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Appendix A: Proof of Lemma 1 and Proposition 1
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Proof:

177 = £, = £, [Saengigt aver Batbal) = F(0)] wi@)dx

= Lo+ S Sactye ety S 0 = (fo + B Bncty s fiy i) ()| W@
= [[(fs = fo) + Zies Baciyercivea Fatpi) = Fain.iy) (0] wdx

= fx {(fo - fo)2 + Xites Dasiy<<ieal Fiy i) — f(il,...,ik))(x)]z} w(x)dx

= [ (fo - fo) W)X + Tey Tt etz L (Fyoio = finin) ] w(x)dx

= (fo— fo)2 + 301 Yt <cizall Fi i) — f(il,...,ik)”i,-

Note that we have used the fact that fx(fo — fo) (fiiy i) = Flin,.in) GOW(x)dx = 0 and
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f(il,...,ik)”W = 0 forall (iy, ..., iy).
Proof:
since (f, — fo)2 > 0and ||, i — f(il,---,ik)”i, > 0 for all P, it follows from Lemma 1 that
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lim (fo — fo)” = 0and lim ||ft,,...0 = feiy,ioll, = 0

Appendix B: Review of Gaussian Process Modeling

In GP modeling, the prior for the functional relationship f is given by



Y(x) =1+ G(x), (1)
where x € y and G (x) is a zero mean stationary GP. Given any two points x; and x;, the
covariance of Y (x;) and Y (x;) is given by cov[Y (x;), Y (x;)] = cov[G(x)), G(x;)] =

o?R(x;, x;), where R(x;, x;) is the correlation function. The most commonly used correlation

function is the Gaussian correlation function

R(xo ;) = [T, 004 &)
where x;;, is the kth element of x;, and 6, € (0,1),k =1, ..., d.

In a computer experiment, the computer output is evaluated at n values of inputs given by
the rows x1, ..., x™ of the design D, where the choice of each x' is restricted to y. This yields a
vector Y of observed outputs. The prior process is updated with experiment data, giving a
posterior GP (Currin et al., 1991; Santner et al., 2003)
Y(OI(Y,4,02,6)~GP(u(:11,6),C(|0%,8)), 3)
with mean function u(:|4, @) and covariance function C(:,|c2, 8). The mean function is given by
1(x]2,0) = A + r(x)TR™I(Y — 11), ()

where r(x) = (R(x, x1), .., R(x, x™))", and R = (R(xi,xf)) ; the covariance

1<isn,1<jsn
function is given by
C(x;,xj|02,0) = o2{R(x;, x;) — r(x)TR 'r(x;)}. (5)
The mean and covariance functions given by (4)-(5) depend on the parameters 4, a2, and
0, which can be estimated from the data. One approach to estimating A, o2, and @ is the
maximum likelihood method, which estimates the parameters by maximizing the likelihood

£(0,2,0%) = [2nc®)™|R|]"Y?exp[— (Y — A1)TR™I(Y — 211)/(20?)]. It turns out that given 6,

A=1=A"R'1)""1"R"'Y,and 02 = 6% = (Y - /Tl)TR‘l(Y — A1) /n maximize



£(0,,5?). Thus, the maximum likelihood estimate @ of @ is obtained by maximizing
£(8,1,6?), which is equivalent to minimizing

¥ (6) = nlog(6*) + log(IRD. (6)
It is common to perform statistical inference on f using 8 in place of @, 1 in place of 4, and

62 = %62 in place of o2, i.e., using the GP

YOI(Y,1,62,8)~6P (u(11,8),¢(-162,8)). @
However, by replacing (4, o2, @) by estimates, we ignore the uncertainty in these parameters and
hence may underestimate uncertainty in inferences about f.
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Appendix C: Comparison with Other Computational Techniques
The paper by Chen et al. (2006) gives analytical formulas for computing some of the
RPD indices from the posterior mean u(x|4, 8) of the GP model for the case where the product
Gaussian correlation function is used and x has uniformly and independently distributed
components. In more general cases such as when x have independent Beta distributions (Section

6), or when the GP has product Matern correlation function, the more general formulas given by

Chen et al. (2006) that involve evaluating a large number of univariate integrals need to be used.
In Equation (35) of Chen et al. (2006), there are a total of nd C, ;’s and a total of (721) d Cyyji’sif

the posterior mean of a GP is used as surrogate. Thus, the number of univariate integrals that

n

need to be computed is nd + (2

) d. The integrals can only be evaluated analytically when

certain products of the correlation function and density for each input dimension have known



anti-derivatives. When numerical integration is employed, computation is more difficult and
numerical errors are unavoidable. When the covariance function of the GP is not of product form
(examples are given in Chapter 4 of Rasmussen and Williams (2006)), the formulas by Chen et
al. (2006) are not applicable. In contrast, the proposed method works for almost any given

densities wy, ..., w, and covariance function of the GP model. Moreover, it does not require the
computation of any integral when the orthonormal polynomials {lp]‘::j € NO} are known (there
are many classes of w; with known 1/)]".’3 (see Xiu and Karniadakis (2002)).

The method by Chen et al. (2006), if applied directly to GP models, yields estimators of
RPD indices that are different from ours. Suppose we intend to estimate H = H,(f)/H,(f),
where " is the computer model and ' can represent any of the RPD indices NV, ¢, A(s), and
B(s)- Then, since the posterior GP Y is the posterior of the computer model, a Bayesian approach
involves replacing f with Y and estimating H with its posterior mean
H = Ey{H,(Y)/H,(Y)}. 1)
Note that the proposed method attempts to recover 7. On the other hand, the estimator
employed by Chen et al. (2006) for # is
H = Hl(EY(Y))/HZ (EY(Y))’ (2
which is obtained by replacing f (x) with Ey (Y (x)) = u(x|4,8). The estimators 7 and # can
yield different results.

A method that can produce valid point and interval estimates of NV, ¢, A(s), B(s), and
Vit,,..ep/V 18 10 use Oakley and O’Hagan’s (2004) method for decomposing Y () into its

functional ANOVA components and then simulating random realizations of the components.

However, a formidable number of integrals need to be computed to obtain the mean and



covariance functions of the components. In addition, obtaining N, . ¢,y, As), B(s), and
Vit,,..ep/V from the functional ANOVA components requires further integrations with respect to

the inputs. It is not clear how the cumulative integration error can be controlled. Estimates of M
and V at a given control factor setting can be obtained by simulating the GP at noise factor
settings that serve as integration nodes. However, independent simulations at distinct control
factor settings produce noisy and nonsmooth estimates of M and V, unlike averaging M and V
over a sample of B. Although stochastic approximation algorithms can be used in this case, they
are less efficient than deterministic optimization algorithms, which can be employed to optimize
the average of M and V over a sample of B (see Nemirovski et al. (2009) and Wright and
Nocedal (1999)). Smooth estimates of M and V can be obtained by simulating sample paths of
the GP but this involves simulating from high dimensional distributions (Apley et al., 2006).
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Appendix D: Convergence of WLS Method
The fact that the orthonormal polynomial model can approximate the GP model to any

desired accuracy by using sufficiently large P and N shall be proven in this section. As



discussed, under some nonrestrictive conditions, the set of polynomials {ll}a =[1%, 1,0};1. o=

(ay, ..., aq) € N&} form an orthonormal basis for the Hilbert space L?(x, w) = {(: X—

R: fx () wx)dx < oo}. Recall that the posterior GP that we attempt to approximate with the
orthonormal polynomial model is given by Y (-)~GP(u(:11,6), C(-;|a?, 8)), which for
simplicity, we shall denote by Y(-)~GP(u(-), C(-,-)) in this section. In the following, we shall
assume that x is compact and the sequence x, ..., x is such that limy_,,, >, {(x;) /N =
fxi(x)dx for every continuous ¢. This assumption holds if x = [-1,1]¢ and x5, ..., xy is a
quasi-Monte Carlo sequence (e.g., Sobol sequence) on x (Theorem 2.13 in Niederreiter (1992)).
We assume that w is continuous on x and w(x) > 0 for all x € x except on a set x' c x of Jordan
measure zero. We also assume that GP(u(-), C(-,-)) is almost surely continuous on y as can be
guaranteed by choosing the prior correlation function R so that the prior for Y (+) is almost surely
continuous. This implies that both posterior mean function u: x — R and posterior covariance
function C: x X x — R are continuous. Define the expectation operator E, by

Eey[C(x, Y (uy), ..., Y ()] = fx Ey[¢(x, Y (uy), ..., Y (w))]w(x) dx, where E, denotes
expectation with respect to the posterior distribution of Y (-). Then,

Eey V2] = [ Ey[V2(@]w(dx = [ [12(x) + C(x, 0)lw(®)dx < . (1)
By Fubini’s theorem,

00 > [ Ey[Y2(x)l w(x)dx = Ey [ IREle) w(x)dx]. @)

Hence, fx Y?(x) w(x)dx < oo almost surely. This implies that Y (-) € L?(x, w) almost surely.

Let YN = (Y(xy), ..., Y (xn)) b1 = (lpj(xi)) ,and

1<isN,1<jsm

W, = diag{w(x;), ..., w(xy)}. Consider the weighted least squares method, which gives



Bis = (pIW1 ) TpTW, Y1, 3)
If w(x;) = 0, then we simply delete x; and replace it with x;,,. Note that since w(x) = 0 ona

set x’ of Jordan measure zero, it follows that the fraction of x;’s with w(x;) = 0 tends to zero as

N — oo (see page 18 of Niederreiter (1992)). Define B, = fXIIJ(x)TY(x)W(x)dx, where

P(x) = (1/;1 x), ..., l/Jm(x)). This is the vector of coefficients obtained by projecting Y (+) onto
the space spanned by the bases v, ..., ¥,,,. We shall show that limy_,., B.s = Bp. If we let

N — oo, the element in the ith row and jth column of ¢ W, ¢, /N converges to

limpy oo (PTW161)(i,jy /N = limysoo Xy ¥i (i) (idw (i) /N = [ ;09 (0w (x) .
Similarly, if we let N - oo, the ith element of ¢I W, Y"1 /N converges to “
limpy o0 (@TW YNy /N = limpy_eo Bioy i (i)Y (eidw (xi0) /N = [, 1 (0)Y (0w (x)dxx. (5)
The integral in (5) exists because Y (+) € L?(x, w) almost surely. Thus, we have
limy_c, (@1 W1p1)™" = T and limy_c, Brs = [ ()Y ()w(x)dx = Bp. (6)
The average error E, y{[Y (x) — ¥ (x)B.s]*} in approximating Y (x) with the weighted
least squares estimator ¥ (x) B is bounded above by a term due to projecting Y onto the space

spanned by the bases v, ..., ¥, and a term due to approximating the projection with the
weighted least squares estimator:

Exy{lY () — ¥(0)B15]%} = Exy{[Y () — Pp()Bpr + P(x)Br — P(X)B1s5]%}

< 2B, {[Y (0) — Y(OBp12 + 2E, ([P0 (Bp — Brs)1. W
The term E, y{[Y (x) — ¥ (x)Bp]*} is due to projecting Y (-) onto the space spanned by the bases
Yy, ..., P, 1t depends on P but not on N. Because Y (+) € L2(x, w) almost surely,

limp_, o, (E,{[Y(x) — ¥ (x)Br]*}) = 0 for almost all Y (-). We also have

EAlY () = $(0)Bp]*} = E2msa B < L21 B = E[Y2 (0], (8)



where B4, B,, ... are the coefficients of the expansion of Y (-) in terms of the polynomial bases in

(Yo =TIE ¥k @ = (ay, ..., aq) ENG} e, B = fxl/)i(x)Y(x)w(x)dx. Since E,[Y2(x)] does

not depend on P and Ey{E,[Y?(x)]} < oo, it follows by the dominated convergence theorem

(page 133 of Resnick (1999)) that

limp o Ex p{[Y () — P () Bp]?} = limp_ o Ey (Ex{[Y (x) — P(x)Br]*}H

= Ey(limp_, o E{[Y (x) — p(x)Bp]*}) = Ey(0) = 0. (9)
The term E, v {[Y(x)(Bp — BLs)]*} is due to approximating the projection of Y (-) with

the weighted least squares estimator. We shall show that for fixed P, limy_,oEx y{[p(x)(Bp —

BLs)1?} = Exy{limy_ o [P (x)(Bpr — B1s)]*} = 0. Note that

W@ BLs — B> < IPpDOIZ1BLs — BellZ < IpONZ2IIBLsIIZ + 2118 112). (10)

Because the y;’s are orthonormal,

Ex(lp()]13) =m < oo. (11)

In addition, [|Bpll5 < X2, B = E,[Y?*(x)], which implies that

Ey(IBpl13) < Exy[Y2(x)] < oo. (12)
We now proceed to show that Ey (|| Bs115) < co. First, we argue that supye, |Y (x) —

u(x)| has moments of all order. Due to the continuity of i and C, and the compactness of y, we

must have m,, = supye, |u(x)| < oo and o7 = sup,e, C(x, x) < co. Moreover, the compactness

of x and the almost sure continuity of Y (+) implies that sup,e, Y (x)| < oo almost surely. Then,

by Theorem 2.1 of Adler (1990),

P(|supx€X[Y(x) —u(@)]| > K) < 2exp[-0.5(K — ms)z/a)?], (13)

for all K > 0, where mg = E{supy¢,[Y (x) — u(x)1} is finite. Note that —Y () + u(*) and

Y () — u(*) have the same distribution. Thus, E{sup,e, [-Y (x) + u(x)]} = m. Since



SUPey Y (x) — p(x)| = max{sup,e,[Y (x) — u(x)], supye, [=Y (x) + ()]}, we have
P (|suprey Y @) — n(@)l| > k)
< P([supxey [Y (1) = (01| > K) + P([supye, [ (x) + n(®)]| > K)
Ox
This implies that sup,e, |Y (x) — p(x)| has moments of all orders. In particular, we have
2 2
Ey [sUPaey Y2 (0] < By [(supae, 1Y (x) — ()] +my)°| < oo. (15)
Since limy_,c, T W ¢, /N = I, we must have ||(¢pIW ¢, /N)" |5 <alforsome0<a<1
and all N large enough. Since the largest eigenvalues of ¢pT W, ¢, /N and Wi/chlquWi/Z/N
; ; Tyl/2 jp1/2 2
are identical, we must have ||¢TW,"*/N*/?||_ < b for some b > 1 and all N large enough. Let
W = SUPye,w(x) < oo. It follows that
185115 = (@I W11 /N) " (PTW YN /NI
2 2
< I(@TW1 s /N)TLIIB||pTW1 2 /N2|| |l Wi/ 2 YV NY2||
< a7'hsupye,w(x)Y?(x)
2
< a hw(supye, Y (x) — u(x)| +m,)". (16)
By (10) and (16), we obtain
2
W) (Bus — BT < P13 (207 bw(supaey IV (6) — ()| +my)° +208613)  (17)

We want to show that the expectation of the rightmost term in (17) is finite. By (11), (12), and

(15), we have
Exy [I9GON3 (207 b (supaey Y () = n()] +my)” + 2118, 113)]

= 2B, (1PN {Ey [a™bw(supye, IV () — (@] + my)°| + By (18, 113)} < oo. (18)



since [Y(x) (Bus — B)I? < IIP@)I3 (20 ba(supyey IV (x) — (®)] +my)” + 21185113 for
all N large enough and the right-hand-side does not depend on N, we can apply the dominated
convergence theorem to obtain

limNamEx,Y{[lp(x)(BP —B1s)]?} = Ex,y{limNeoo[ll)(x)(ﬁP —B1s)]?}=0. (19)

The results stated in (7), (9), and (19) implies that
limp oo limpy oo Ex y {[Y (%) — P () B15]%} = 0. (20)
Thus, to achieve E, y{[Y (x) — ¥ (x)B.s]*} < &, we can first choose P large enough so that
2E,{[Y (x) — Y (x)Bp]*} < €/2 and then choose N large enough so that 2E, v {[{p(x)(Bp —
B.s)]?} < £/2. A practical implementation of this procedure is to increment N for fixed P until
changes in 100E[Q(LS,P,N)]/ETSS (see Section 5) are small, and then increase P before
incrementing N again. The procedure can be terminated if 100E[Q(LS, P, N)]/ETSS is
sufficiently small. In the proposed procedure for the WLS method, we simply set N = 2m and
do not increase it unless ¢, is not of full column rank. This is because approximation accuracy is
frequently found to be much more dependent on P than on N when N > 2m.

Cohen et al. (2013) and Migliorati et al. (2014) have studied the approximation of a
function f via least squares estimation of the model coefficients. However, their results cannot
be applied directly to the problem in this paper. Both papers study regression with data from
fixed f and derive error bounds by taking expectation with respect to the design, which is
assumed to be a random sample from w. Cohen et al. (2013) assumes that f is bounded and the
least squares predictions are truncated whereas Migliorati et al. (2014) mainly study one-
dimensional polynomial approximations. Interestingly, the theoretical prediction of Cohen et al.
(2013), Chkifa et al. (2013), and Migliorati et al. (2014) that N /log(N) should scale with m?
when w is uniform is contradicted by numerical experiments reported in Migliorati et al. (2013)

10



and Chkifa et al. (2013), which demonstrate that faster convergence is achieved when N scales
linearly with m. These numerical experiments lend support to the choice of N = 2m in the WLS
and IWLS algorithms given in Section 5.
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Appendix E: Estimation of Response Mean and Variance

Consider the toy problem with f(x) = cos[3(x; + 1) + 1.5(x, + 1)],x € [-1,1]?, x is
a control factor, x, is a noise factor and x is uniformly distributed on [—1,1]2. We use the
maximin Latin hypercube design shown in Figure 1 to fit a GP model. The maximum likelihood
estimate of the correlation parameters 6 is & = (0.2566,0.6628) and the posterior GP has
excellent prediction accuracy and prediction credible interval coverage.

The WLS and IWLS methods are employed to construct orthonormal polynomial models,
where the v, ’s are tensor products of orthonormal Legendre polynomials because w is the
uniform density on [—1,1]%. The WLS method gives a model of degree 8, with N = 90 and
100E[Q(LS,P,N)]/ETSS = 0.0461; the IWLS method gives a model of degree 8, with N = 90

and 100E[Q(ILS,P,N)]/ETSS = 0.0082. A total of 10,000 values of B, and B;,s are

11



simulated. Using these values, we estimate the mean function M by taking the average of the
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Figure 2: Point and Interval Estimates (Dashed Lines) and True Value (Solid Line) of Response
Mean Obtained with WLS Method (a) and IWLS Method (b); Point and Interval Estimates
(Dashed Lines) and True Value (Solid Line) of Response Variance Obtained with WLS Method
(c) and IWLS Method (d).
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10,000 M’s, which we denote by E(J\7[|Y) and variance function V by taking the average of the

10,000 Vs, which we denote by E(7|Y). We also construct 98% credible intervals by using the
1% and 99% sample percentiles. The posterior mean, upper credible limit, and lower credible
limit of M and V are plotted in Figure 2 as dashed lines. We also compute M and V by drawing
100,000 random samples of x, and calculating the mean and variance of f using these samples
for each x,. The M and V functions (or, more precisely, accurate approximations of the
functions) are plotted as solid lines in Figure 1. By comparing Figures 1a and 1b, we see that the
WLS and IWLS methods produce indistinguishable estimates of M that closely approximate and
sandwich the true mean function. Similar comments apply to estimates of the variance function
in Figures 1c and 1d. The wide credible intervals for the variance function near x; = —1 are due
to the absence of design points in the upper left corner of Figure 1.
Appendix F: Estimation of RPD Indices for Moderately High Dimension Functions
F.1 Nondifferentiable Function

In this section, we give an example of RPD index estimation for a nondifferentiable and
fairly high dimension function. We consider the case where ¢ = 4, d = 10, x is uniformly
distributed on [—1,1]*° and the true function is a sum of two Sobol functions (Sudret, 2008):
f(x) = [8x; — 6][8x5 — 6] + |8x, — 6]|8xs — 6].
The variance components of the Sobol function are known (see Sudret (2008)). Based on the
known variance components, we obtain Ay = Ay = 1/14, A3y = Ay = 0and B(qy =
B(z) = 3/14,B(3) = B(4) = 0. We employ a maximin Latin hypercube design of size n = 200
to fit the GP model with Gaussian correlation function. Note that this GP model is actually
inappropriate for modeling f because f is not differentiable while the GP model produces

smooth sample paths. Using a target accuracy of T = 25%, both WLS and IWLS methods give a

13



model of degree 4 with N = 2002, and actual achieved accuracies of about 20%. Posterior mean
and 98% credible intervals given by both WLS and IWLS methods are shown in Table 1.
Estimates obtained with the CJS formula and true values for A5y and By are also given in the
table. The point estimates of A ) obtained by the proposed method are biased upwards from the
true values and not as close to the true values as the point estimates obtained with the CJS
formula. Moreover, the interval estimates for the nonzero A,y and A, obtained with the IWLS
method do not contain the true values. However, point and interval estimates of Ay and B,
given by the proposed method provide a reasonably accurate picture of the contribution of each
control factor to control by noise interactions (measured by the A s’s) and variation in the mean
(measured by the B(y)’s). In obtaining Table 1, computation with the CJS formula took around

350 seconds whereas computation with the WLS/IWLS method took around 150 seconds.

Table 1: Posterior Mean and 98% Credible Intervals, CJS Point Estimates, and
True Values of A, and B,

WLS IWLS CJS True

 |7LcL [ Mean | UCL | LCL | Mean | UCL | Formula | Value

1 | 00799 | 0.1118 | 0.1504 | 0.0830 | 0.1134 | 0.1502 | 0.0701 | 0.0714

c/z 2 | 0.0698 | 0.0964 | 0.1289 | 0.0721 | 0.0962 | 0.1265 | 0.0560 | 0.0714
® 73 00193 | 0.0284 | 0.0411 | 0.0227 | 0.0316 | 0.0434 | 0.0060 | 0.0000
4 | 00123 | 00171 | 0.0237 | 0.0161 | 0.0214 | 0.0285 | 0.0011 | 0.0000

1 | 0.1512 | 0.2024 | 0.2563 | 0.1514 | 0.1985 | 0.2466 | 0.2360 | 0.2143

5 2 | 0.1333 | 0.1835 | 0.2413 | 0.1356 | 0.1840 | 0.2372 | 0.2073 | 0.2143
© 73 [ 00030 | 0.0096 | 0.0212 | 0.0029 | 0.0085 | 0.0185 | 0.0047 | 0.0000
4 | 0.0016 | 0.0040 | 0.0091 | 0.0016 | 0.0040 | 0.0089 | 0.0004 | 0.0000

F.2 Smooth Function

This section gives an example of RPD index estimation for a smooth and fairly high
dimension function. We consider the case where ¢ = 2, d = 10, x is uniformly distributed on
[—1,1]1° and the function is the Tilden function (Saltelli et al., 2000) multiplied with 1 + x,x;

and appended with five inert inputs xg, ..., X1¢:
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f(x) = (1 + x2%3) /[2ugugexp(—uy /us) + 1/us],
where u; = 13465000(x; + 1) + 8970000, u, = 250(x, + 1) + 100,u; = 0.1(x5 + 1) +
Lu, =@5x10")(x, +1)+1x 1077, us = 50(xs + 1) + 250. We employ a maximin
Latin hypercube design D, of size n = 100 to fit the GP model with Gaussian correlation
function. Using a target accuracy of T = 10%, both WLS and IWLS methods give a model of
degree 4 with N = 2002, and actual achieved accuracies of about 5%. Posterior mean and 98%
credible intervals given by both WLS and IWLS methods are shown in Table 2. Estimates
obtained with the CJS formula are also given in the table. For all A ) except Ay and all By,
the discrepancies between point estimates obtained with the WLS/IWLS and CJS methods are
small relative to the values of the point estimates. We perform Monte Carlo simulation to
estimate all Sobol indices of f using the sobol program in the sensitivity package in R and two
random samples of inputs values of size 50,000. To obtain more accurate results, we remove all
five inert inputs from f. The simulation requires 1.6 x 10° evaluations of f. All third and higher
order indices have small or negative estimates. Thus, we assume that they are negligible. Based
on the first and second order Sobol indices, we compute the estimates of A 5 and B,y shown in
Table 2. Since the 95% bootstrap intervals of the Sobol indices have widths of 0.03-0.04, the
Monte Carlo estimates of A,y and By are accurate. The Monte Carlo estimates indicate that the
point estimates of all A ) and B, except By obtained with the proposed method and the CJS
formula deviate slightly from the true values.

To illustrate the importance of interval estimates of RPD indices, we randomly choose 40
runs from D, ,, and utilize the resulting design, which we denote by D,,, to fit the GP model.
Using a target accuracy of T = 10%, both WLS and IWLS methods give a model of degree 3

with N = 572, and actual achieved accuracies of about 1.4%. Table 3 gives the posterior mean
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and 98% credible intervals of Ay and By, obtained with the WLS and IWLS methods, and also
point estimates obtained with the CJS formula. The results in Table 3 clearly indicate the
inadequacy of design D,,. The point estimates of A ) and By are inaccurate and misleading. In
particular, the point estimates of A ;) are too small while those of B,y are too large. Thus, the
existence of some very strong interactions between control factor x, and the noise factors is not
indicated by the point estimates of A ,) while the point estimates of B,y falsely suggest that
control factor x; has an influence on the mean that is as strong as x,. However, the wide interval
estimates of A () and By, given by the proposed method warn us about the inaccuracy of the
estimates and inadequacy of the design.

Table 2: Posterior Mean and 98% Credible Intervals, CJS Point Estimates, and
Monte Carlo Estimates of Ay and By, Design D,

< WLS IWLS CJS Monte
LCL | Mean | UCL | LCL | Mean | UCL | Formula | Carlo
A 1 0.0196 | 0.0337 | 0.0539 | 0.0201 | 0.0342 | 0.0539 | 0.0192 0.0501
) 2 0.1550 | 0.2070 | 0.2661 | 0.1579 | 0.2084 | 0.2695 | 0.1953 0.2364
B 1 0.0730 | 0.1098 | 0.1500 | 0.0740 | 0.1090 | 0.1480 | 0.1186 0.1332
) 2 0.1404 | 0.1967 | 0.2567 | 0.1413 | 0.1977 | 0.2577 | 0.2136 0.2024

Table 3: Posterior Mean and 98% Credible Intervals, CJS Point Estimates, and

Monte Carlo Estimates of A,y and By, Design Dy,

s WLS IWLS CJS Monte
LCL | Mean | UCL LCL | Mean | UCL | Formula Carlo
4 1 0.0246 | 0.0524 | 0.0953 | 0.0252 | 0.0523 | 0.0942 | 0.0349 0.0501
) 2 0.0538 | 0.0931 | 0.1486 | 0.0549 | 0.0937 | 0.1452 | 0.0730 0.2364
B 1 0.1411 | 0.2181 | 0.2983 | 0.1422 | 0.2174 | 0.2965 | 0.2375 0.1332
© "2 10.1083 | 0.1962 | 0.2943 | 0.1127 | 0.1965 | 0.2931 | 0.2117 | 0.2024

The 98% credible intervals of A ) and B, in Table 2 are quite wide. Thus, we may

want to perform additional experiment runs to improve the accuracy of the GP model and RPD
estimates. Utilizing a 10,000 point subsequence of the Matlab Sobol sequence (the first 12000

points of the sequence are skipped and every 101th point is retained) as candidate set, we
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sequentially add a candidate point with the largest minimum distance to the design points until
the design size is 130. The resulting design, which we denote by D, 5., is employed to fit the GP
model. Using a target accuracy of T = 10%, both WLS and IWLS methods give a model of
degree 4 with N = 2002, and actual achieved accuracies of about 3.5%. Table 4 presents the
posterior mean and 98% credible intervals of Ay and By obtained with both the WLS and
IWLS methods, and also point estimates obtained with the CJS formula. We see that the point
estimates in Table 4 have better accuracy compared to the point estimates in Table 2. For
example, the point estimate of B,y given by the WLS method is now about 13.4% instead of
11.0%, which is closer to the Monte Carlo estimate of 13.3%. The widths of the credible
intervals in Table 4 are also somewhat smaller than the widths of the intervals in Table 2.

Table 4: Posterior Mean and 98% Credible Intervals, CJS Point Estimates, and
Monte Carlo Estimates of A,y and By, Design D, 3

. WLS IWLS CJS Monte

LCL | Mean | UCL LCL | Mean | UCL | Formula Carlo

A 1 0.0346 | 0.0494 | 0.0665 | 0.0342 | 0.0483 | 0.0647 | 0.0388 0.0501
) 2 0.2096 | 0.2453 | 0.2849 | 0.2086 | 0.2443 | 0.2832 | 0.2369 0.2364
3 1 0.1053 | 0.1340 | 0.1638 | 0.1066 | 0.1338 | 0.1631 | 0.1384 0.1332
) 2 0.1502 | 0.1870 | 0.2251 | 0.1532 | 0.1882 | 0.2265 | 0.1938 0.2024

It is observed in Tables 1-4 and Section 6 that point estimates of A, obtained with the
proposed method are always larger than point estimates obtained with the CJS formula. This
seems to be due to the fact that the posterior sample paths of the GP tend to be more oscillatory
than its posterior mean. The more oscillatory sample paths tend to have larger interaction
components than the posterior mean. Since A is the sum of many high order interactions, its
posterior mean tends to be larger than the value of A for the posterior mean of the GP.
However, in all cases, discrepancies between point estimates of all RPD indices A5y and By,

given by the CJS formula and WLS/IWLS method are not large.
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