and process technology? It can have some 

root causes below.  

Reason 1: the clock skew may be caused by process variation and physical routing of the 

interconnect. 

Reason 2: the scan cell delay may be shorter due to the improved process technology to 
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increase the risk to trigger the hold-time fault. 

Reason 3: the propagation delay may be shorter due to the improved process technology with 

high density interconnects. 

3.2 Hold-time Fault modeling 

    Previously, Wu [15] discussed the hold-time faults and classified as three types.  

Type 1: the faulty flip-flop captures the incorrect data if and only if a “0->1” transition happens at 

the input of the flip-flop. 

Type 2: the faulty flip-flop captures the incorrect data if and only if a “1->0” transition happens at 

the input of the flip-flop. 

Type 3: the hold-time fault happens whenever there is a transition at the input of the faulty flip-flop. 

   Besides Wu [15], Guo [2] also defined the hold-time faults as if the clock to the scan latch stays 

active, then function of the faulty scan latch will behavior as a buffer that the expected value will 

come out of the scan chain one cycle earlier. This hold-time fault is what the thesis target for. We 

assume such hold-time fault will be triggered only in scan shift operation to have the faulty scan cell 

transparent. So we refer the phenomenon that the signal at a flip-flop’s input (i.e. D-pin) changes too 

fast after the clock active edge. As a result, the flip-flop can be transparent if certain clock skew 

exists between driving and driven scan latch. 

    In Fig 3.4 as shown below, we use an example to illustrate the hold-time fault we are targeting 

in this thesis.  



 

F ig. 3 .3  : The im pact o f a h o ld -tim e fau lt on  the flush  test.
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    Here we assume that the scan path between flip-flops 1 (FF index 1) to flip-flop 2(FF index 2) 

is too short, thus it triggers a too-early D-pin value change during the scan chain shift operation. 

Such a fault could make flip-flop2 transparent. We will say the flip-flop 2 has suffered a hold-time 

fault. So from Fig 3.3, in the presence of the hold-time fault at flip-flop 2, the observed bit-stream at 

the scan output (SO) pin is the same as the one we pumped into the scan chain in the flush test, but 

just one cycle earlier. For example, we pumped into the scan chain with a pattern “0011” for a 

fault-free chip during the flush test, then we may get the observed bit streams from the scan output 

pins as “0011XXXX”. However, for a failing chip (i.e., the flip-flop 2 has a hold-time fault) with the 

same pumped in pattern, we may get the observed bit streams as “ 0011XXX”. Here the “X” denotes 

a don’t care bit and it depends on the rest values of the flip-flops. For the fault-free chip, we may 

need to wait for 4 clock cycles to observe the pumping pattern at the scan output pin, while we only 

need to wait for 3 clock cycles for the failing case. Similarly, if there are two hold-time faults in the 

scan chain, we will see the pumping pattern coming out of the scan chain 2 clock cycles earlier. 

   In general, the flush test can give us the information on the number of hold-time faults in the 

scan chain, but it cannot give us the accurate failing locations of the scan flip-flops. 
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3.3 Formulation as A Delay Insertion Process 

    With the run-and-scan test application methodology, we may apply a diagnostic test sequence 

to the chip. After the core logic computation, the results will be captured to the flip-flops in the scan 

chain, and then with scan shift operation, we can observe the snapshot images. For a failing chip, we 

use the same flow to observe the snapshot images in the following two steps. 

Step 1: When the diagnostic test sequence has been applied to the chip through primary input pins 

(PI), but the scan shift operation is not started yet, the snapshot image will be the same as the 

fault-free one. However if there is some fault in the core logic, after the core logic computation, the 

fault in the logic will cause the snapshot image a slightly different from the fault-free one. The fault 

effect in the core logic will be captured into the flip-flops to flip the expected contents in the scan 

chains. The experiments show the difference of snapshot images caused by faulty core logic 

regarded as random noise on the snapshot images. 

Step 2: After the scan shift out operation, we will observe a failing image that is different from the 

fault-free snapshot image by only one bit. For instance, the one bit at the faulty flip-flop is 

overwritten by its preceding flip-flop due to the multi-steeping phenomenon caused by the hold-time 

fault. In other words, the one bit in the snapshot image is dropped as scanned out as the final observe 

image. 

Example 1: Fig 3.4 shows the distortion of the hold-time fault under the run-and-scan methodology. 

We assume to use a specific diagnostic test sequence determined in advance to pump into the chip to 

setup the snapshot images of these flip-flops as (0011) before the scan shift out operation been 

executed. Here we assume the flip-flop 2 (FF index 2) has a hold-time fault and it will be triggered 

in the following scan shift out operation. During the scan shift operation, the value in the flip-flop 2 

will be overwritten, and we may observe the snapshot image at the scan output pins as (-011), where 

the “-“ denoted the value at the scan input pin during the scan shift out operation.  



 
    In summary, from the discussion above, we know that difference between the fault-free and 

faulty snapshot images is only a number of missing bits. Therefore, we can continue to perform the 

hold-time fault diagnosis by the delay insertion process to exam the image different profiles to 

localize the exact failing location in the scan chain as much as possible.  

Fig. 3.4 : The distortion of a hold-time fault on the image.
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Definition 3: (Delay Insertion Process) Given a fault-free image (g1, g2…gn) and a failing observed 

image (f1, f2…fn) obtained with the run-and-scan methodology. The delay insertion process is to 

insert a number of the delayed bits “d” into the failing observed images, so the similarity of the two 

images could be optimized, i.e. the different bits between the two bit streams can be reduced due to 

the delayed bits insertions. The similarity of the two images is defined as the number of bit positions 

where the two images are identical. Then based on this similarity and some statistical post 

processing, we can localize the possible faulty flip-flops as candidates of hold-time faults. 

Example 2: In Fig 3.5, it illustrates the delay insertion process. Here we suppose total 18 flip-flops 

exist in the scan chain and denoted as FF index 1 to 18 as shown. Here we assume the core logic is 

fault-free for simplicity, and the delay insertion process can also work under the faulty core logic 

condition. The first row is the FF index counting from the scan input pins. The second and third rows 
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represent the fault-free images, i.e. the snapshot images before scan shift out operation under 

run-and-scan methodology and the failing images, i.e. the observed images after the scan shift out 

operation which triggered the hold-time faults. Certain bits in the failing image are denoted as “-“, 

meaning these values will depend on the data at the scan input pins in the second-stage of the 

run-and-scan test application. From the Fig 3.5 with the simple compare manipulation, we can get 

the original similarity between the fault-free image and the failing image that is calculated as 11 bits. 

Now we apply the delay insertion process to insert the extra two delayed bits after the flip-flop 7 and 

flip-flop 13. Then the update similarity will be calculated and increased to 16 bits. And such increase 

of these similarity bits will indicate us these flip-flops we insert delayed bit may be the hold-time 

fault candidates. 

Fig . 3 .5 : Illu stra tion  o f de la y in se rtion  p ro cess.
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    Regarding the diagnosis as a delay insertion process is simply an attempt to reverse the 

hold-time effect. Or it can be viewed as a reconstruction method for a given distorted failing 

observed image to trace back the fault-free image. In the following, we will propose a Greedy 

algorithm to solve the hold-time diagnosis problem.  
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Chapter 4 

Greedy Algorithm  

    In this section, we will explain the principal of the algorithm and illustrate the operation of the 

algorithm with one example  

4.1 Principal of Greedy Algorithm 

    The kernel of the Greedy algorithm is to insert the delay bit one by one by examining the 

fault-free image and failing image simultaneously. The outline of the Greedy algorithm is shown in 

Fig. 4.1. Here we use run-and-scan methodology to apply some specific diagnostic patterns to the 

chip, and then with the scan shift out operation we may observe a great number of snapshot images 

(say 500 images) from a fault-free scan chain, and a large number of observed images (say 500 

images also) from a faulty scan chain. For each image pair, i.e. one image is from fault-free 500 

images and the other one is from the 500 faulty images. We sweep them one bit at one time from the 

scan output side (i.e. the flip-flop bit with the highest index) to find the proper delay candidate 

position (i.e. the bit position to insert the extra delay element “d” with the delay insertion process). 

When we go through the delay insertion process by checking the bits one by one, two conditions 

may occur. 

Condition 1: (matched case) The values of the checking bits between the fault-free and faulty images 

are identical. Then we simply proceed to the next checking bit to the left.  

Condition 2: (mismatched case): The values of the checking bits between the fault-free and faulty 

images are different. Then we just insert one extra delay element “d” in the failing image 

immediately to indicate the possible candidate under the delay insertion process. 



 
    Once the sweep is done, we will further consider the running sequence effects. Here the running 

sequence means a consecutive 0’s or consecutive 1’s in the fault free image. The example as shown 

in Fig 4.2 will explain the effects. In principal, if the leading bit of the running sequence is marked 

as an extra delay candidate, the every rest bit in the running sequence will be marked as a delay 

candidate. The heuristic is based on the observation that an extra delay inside the ant bit position in 

the running sequence will lead to the identical failing image. We just can’t differentiate the more 

accurate delay candidates due to the running sequence effects. In order to accommodate the 

ambiguity, we take a conservative stance and regard the whole running sequence as extra delay 

candidates. Once we have done the processing of one experiment with 500 image pairs, we deal with 

these 500 extra delay candidates simply by summing the number of occurrences that a bit position is 

marked as a extra delay candidate and rank each flip-flop position with the occurrences numbers. For 

each flip-flop position, the larger the occurrences number is, the higher the rank it will be.  

 

Fig. 4.1: The outline of a greedy algorithm.
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4.2 Operation of Greedy Algorithm 

    Based on the principal of greedy algorithm in previous section, we will use an example to 

illustrate how the greedy algorithm work under run-and-scan methodology  

Example 3: Fig 4.2 illustrates how the greedy algorithm is performed on an image pair.  Similarly, 

we assume the scan chain is composed of 18 flip-flops and the failing image here is caused by 

hold-time faults in scan chain which is triggered under the scan shift out operation rather than the 

random noise effects caused by faulty core logic computation. The first row is the flip-flop index (FF 

index) starting from the scan input (i.e. SI, with the least FF index) to the scan output (i.e. SO, with 

the highest FF index). Sweeping from the right to the left (i.e. from SO to SI), we found the first 

difference is at bit position 11. Based on delay insertion process rule, we immediately insert one 

delay element “d” at the position and move on to check the rest bits. The checking stops again at 

flip-flop 5 where another extra delay element is inserted. Finally we got preliminary fault candidate 

position at flip-5 and flip-flop 11. Then we consider the running sequence effect, for flip-flop 11. 

The running sequence is “000” i.e. the flip-flop 11, 12 to 13. So under considering of the running 

sequence effect, we also add the flip-flop 12 and 13 into our fault candidate lists. With the same 

reason, we also put flip-flop 6 into our fault candidate list since the running sequence for flip-flop 5 

is flip-flop 5and 6. Finally the possible hold-time fault candidates for the example will be from {FF 

index 5 and 11} to {FF index 5, 6, 11, 12, 13}.  

    It is hard to localize the accurate hold-time fault location for greedy algorithm with one image 

pair due to the ambiguity caused by running sequence effects. However if we perform such analysis 

with a large number of image pairs, we can lower down the ambiguity from the powerful statistical 

data analysis to approach the quite accurate faulty locations. In summary, the number of occurrences 

of being marked as a delay candidate for those true faulty flip-flops will become more and more 

prominent as we increase the number of image pairs.  



 
 

F ig. 4 .2 : Illustration  of a greedy algorithm .
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Chapter 5 

Experimental Results 

In this chapter, we will depict the experimental setup first. We present the experimental results 

implemented with greedy algorithm under considerations of ideal and non-ideal conditions for some 

practical designs. 

5.1 Experimental Setup 

    We have implemented the proposed approach as a system including a number of programs. The 

overall experimental setup is shown at Fig 5.1. The circuit under diagnosis is given as a netlist in the 

Verilog format. Then running the logic simulation to record the 5000 clock cycles snapshot images, 

with the cooperation of the test sequence selection mechanism (i.e. by analyzing the logic simulation 

snapshot images with the randomness criteria. We pick up a large number of test sequences to make 

the signal-1 frequency of each flip-flop fall with a predefined range, say [0.3,0.7] as much as 

possible to). We can get the final 500 snapshot images that have mostly random behavior per each 

flip-flop in the scan chains and recorded the test sequences for the 500 snapshot images. That is the 

fault-free images we may use to diagnose the hold-time faults. For failing chip, our system can inject 

faults at the core logic and flip-flops in scan chains. We inject one stuck-at fault at the core logic 

stem side to bring contamination for the following branches. We use the test sequence selected in 

fault-free condition to apply to the fault simulator to get the corresponding 500 failing images. For 

hold-time fault injection, we randomly inject hold-time faults in the scan chain before scan shift out 

operation under run-and-scan methodology. When the scan shift out operation is going, the 

hold-time faults injected will be triggered to distort the observed bit streams at the scan output pins. 

Afterwards we use proposed Greedy Algorithm to locate the possible fault candidates, with the 

statistics such as sum and ranking, we eventually sort out the hold-time fault candidates. 



 
 

F ig . 5 .1 : E xper im en ta l se tup .

S im ulatio n a nd  
T est S eque nce

S electio n

F au lt- free  Im ages

T estbe nc h T estbe nc hF au lt Injec to r
and  s im u la to r 

F ailing  Im age s

G reed y  A lgo rithm   A na ly sis

P ost-p rocess ing  (e .g .,  sum m ing  a nd  ra nk ing )

F au lt C a nd ida te  L ist in T op  10

C ircu it
In V er ilog

 

    The experiments are performed on 4 practical designs: GCD, FIR, Montgomery Inverse and 

Viterbi decoder. These designs are all written in Verilog code and synthesized into their gate level 

netlists. The GCD is a design that computes the greatest common divisor of two given natural 

numbers. The FIR circuit is a digital finite impulse response filter. The Montgomery Inverse is a 

32-bit integer counter. The Viterbi circuit is a channel decoder that extracts the original bit streams 

from the received bit streams at receive side in a communication system. The experimental setup 

parameters for these 4 designs are shown in Table 5.1 
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Table 5.1 Test circuits information and experiment setup parameters 

 

 

 

 

 

 

 

 

 

100 500 160 11K FIR filter  

100 500 620 9.5K Viterbi 
Decoder   

100 500 202 4.5K Montgomery 
Inverse 

100 500 66 1.5K GCD 

Numbers of 
iterations 

Numbers of 
functional 
patterns

Numbers of 
flip-flops in 
scan chain

Numbers of 
gate counts 

Circuit Name  

    In general, a large design is often partitioned into a large number of scan chains to reduce the 

test application time. After the flush test, the failing signatures will tell us the faulty scan chain and 

the faulty behaviors. We can utilize this information to focus on a small number of scan chains that 

are faulty under flush test. Then we use proper diagnosis mechanism to locate the exact faulty 

flip-flops in the faulty scan chains. The 4 test cases are not the big million-gate counts design, but we 

can regard these designs as a basic block that contains a complete scan chain under diagnosis. In our 

experiment below, we assume only one scan chain exists in our test design cases. The basic 

assumption is the flip-flops inside a small sub-design likely to be connected in the same scan chain 

in the whole chip because of layout proximity. In general, a design with multiple scan chain is 

relatively easier to diagnose because neighboring scan chains are likely to be fault-free and can serve 

as extra diagnosis vehicles. Therefore, our intension of the single scan chain assumption here is not 

to ease the problems, but to provide a more general approach that is applicable to more cases.  

    In the following sections, we will present several sets of experiments with the 4 test design 

cases, (1) single fault diagnosis (2) two faults diagnosis (3) burst faults diagnosis and we will also 
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consider the fault-free and faulty core logic conditions per the three experiment sets. Finally we will 

also discuss the intermittent faults effects with the diagnosis  

    Before the experimental results, we define some terminologies used in the following summary. 

These are listed below: 

(1) Size: This indicates the overall gate counts in the design.  

(2) Scan FF’s: This indicates the total flip-flops in the scan chain to be diagnosed. 

(3) Success rate: This indicates the rate that the faulty flip-flop is included in the top 10 candidates 

predicted. 

(4) 1st hit index: This refers to the index of the first flip-flop in the final top 10 candidate list that 

turned out to be the true faulty location. It reflects the amount of efforts a physical failure 

analysis engineer needs to spend if guided by the predicted top 10 candidate lists. 

(5) 2nd hit index: Similar as 1st hit index metrics, here this refers the index of the second flip-flop in 

the final top 10 candidate list that turned out to be the true faulty location. For two faults or burst 

fault test cases, 1st hit index means as long as one faulty flip-flop is identified in the candidate list, 

it was counted as success. The 2nd hit index will count as success as long as both of the two 

faulty flip-flops are localized and predicted in the candidate list. 
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5.2 Single fault experiment set  

     In this experiment as shown in Table 5.2, we inject one single hold-time fault at scan chain 

randomly for fault-free core logic and faulty core logic. We conducted 100 experiments and 

calculate the average 1st hit index and the final success rate with the Greedy algorithm. The 1st hit 

index is almost 1 for every design and the success rate is 100% for each design case. This implies 

that it highlight the faulty location exactly for all cases we tried. The key to this success is mostly 

due to the heuristic for dealing with the running sequences. 

Table 5.2: Experiment results of single fault under fault-free core logic 

Design  Size Scan FF’s 1st hit index Success rate 

GCD 1.5K 66 1.00 100%

FIR 11K 160 1.00 100%

Montgomery 

Inverse 

4.5K 202 1.09 100%

Viterbi decoder 9K 620 1.02 100%

    

 For the faulty core logic, i.e. except the single hold-time fault we injected randomly, we also inject 

one stuck-at fault randomly at the stem side of the design circuits. The stuck-at fault injected in the 

core logic will contaminate the following branches it connected. Since we inject the stuck-at fault 

randomly among the 100 experiments, so the contamination branches will not be determined in 

advance, and all we know is the faulty in the logic will flip some flip-flops of the snapshot images 

before scan shift out operation to cause the noise similar effects on scan chain that is to be diagnosed. 
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After that, the scan shift operation will trigger the single hold-time fault we injected randomly to 

have the observed images distorted. The condition is under faulty core logic; it is not an ideal 

assumption that core logic is fault-free under scan chain diagnosis. From the summary in Table 5.3, 

the average 1st hit index is still 1 around for GCD and FIR design. For the rest two designs, the 

average 1st hit index is 2 around; it implies the Greedy algorithm still can catch the exact faulty 

location in the short trial. And this will lower down the efforts for physical failure analysis engineer 

to delayer the chip guided by the summary. 

Table 5.3: Experiment results of single fault under faulty core logic 

Design  Size Scan FF’s 1st hit index Success rate 

GCD 1.5K 66 1.30 91%

FIR 11K 160 1.24 100%

Montgomery 

Inverse 

4.5K 202 2.19 70%

Viterbi decoder 9K 620 2.21 73%
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5.3 Two faults experiment set 

     In this experiment set, we first inject two hold-time faults randomly in the scan chain that is to 

be diagnosed. Then use the same Greedy algorithm to diagnose these faulty locations. Again, we 

conducted 100 experiments for each design case to derive the final average results as shown in Table 

5.4. It can be seen that the results are similar to Table 5.2, which implies that under fault-free core 

logic condition, the Greedy algorithm still can localize the faulty flip-flops, so it is applicable to 

multiple fault situations without any modifications. 

 

Table 5.4: Experiment results of two faults under fault-free core logic 

Design  Avg. 1st hit index Success rate Avg. 2nd hit index Success rate 

GCD 1.00 100% 2.00 100%

FIR 1.00 100% 2.00 100%

Montgomery 

Inverse 

1.03 99% 2.26 96%

Viterbi decoder 1.05 100% 2.50 98%

 

    In Table 5.5, we inject one stuck-at fault at core logic to evaluate the robustness of the proposed 

algorithm. Similarly, we tested 100 times to come out the final average hit index and final success 

rate. The average 1st hit index and the 1st success rate here means as long as any one faulty flip-flop 

between the two faulty flip-flops we injected be identified, the 1st success rate counted one and the 

average 2nd hit index here means only the two faulty flip-flops be highlighted at the same time, the 

2nd success rate counted one. So from the summary below, we can see either average 1st hit index or 
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average 2nd hit index, the experimental values are similar as data for major designs shown in Table 

5.4, this implies the robustness of the algorithm when multiple hold-time faults exist under the faulty 

core logic situation.   

Table 5.5: Experiment results of two faults under faulty core logic. 

Design  Avg. 1st hit index Success rate Avg. 2nd hit index Success rate 

GCD 1.19 90% 2.00 86%

FIR 1.23 99% 2.12 97%

Montgomery 

Inverse 

1.56 68% 2.75 48%

Viterbi decoder 2.32 66% 3.42 57%
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5.4 Two Burst faults experiment set 

     In the experimental set, we apply the two hold-time faults in a burst into the scan chain at the 

first time, then using the proposed approach to diagnose the observed images. The burst here means 

the faulty flip-flop are connected side-by-side. The result is as shown in Table 5.6. Since the core 

logic is fault-free, so the observed images that are not identical to expected snapshot images are 

caused by two burst hold-time faults we injected. Again, we tested 100 times to come out the final 

success rate and average hit index. The results looked pretty good for most design cases. And this 

implies the algorithm not only be applicable to multiple hold-time faults but also be capable to 

diagnose such multiple burst faults without further modifications. 

 

Table 5.6: Experiment results of two burst faults under fault-free core logic 

Design  Avg. 1st hit index Success rate Avg. 2nd hit index Success rate 

GCD 1.00 100% 2.00 100%

FIR 1.00 100% 2.00 100%

Montgomery 

Inverse 

1.10 98% 2.38 97%

Viterbi decoder 1.19 100% 2.60 100%

     

In Table 5.7, we consider the non-ideal situation that the core logic may be faulty during our 

hold-time scan chain diagnosis. We injected one stuck-at fault at core logic to trigger the noise 

similar effects on scan chains. Also, we injected two burst faults at the scan chain to distort the 

flip-flops images. We conducted 100 times to sort out the final average hit index and success rates. 
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The results looked pretty nice in average hit index point of view. The performance degradation of 

average hit index under faulty core logic is not so serious. The success rate for GCD, FIR design 

looked well, but a little poor for the rest two design. Since we inject the stuck-at fault at stem side, so 

the contamination will depend on part of circuit design to cause the success rate under faulty core 

logic degrade more. 

Table 5.7: Experiment results of two burst faults under faulty core logic 

Design  Avg. 1st hit index Success rate Avg. 2nd hit index Success rate 

GCD 1.11 88% 2.13 88%

FIR 1.07 98% 2.11 98%

Montgomery 

Inverse 

1.71 63% 2.85 59%

Viterbi decoder 2.13 67% 3.18 60%
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5.5 Intermittent faults experiment set 

    During the discussions in previous sections, these hold-time faults we injected are permanent 

ones, i.e. these faults will exist and distort the scan chain always under the scan shift out operation. 

However in real design world, many reasons will challenge the permanent faults, there may have 

some process deviation, clock skew, coupling effects by high interconnect density and some specific 

sensitive physical layout design geometry, so here we run the experiment to check if the proposed 

Greedy algorithm can survive under the intermittent hold-time faults conditions. Likewise, we will 

consider the two conditions as fault-free core logic and faulty core logic. Besides we use probability 

to simulate the intermittent effects. For example, the 0.6 probability of intermittent injected 

hold-time faults means we injected either single or two faults at the scan chain in advance, but the 

fault we injected be triggered or not depends on the probability we defined at the beginning. We use 

a random token to generate one value and compare the value with the probability we set, if the value 

is less then the probability we set, the fault we injected will be triggered successfully, otherwise, it 

will not be triggered during scan shift out operation under run-and-scan methodology even we inject 

the faults at scan chains in advance. So for the intermittent situation, we propose several 

experimental sets that cover the ideal condition (i.e. core logic is fault-free) and non-ideal condition 

(i.e. core logic is faulty). Besides, per each intermittent hold-time fault, we consider the probability 

from 0.2, 0.4, and 0.6 to 0.8. And those results are summarized at Table 5.8 to Table 5.15 
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Table 5.8: Experiment results of intermittent probability = 0.8, core logic is fault-free. 

 Single Fault  Two Fault   Burst Fault  

Design  1st hit 

index  

Success 

Rate   

1st hit 

index 

Success

Rate   

2nd hit 

index 

Success

Rate   

1st hit 

index 

Success 

Rate   

2nd hit 

index 

Success

Rate   

GCD 1.00 100% 1.00 100% 2.00 100% 1.00 100% 2.00 100%

FIR 1.00 100% 1.00 100% 2.00 100% 1.00 100% 2.00 100%

MON 1.07 100% 1.04 100% 2.40 96% 1.13 100% 2.25 96%

Viterbi 1.19 100% 1.11 100% 2.82 98% 1.27 100% 2.70 99%

 

 

Table 5.9: Experiment results of intermittent probability = 0.6, core logic is fault-free. 

 Single Fault  Two Fault   Burst Fault  

Design  1st hit 

index  

Success 

Rate   

1st hit 

index 

Success

Rate   

2nd hit 

index 

Success

Rate   

1st hit 

index 

Success 

Rate   

2nd hit 

index 

Success

Rate   

GCD 1.00 100% 1.00 100% 2.00 100% 1.00 100% 2.00 100%

FIR 1.00 100% 1.00 100% 2.00 100% 1.00 100% 2.00 100%

MON 1.04 99% 1.03 100% 2.29 99% 1.02 99% 2.26 98%

Viterbi 1.30 100% 1.19 100% 2.80 99% 1.08 100% 2.43 100%
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Table 5.10: Experiment results of intermittent probability = 0.4, core logic is fault-free. 

 Single Fault  Two Fault   Burst Fault  

Design  1st hit 

index  

Success 

Rate   

1st hit 

index 

Success

Rate   

2nd hit 

index 

Success

Rate   

1st hit 

index 

Success 

Rate   

2nd hit 

index 

Success

Rate   

GCD 1.00 100% 1.00 100% 2.00 100% 1.00 100% 2.00 100%

FIR 1.00 100% 1.00 100% 2.00 100% 1.00 100% 2.00 100%

MON 1.05 100% 1.05 100% 2.49 97% 1.03 98% 2.31 96%

Viterbi 1.44 100% 1.16 100% 2.75 99% 1.15 100% 2.41 99%

 

 

Table 5.11: Experiment results of intermittent probability = 0.2, core logic is fault-free. 

 Single Fault  Two Fault   Burst Fault  

Design  1st hit 

index  

Success 

Rate   

1st hit 

index 

Success

Rate   

2nd hit 

index 

Success

Rate   

1st hit 

index 

Success 

Rate   

2nd hit 

index 

Success

Rate   

GCD 1.00 100% 1.00 100% 2.00 100% 1.00 100% 2.00 100%

FIR 1.00 100% 1.00 100% 2.00 100% 1.00 100% 2.00 100%

MON 1.10 100% 1.03 100% 2.71 99% 1.13 100% 2.14 99%

Viterbi 1.17 100% 1.14 100% 3.03 98% 1.09 100% 2.26 100%

 



 

39 39

Table 5.12: Experiment results of intermittent probability = 0.8, core logic is faulty. 

 Single Fault  Two Fault   Burst Fault  

Design  1st hit 

index  

Success 

Rate   

1st hit 

index 

Success

Rate   

2nd hit 

index 

Success

Rate   

1st hit 

index 

Success 

Rate   

2nd hit 

index 

Success

Rate   

GCD 1.38 91% 1.27 90% 2.02 86% 1.06 87% 2.07 87%

FIR 1.24 100% 1.17 98% 2.28 98% 1.13 98% 2.15 98%

MON 2.64 78% 1.84 70% 3.08 49% 1.92 60% 2.89 54%

Viterbi 2.00 70% 1.99 70% 3.46 61% 2.11 69% 2.84 61%

 

 

Table 5.13: Experiment results of intermittent probability = 0.6, core logic is faulty. 

 Single Fault  Two Fault   Burst Fault  

Design  1st hit 

index  

Success 

Rate   

1st hit 

index 

Success

Rate   

2nd hit 

index 

Success

Rate   

1st hit 

index 

Success 

Rate   

2nd hit 

index 

Success

Rate   

GCD 1.29 90% 1.39 93% 2.16 88% 1.24 89% 2.15 88%

FIR 1.34 100% 1.32 99% 2.15 96% 1.14 97% 2.15 97%

MON 1.73 66% 1.61 70% 2.94 52% 1.55 64% 2.44 59%

Viterbi 2.27 70% 1.94 64% 2.98 58% 2.13 69% 3.00 64%
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Table 5.14: Experiment results of intermittent probability = 0.4, core logic is faulty. 

 Single Fault  Two Fault   Burst Fault  

Design  1st hit 

index  

Success 

Rate   

1st hit 

index 

Success

Rate   

2nd hit 

index 

Success

Rate   

1st hit 

index 

Success 

Rate   

2nd hit 

index 

Success

Rate   

GCD 1.21 89% 1.22 90% 2.01 86% 1.27 90% 2.27 90%

FIR 1.26 98% 1.53 97% 2.58 96% 1.26 97% 2.30 97%

MON 2.06 68% 2.12 67% 3.52 46% 1.71 62% 2.44 55%

Viterbi 2.14 64% 1.48 58% 2.87 54% 1.95 64% 2.57 58%

 

 

Table 5.15: Experiment results of intermittent probability = 0.2, core logic is faulty. 

 Single Fault  Two Fault   Burst Fault  

Design  1st hit 

index  

Success 

Rate   

1st hit 

index 

Success

Rate   

2nd hit 

index 

Success

Rate   

1st hit 

index 

Success 

Rate   

2nd hit 

index 

Success

Rate   

GCD 1.10 87% 1.17 89% 2.10 87% 1.01 86% 2.01 86%

FIR 1.93 97% 2.34 96% 3.85 95% 1.92 96% 3.14 96%

MON 2.48 63% 2.69 58% 3.53 40% 2.13 56% 3.10 52%

Viterbi 2.16 61% 2.43 58% 4.29 52% 1.68 57% 2.95 55%

     



 

41 41

From the intermittent experimental results shown above, it is obvious that the higher the intermittent 

fault probability, the higher the diagnosis success rate .The trend is the same for each test case. And 

the results meet our expectation. If we use hit index to review the diagnosis results, the 4 design 

cases can have pretty good results and as we mentioned in the previous chapter that the fewer the hit 

index is, the less effort the physical failure analysis needs.  

    In our experiments, we selected the diagnosis test sequences from the test bench. In current 

VLSI design, it is common to have the multi-million gate counts. So it may partition as a large 

number of scan chains in such a large design. If only few of them are faulty during the flush test, we 

still can use the test generation techniques proposed by Cheney [18] and Stanley [14] in which the 

fault-free scan chain are identified first during the flush test, then used as pseudo-primary inputs to 

set the fault scan chains with proper desired images. In the above discussion and several 

experimental results, we arrived a conclusion that the proposed Greedy algorithm can be used to 

diagnose the hold-time faults in scan chains and it can have pretty nice 1st hit index under the 

non-ideal condition (i.e. the core logic is faulty). Besides even the hold-time faults have a non-100% 

probability to be triggered, the approach still can diagnose the hold-time faults under the intermittent 

situations. 
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Chapter 6 

Conclusion 

    In conclusion, when diagnosing the hold-time faults in scan chains, a number of non-ideal 

situations need to be carefully considered. For example, there could be faults in core logic as well, 

there could be multiple hold-time faults in the scan chain with some of them even occurring in a 

burst, also there could be intermittent faults in the faulty scan chain. In this thesis, we propose a 

simple yet robust greedy algorithm based on a delay insertion formulation to diagnose the hold-time 

faults. We take into account the running sequence effect in the algorithm to enhance the diagnosis 

resolution and achieve the robustness with non-ideal situations. Experimental results show the 

algorithm is promising for the localization of the flip-flops with hold-time violation faults even 

under hash diagnosis conditions. 
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