
1 
 

Online Supplement for “Robust Parameter Design with Computer Experiments Using 

Orthonormal Polynomials” 

Matthias Hwai Yong Tan 
Department of Systems Engineering and Engineering Management, City University of Hong Kong 

 
Appendix A: Proof of Lemma 1 and Proposition 1 
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Proposition 1: If lim
→

0, then lim
→

0 and lim
→ ,…,

,…, 0 for all , … , . 

Proof: 

Since 0 and ,…, ,…, 0 for all , it follows from Lemma 1 that 

lim
→

0 and lim
→ ,…, ,…, 0. 

Appendix B: Review of Gaussian Process Modeling 

In GP modeling, the prior for the functional relationship  is given by 
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,                 (1) 

where ∈  and  is a zero mean stationary GP. Given any two points  and , the 

covariance of  and  is given by , ,

, , where ,  is the correlation function. The most commonly used correlation 

function is the Gaussian correlation function 

, ∏ ,                                 (2) 

where  is the th element of , and ∈ 0,1 , 1, … , . 

In a computer experiment, the computer output is evaluated at  values of inputs given by 

the rows , … ,  of the design , where the choice of each  is restricted to . This yields a 

vector  of observed outputs. The prior process is updated with experiment data, giving a 

posterior GP (Currin et al., 1991; Santner et al., 2003) 

∙ | , , , ~ ∙| , , ∙,∙| , ,                        (3) 

with mean function ∙| ,  and covariance function ∙,∙| , . The mean function is given by  

| , ,               (4) 

where , , … , , , and ,
,

; the covariance 

function is given by 

, , , .            (5) 

 The mean and covariance functions given by (4)-(5) depend on the parameters , , and 

, which can be estimated from the data. One approach to estimating , , and  is the 

maximum likelihood method, which estimates the parameters by maximizing the likelihood 

, , 2 | | / exp	 / 2 . It turns out that given , 

, and /  maximize 
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, , . Thus, the maximum likelihood estimate  of  is obtained by maximizing 

, , , which is equivalent to minimizing 

log log | | .               (6) 

It is common to perform statistical inference on  using  in place of ,  in place of , and 

 in place of , i.e., using the GP 

∙ | , , , ~ ∙| , , ∙,∙| , .           (7) 

However, by replacing , ,  by estimates, we ignore the uncertainty in these parameters and 

hence may underestimate uncertainty in inferences about . 
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Appendix C: Comparison with Other Computational Techniques 

The paper by Chen et al. (2006) gives analytical formulas for computing some of the 

RPD indices from the posterior mean | ,  of the GP model for the case where the product 

Gaussian correlation function is used and  has uniformly and independently distributed 

components. In more general cases such as when  have independent Beta distributions (Section 

6), or when the GP has product Matern correlation function, the more general formulas given by 

Chen et al. (2006) that involve evaluating a large number of univariate integrals need to be used. 

In Equation (35) of Chen et al. (2006), there are a total of  , ’s and a total of 2  , ’s if 

the posterior mean of a GP is used as surrogate. Thus, the number of univariate integrals that 

need to be computed is 2 . The integrals can only be evaluated analytically when 

certain products of the correlation function and density for each input dimension have known 
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anti-derivatives. When numerical integration is employed, computation is more difficult and 

numerical errors are unavoidable. When the covariance function of the GP is not of product form 

(examples are given in Chapter 4 of Rasmussen and Williams (2006)), the formulas by Chen et 

al. (2006) are not applicable. In contrast, the proposed method works for almost any given 

densities , … ,  and covariance function of the GP model. Moreover, it does not require the 

computation of any integral when the orthonormal polynomials : ∈  are known (there 

are many classes of  with known ’s (see Xiu and Karniadakis (2002)). 

The method by Chen et al. (2006), if applied directly to GP models, yields estimators of 

RPD indices that are different from ours.  Suppose we intend to estimate / , 

where  is the computer model and  can represent any of the RPD indices ,…, , , and 

. Then, since the posterior GP  is the posterior of the computer model, a Bayesian approach 

involves replacing  with  and estimating  with its posterior mean 

/ .                                                             (1) 

Note that the proposed method attempts to recover . On the other hand, the estimator 

employed by Chen et al. (2006) for  is 

/ ,                                                                                                      (2) 

which is obtained by replacing  with | , . The estimators  and  can 

yield different results. 

A method that can produce valid point and interval estimates of ,…, , , , and 

,…, /  is to use Oakley and O’Hagan’s (2004) method for decomposing ∙  into its 

functional ANOVA components and then simulating random realizations of the components. 

However, a formidable number of integrals need to be computed to obtain the mean and 
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covariance functions of the components. In addition, obtaining ,…, , , , and 

,…, /  from the functional ANOVA components requires further integrations with respect to 

the inputs. It is not clear how the cumulative integration error can be controlled. Estimates of  

and  at a given control factor setting can be obtained by simulating the GP at noise factor 

settings that serve as integration nodes. However, independent simulations at distinct control 

factor settings produce noisy and nonsmooth estimates of  and , unlike averaging  and  

over a sample of . Although stochastic approximation algorithms can be used in this case, they 

are less efficient than deterministic optimization algorithms, which can be employed to optimize 

the average of  and  over a sample of  (see Nemirovski et al. (2009) and Wright and 

Nocedal (1999)). Smooth estimates of  and  can be obtained by simulating sample paths of 

the GP but this involves simulating from high dimensional distributions (Apley et al., 2006).  
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Appendix D: Convergence of WLS Method 

The fact that the orthonormal polynomial model can approximate the GP model to any 

desired accuracy by using sufficiently large  and  shall be proven in this section. As 
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discussed, under some nonrestrictive conditions, the set of polynomials ∏ :

,… , ∈  form an orthonormal basis for the Hilbert space χ, : χ →

:
	

∞ . Recall that the posterior GP that we attempt to approximate with the 

orthonormal polynomial model is given by ∙ ~ ∙| , , ∙,∙| , , which for 

simplicity, we shall denote by ∙ ~ ∙ , ∙,∙  in this section. In the following, we shall 

assume that χ is compact and the sequence , … ,  is such that lim → ∑ /

	
 for every continuous . This assumption holds if χ 1,1  and , … ,  is a 

quasi-Monte Carlo sequence (e.g., Sobol sequence) on χ (Theorem 2.13 in Niederreiter (1992)). 

We assume that  is continuous on χ and 0 for all ∈ χ except on a set χ′ ⊂ χ of Jordan 

measure zero. We also assume that ∙ , ∙,∙  is almost surely continuous on χ as can be 

guaranteed by choosing the prior correlation function  so that the prior for ∙  is almost surely 

continuous. This implies that both posterior mean function : χ →  and posterior covariance 

function : χ χ →  are continuous. Define the expectation operator ,  by 

, , , … , , , … ,
	

, where  denotes 

expectation with respect to the posterior distribution of ∙ . Then,  

,
	

,
	

∞.                     (1) 

By Fubini’s theorem,  

∞
	 	

.            (2) 

Hence, 
	

∞ almost surely. This implies that ∙ ∈ χ,  almost surely.  

Let , , … , , 
,

, and 

diag , … , . Consider the weighted least squares method, which gives 
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, .               (3) 

If 0, then we simply delete  and replace it with . Note that since 0 on a 

set χ′ of Jordan measure zero, it follows that the fraction of ’s with 0 tends to zero as 

→ ∞ (see page 18 of Niederreiter (1992)). Define 
	

, where 

, … , . This is the vector of coefficients obtained by projecting ∙  onto 

the space spanned by the bases , … , . We shall show that lim → . If we let 

→ ∞, the element in the th row and th column of /  converges to  

lim → , / lim → ∑ /
	

. 

                              (4) 
Similarly, if we let → ∞, the th element of , /  converges to 

lim →
, / lim → ∑ /

	
. (5) 

The integral in (5) exists because ∙ ∈ χ,  almost surely. Thus, we have 

lim →  and lim →
	

.         (6) 

 The average error ,  in approximating  with the weighted 

least squares estimator  is bounded above by a term due to projecting  onto the space 

spanned by the bases , … ,  and a term due to approximating the projection with the 

weighted least squares estimator:  

, ,   

2 , 2 , .            (7) 

The term ,  is due to projecting ∙  onto the space spanned by the bases 

, … , . It depends on  but not on . Because ∙ ∈ χ,  almost surely, 

lim → 0 for almost all ∙ . We also have  

∑ ∑ ,           (8) 
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where , , … are the coefficients of the expansion of ∙  in terms of the polynomial bases in 

∏ : ,… , ∈ , i.e., 
	

. Since  does 

not depend on  and ∞, it follows by the dominated convergence theorem 

(page 133 of Resnick (1999)) that  

lim → , lim →  

lim → 0 0.            (9) 

The term ,  is due to approximating the projection of ∙  with 

the weighted least squares estimator. We shall show that for fixed , lim → ,

, lim → 0. Note that  

‖ ‖ ‖ ‖ ‖ ‖ 2‖ ‖ 2‖ ‖ .                  (10) 

Because the ’s are orthonormal,  

‖ ‖ ∞.               (11) 

In addition, ‖ ‖ ∑ , which implies that  

‖ ‖ , ∞.              (12) 

 We now proceed to show that ‖ ‖ ∞. First, we argue that sup ∈ |

| has moments of all order. Due to the continuity of  and , and the compactness of , we 

must have sup ∈ | | ∞ and sup ∈ , ∞. Moreover, the compactness 

of  and the almost sure continuity of ∙  implies that sup ∈ | | ∞ almost surely. Then, 

by Theorem 2.1 of Adler (1990), 

sup ∈ 2exp 0.5 / ,         (13) 

for all 0, where sup ∈  is finite. Note that ∙ ∙  and 

∙ ∙  have the same distribution. Thus, sup ∈ . Since 
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sup ∈ | | max sup ∈ , sup ∈ , we have 

sup ∈ | |   

sup ∈ sup ∈   

4exp .
.              (14) 

This implies that sup ∈ | | has moments of all orders. In particular, we have 

sup ∈ sup ∈ | | ∞.         (15) 

Since lim → / , we must have ‖ / ‖  for some 0 1 

and all  large enough. Since the largest eigenvalues of /  and / / /  

are identical, we must have / / /  for some 1 and all  large enough. Let 

sup ∈ ∞. It follows that 

‖ ‖ ‖ / , / ‖  

‖ / ‖ / / / / , / /  

sup ∈  

sup ∈ | | .                       (16) 

By (10) and (16), we obtain 

‖ ‖ 2 sup ∈ | | 2‖ ‖        (17) 

We want to show that the expectation of the rightmost term in (17) is finite. By (11), (12), and 

(15), we have 

, ‖ ‖ 2 sup ∈ | | 2‖ ‖   

2 ‖ ‖ sup ∈ | | ‖ ‖ ∞.      (18) 
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Since ‖ ‖ 2 sup ∈ | | 2‖ ‖  for 

all  large enough and the right-hand-side does not depend on , we can apply the dominated 

convergence theorem to obtain 

lim → , , lim → 0.        (19) 

 The results stated in (7), (9), and (19) implies that  

lim → lim → , 0.            (20) 

Thus, to achieve , , we can first choose  large enough so that 

2 , /2 and then choose  large enough so that 2 ,

/2. A practical implementation of this procedure is to increment  for fixed  until 

changes in 100 , , /  (see Section 5) are small, and then increase  before 

incrementing  again. The procedure can be terminated if 100 , , /  is 

sufficiently small. In the proposed procedure for the WLS method, we simply set 2  and 

do not increase it unless  is not of full column rank. This is because approximation accuracy is 

frequently found to be much more dependent on  than on  when 2 . 

 Cohen et al. (2013) and Migliorati et al. (2014) have studied the approximation of a 

function  via least squares estimation of the model coefficients. However, their results cannot 

be applied directly to the problem in this paper. Both papers study regression with data from 

fixed  and derive error bounds by taking expectation with respect to the design, which is 

assumed to be a random sample from . Cohen et al. (2013) assumes that  is bounded and the 

least squares predictions are truncated whereas Migliorati et al. (2014) mainly study one-

dimensional polynomial approximations. Interestingly, the theoretical prediction of Cohen et al. 

(2013), Chkifa et al. (2013), and Migliorati et al. (2014) that /log  should scale with  

when  is uniform is contradicted by numerical experiments reported in Migliorati et al. (2013) 



11 
 

and Chkifa et al. (2013), which demonstrate that faster convergence is achieved when  scales 

linearly with . These numerical experiments lend support to the choice of 2  in the WLS 

and IWLS algorithms given in Section 5. 
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Appendix E: Estimation of Response Mean and Variance 

Consider the toy problem with cos 3 1 1.5 1 , ∈ 1,1 ,  is 

a control factor,  is a noise factor and  is uniformly distributed on 1,1 . We use the 

maximin Latin hypercube design shown in Figure 1 to fit a GP model. The maximum likelihood 

estimate of the correlation parameters  is 0.2566,0.6628  and the posterior GP has 

excellent prediction accuracy and prediction credible interval coverage.  

The WLS and IWLS methods are employed to construct orthonormal polynomial models, 

where the ’s are tensor products of orthonormal Legendre polynomials because  is the 

uniform density on 1,1 . The WLS method gives a model of degree 8, with 90 and 

100 , , / 0.0461; the IWLS method gives a model of degree 8, with 90 

and 100 , , / 0.0082. A total of 10,000 values of  and  are 
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simulated. Using these values, we estimate the mean function  by taking the average of the 

 
Figure 1: Maximin Latin Hypercube Design for Example 

 

 
Figure 2: Point and Interval Estimates (Dashed Lines) and True Value (Solid Line) of Response 

Mean Obtained with WLS Method (a) and IWLS Method (b); Point and Interval Estimates 
(Dashed Lines) and True Value (Solid Line) of Response Variance Obtained with WLS Method 

(c) and IWLS Method (d). 
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10,000 ’s, which  we denote by  and variance function  by taking the average of the 

10,000 ’s, which we denote by . We also construct 98% credible intervals by using the 

1% and 99% sample percentiles. The posterior mean, upper credible limit, and lower credible 

limit of  and  are plotted in Figure 2 as dashed lines. We also compute  and	  by drawing 

100,000 random samples of  and calculating the mean and variance of  using these samples 

for each . The  and  functions (or, more precisely, accurate approximations of the 

functions) are plotted as solid lines in Figure 1. By comparing Figures 1a and 1b, we see that the 

WLS and IWLS methods produce indistinguishable estimates of  that closely approximate and 

sandwich the true mean function. Similar comments apply to estimates of the variance function 

in Figures 1c and 1d. The wide credible intervals for the variance function near 1 are due 

to the absence of design points in the upper left corner of Figure 1. 

Appendix F: Estimation of RPD Indices for Moderately High Dimension Functions  

F.1 Nondifferentiable Function 

 In this section, we give an example of RPD index estimation for a nondifferentiable and 

fairly high dimension function. We consider the case where 4, 10,  is uniformly 

distributed on 1,1  and the true function is a sum of two Sobol functions (Sudret, 2008): 

|8 6||8 6| |8 6||8 6|.  

The variance components of the Sobol function are known (see Sudret (2008)). Based on the 

known variance components, we obtain 1/14, 0 and 

3/14, 0. We employ a maximin Latin hypercube design of size 200 

to fit the GP model with Gaussian correlation function. Note that this GP model is actually 

inappropriate for modeling  because  is not differentiable while the GP model produces 

smooth sample paths. Using a target accuracy of 25%, both WLS and IWLS methods give a 
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model of degree 4 with 2002, and actual achieved accuracies of about 20%. Posterior mean 

and 98% credible intervals given by both WLS and IWLS methods are shown in Table 1. 

Estimates obtained with the CJS formula and true values for  and  are also given in the 

table. The point estimates of  obtained by the proposed method are biased upwards from the 

true values and not as close to the true values as the point estimates obtained with the CJS 

formula. Moreover, the interval estimates for the nonzero  and  obtained with the IWLS 

method do not contain the true values. However, point and interval estimates of  and  

given by the proposed method provide a reasonably accurate picture of the contribution of each 

control factor to control by noise interactions (measured by the ’s) and variation in the mean 

(measured by the ’s). In obtaining Table 1, computation with the CJS formula took around 

350 seconds whereas computation with the WLS/IWLS method took around 150 seconds. 

Table 1: Posterior Mean and 98% Credible Intervals, CJS Point Estimates, and  
True Values of  and  

 
 

WLS IWLS CJS 
Formula 

True 
Value LCL Mean UCL LCL Mean UCL 

 

1 0.0799 0.1118 0.1504 0.0830 0.1134 0.1502 0.0701 0.0714 
2 0.0698 0.0964 0.1289 0.0721 0.0962 0.1265 0.0560 0.0714 
3 0.0193 0.0284 0.0411 0.0227 0.0316 0.0434 0.0060 0.0000 
4 0.0123 0.0171 0.0237 0.0161 0.0214 0.0285 0.0011 0.0000 

 

1 0.1512 0.2024 0.2563 0.1514 0.1985 0.2466 0.2360 0.2143 
2 0.1333 0.1835 0.2413 0.1356 0.1840 0.2372 0.2073 0.2143 
3 0.0030 0.0096 0.0212 0.0029 0.0085 0.0185 0.0047 0.0000 
4 0.0016 0.0040 0.0091 0.0016 0.0040 0.0089 0.0004 0.0000 

 
F.2 Smooth Function 

This section gives an example of RPD index estimation for a smooth and fairly high 

dimension function. We consider the case where 2, 10,  is uniformly distributed on 

1,1  and the function is the Tilden function (Saltelli et al., 2000) multiplied with 1  

and appended with five inert inputs , … , : 
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1 / 2 / 1/ , 

where 13465000 1 8970000, 250 1 100, 0.1 1

1, 4.5 10 1 1 10 , 50 1 250. We employ a maximin 

Latin hypercube design  of size 100 to fit the GP model with Gaussian correlation 

function. Using a target accuracy of 10%, both WLS and IWLS methods give a model of 

degree 4 with 2002, and actual achieved accuracies of about 5%. Posterior mean and 98% 

credible intervals given by both WLS and IWLS methods are shown in Table 2. Estimates 

obtained with the CJS formula are also given in the table. For all  except  and all , 

the discrepancies between point estimates obtained with the WLS/IWLS and CJS methods are 

small relative to the values of the point estimates. We perform Monte Carlo simulation to 

estimate all Sobol indices of  using the sobol program in the sensitivity package in R and two 

random samples of inputs values of size 50,000. To obtain more accurate results, we remove all 

five inert inputs from . The simulation requires 1.6 10  evaluations of . All third and higher 

order indices have small or negative estimates. Thus, we assume that they are negligible. Based 

on the first and second order Sobol indices, we compute the estimates of  and  shown in 

Table 2. Since the 95% bootstrap intervals of the Sobol indices have widths of 0.03-0.04, the 

Monte Carlo estimates of  and  are accurate. The Monte Carlo estimates indicate that the 

point estimates of all  and  except  obtained with the proposed method and the CJS 

formula deviate slightly from the true values.  

To illustrate the importance of interval estimates of RPD indices, we randomly choose 40 

runs from  and utilize the resulting design, which we denote by , to fit the GP model. 

Using a target accuracy of 10%, both WLS and IWLS methods give a model of degree 3 

with 572, and actual achieved accuracies of about 1.4%. Table 3 gives the posterior mean 
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and 98% credible intervals of  and  obtained with the WLS and IWLS methods, and also 

point estimates obtained with the CJS formula. The results in Table 3 clearly indicate the 

inadequacy of design . The point estimates of  and  are inaccurate and misleading. In 

particular, the point estimates of  are too small while those of  are too large. Thus, the 

existence of some very strong interactions between control factor  and the noise factors is not 

indicated by the point estimates of  while the point estimates of  falsely suggest that 

control factor  has an influence on the mean that is as strong as . However, the wide interval 

estimates of  and  given by the proposed method warn us about the inaccuracy of the 

estimates and inadequacy of the design.  

Table 2: Posterior Mean and 98% Credible Intervals, CJS Point Estimates, and  
Monte Carlo Estimates of  and , Design  

 
 

WLS IWLS CJS 
Formula 

Monte 
Carlo LCL Mean UCL LCL Mean UCL 

 
1 0.0196 0.0337 0.0539 0.0201 0.0342 0.0539 0.0192 0.0501 
2 0.1550 0.2070 0.2661 0.1579 0.2084 0.2695 0.1953 0.2364 

 
1 0.0730 0.1098 0.1500 0.0740 0.1090 0.1480 0.1186 0.1332 
2 0.1404 0.1967 0.2567 0.1413 0.1977 0.2577 0.2136 0.2024 

 
Table 3: Posterior Mean and 98% Credible Intervals, CJS Point Estimates, and  

Monte Carlo Estimates of  and , Design  

 
 

WLS IWLS CJS 
Formula 

Monte 
Carlo LCL Mean UCL LCL Mean UCL 

 
1 0.0246 0.0524 0.0953 0.0252 0.0523 0.0942 0.0349 0.0501 
2 0.0538 0.0931 0.1486 0.0549 0.0937 0.1452 0.0730 0.2364 

 
1 0.1411 0.2181 0.2983 0.1422 0.2174 0.2965 0.2375 0.1332 
2 0.1083 0.1962 0.2943 0.1127 0.1965 0.2931 0.2117 0.2024 

 
The 98% credible intervals of  and  in Table 2 are quite wide. Thus, we may 

want to perform additional experiment runs to improve the accuracy of the GP model and RPD 

estimates. Utilizing a 10,000 point subsequence of the Matlab Sobol sequence (the first 1000 

points of the sequence are skipped and every 101th point is retained) as candidate set, we 
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sequentially add a candidate point with the largest minimum distance to the design points until 

the design size is 130. The resulting design, which we denote by , is employed to fit the GP 

model. Using a target accuracy of 10%, both WLS and IWLS methods give a model of 

degree 4 with 2002, and actual achieved accuracies of about 3.5%. Table 4 presents the 

posterior mean and 98% credible intervals of  and  obtained with both the WLS and 

IWLS methods, and also point estimates obtained with the CJS formula. We see that the point 

estimates in Table 4 have better accuracy compared to the point estimates in Table 2. For 

example, the point estimate of  given by the WLS method is now about 13.4% instead of 

11.0%, which is closer to the Monte Carlo estimate of 13.3%. The widths of the credible 

intervals in Table 4 are also somewhat smaller than the widths of the intervals in Table 2. 

Table 4: Posterior Mean and 98% Credible Intervals, CJS Point Estimates, and  
Monte Carlo Estimates of  and , Design  

 
 

WLS IWLS CJS 
Formula 

Monte 
Carlo LCL Mean UCL LCL Mean UCL 

 
1 0.0346 0.0494 0.0665 0.0342 0.0483 0.0647 0.0388 0.0501 
2 0.2096 0.2453 0.2849 0.2086 0.2443 0.2832 0.2369 0.2364 

 
1 0.1053 0.1340 0.1638 0.1066 0.1338 0.1631 0.1384 0.1332 
2 0.1502 0.1870 0.2251 0.1532 0.1882 0.2265 0.1938 0.2024 

 
It is observed in Tables 1-4 and Section 6 that point estimates of  obtained with the 

proposed method are always larger than point estimates obtained with the CJS formula. This 

seems to be due to the fact that the posterior sample paths of the GP tend to be more oscillatory 

than its posterior mean. The more oscillatory sample paths tend to have larger interaction 

components than the posterior mean. Since  is the sum of many high order interactions, its 

posterior mean tends to be larger than the value of  for the posterior mean of the GP. 

However, in all cases, discrepancies between point estimates of all RPD indices  and  

given by the CJS formula and WLS/IWLS method are not large.  
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