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Abstract In this paper, we derive elementary M- and optimally robust asymptotic

linear (AL)-estimates for the parameters of an Ornstein–Uhlenbeck process. Simula-

tion and estimation of the process are already well-studied, see Iacus (Simulation and

inference for stochastic differential equations. Springer, New York, 2008). However,

in order to protect against outliers and deviations from the ideal law the formulation of

suitable neighborhood models and a corresponding robustification of the estimators

are necessary. As a measure of robustness, we consider the maximum asymptotic mean

square error (maxasyMSE), which is determined by the influence curve (IC) of AL

estimates. The IC represents the standardized influence of an individual observation

on the estimator given the past. In a first step, we extend the method of M-estimation

from Huber (Robust statistics. Wiley, New York, 1981). In a second step, we apply

the general theory based on local asymptotic normality, AL estimates, and shrink-

ing neighborhoods due to Kohl et al. (Stat Methods Appl 19:333–354, 2010), Rieder

(Robust asymptotic statistics. Springer, New York, 1994), Rieder (2003), and Staab

(1984). This leads to optimally robust ICs whose graph exhibits surprising behavior.

In the end, we discuss the estimator construction, i.e. the problem of constructing

an estimator from the family of optimal ICs. Therefore we carry out in our context

the One-Step construction dating back to LeCam (Asymptotic methods in statistical

decision theory. Springer, New York, 1986) and compare it by means of simulations

with MLE and M-estimator.
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412 S. Rieder

1 Introduction

The Ornstein–Uhlenbeck process was introduced in Ornstein and Uhlenbeck (1930)

as a model for the velocity process of Brownian particles (i.e. free particles mov-

ing in gas) being affected by a friction force. The work of Ornstein and Uhlenbeck

therefore continued the work of Einstein on Brownian motion, which studied the fric-

tion-less movement. The process has nowadays many applications; e.g. in finance

it is used as a model for interest rates, see Vasicek (1977). Simulation and estima-

tion are already well-studied, see Iacus (2008). However, in order to protect against

outliers and deviations from the ideal law, we formulate neighborhoods about transi-

tion distributions and robustify the parameter estimators with respect to these neigh-

borhoods. As a measure of robustness, we consider the maximum asymptotic mean

square error (maxasyMSE) determined by the influence curve (IC) of the AL esti-

mates.

Influence curves of correlation measures have been recently studied in the literature,

see Croux and Dehon (2010).

But contrary to the original definition of the IC as Gâteaux derivative of statisti-

cal functionals by Huber (1981), we define the IC via an estimator expansion. This

is motivated by the observation that most proofs of asymptotic normality amount to

an estimator expansion with the IC as summand. By this definition, we achieve the

original interpretation of the IC (as standardized, asymptotic influence of an individual

observation on the estimator given the past) and avoid suitable regularity assumptions.

The paper is organized as follows: We first summarize some basic facts of the pro-

cess. Secondly, we extend the method of M-estimation from Huber (1981), leading to

M-equations for the parameters of the Ornstein–Uhlenbeck process. However, a more

general robustness concept seems more appropriate and necessary. Therefore, thirdly,

we apply the infinitesimal approach of Kohl et al. (2010), Rieder (1994, 2003), and

Staab (1984), which aims to minimize the maxasyMSE on shrinking neighborhoods

about the ideal transition distributions. Afterwards we compare graphically the ICs of

the two approaches.

In the last section, we discuss the estimator construction, that is, the problem of

constructing an estimator from the family of optimal ICs. Therefore we carry out in our

context the One-Step construction dating back to LeCam (1986). In a simulation study

we compare then this One-Step estimator with Method of Moment (MoM), MLE and

M-estimator for different contamination models. However, our approach is theoreti-

cal incomplete; we finalize by summarizing the remaining mathematical problems for

future research.

2 Preliminaries on the Ornstein–Uhlenbeck process

In this section, we summarize some facts of the process, both in continuous and discrete

time.
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2.1 Continuous time

A stochastic process X = (X t )t≥0 is said to be an Ornstein–Uhlenbeck process if it

satisfies the linear stochastic differential equation (SDE)

d X t = λ(µ − X t )dt + σd Bt (1)

with parameters λ, σ ∈ R+, µ ∈ R and (Bt )t≥0 the standard Brownian motion.

This process is well-studied in the literature, see Øksendal (2002), and the solution of

(1) is given by

X t = e−λt X0 + µ(1 − e−λt ) + σ

t∫

0

eλ(s−t)d Bs, (2)

where X0 := X (0) and
∫ t

0 eλ(s−t)d Bs ∼ N

(
0, 1−e−2λt

2λ

)
.

Choosing the limiting distribution for t → ∞ in (2) as initial distribution, i.e.

X0 ∼ N

(
µ, σ 2

2λ

)
, the process will become stationary (in the strong sense).

Furthermore, assuming X0 independent of F(V (t), t ≥ 0), where V (t) :=∫ t

0 eλ(s−t)d Bs , the process is Gaussian with expectation E(X t ) = µ and covariance

Cov(X t , Xu) = σ 2

2λ
e−λ|t−u|. (3)

From Gaussianity and weak stationarity we may deduce that the Ornstein–Uhlenbeck

process is strongly stationary. In addition, having independent increments the pro-

cess is Markov. Furthermore, the form of the covariance function in (3) implies the

ergodicity of the Ornstein–Uhlenbeck process, see Breiman (1992, p. 120).

2.2 Discrete time

The process observed in discrete time is more relevant in statistics. Therefore we

denote by x≤n := (xn, xn−1, . . . , x0) discrete-time observations on a regular grid.

Then, by (2), the Ornstein–Uhlenbeck time series is for i = 1, . . . , n given by

xi = e−λd xi−1 + µ(1 − e−λd) + σ

√
(1 − e−2λd)

2λ
· zi , (4)

where Zi ∼ N (0, 1) i.i.d and with equidistant time lag d, fixed in advance.

For µ = 0, and σ = 1 we obtain as a special case from (4) the Standard Ornstein–

Uhlenbeck which is AR(1)

xi = θxi−1 + vi , (5)
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414 S. Rieder

where Vi ∼ N (0, (1 − e−2λd)/(2λ)) i.i.d, and 0 < θ = e−λd < 1 is in the so-called

region of stationarity of an AR(1) time series.

3 M-estimates

In this section, we extend the idea of M-estimates for location and regression to the

Ornstein–Uhlenbeck time series. We understand M-estimation according to Huber

(1981) in an elementary way: We replace the quadratic function in the likelihood by

Huber’s ρ-function, and as far as scale is concerned we introduce Huber’s Proposal 2.

This leads to our M-estimates for θ = (µ, σ, λ).

We should be aware, however, that this extension is rather intuitive: Huber (1981)

has only treated location, the theory remains incomplete for simultaneous location and

scale, and does not cover more general models or the case of dependent observations.

In literature several other authors have extended M-estimation to dynamic location-

scale models: Muler and Yohai (2002, 2008), consider instead of Huber’s Proposal

2 the so-called τ -scale and modify the likelihood for ARCH and GARCH models in

this way.

There exist also several other approaches for simultaneous location and scale prob-

lems: Besides Kohl et al. (2010), Rieder (1994), and Staab (1984), Mancini et al.

(2005) propose robust estimators for conditional location and scale parameters for

a strictly stationary time series model, the Ornstein–Uhlenbeck time series being a

special case. However, contrary to Huber’s approach where his explicit ψ-function is

used, the ψ-function in these approaches is derived by an optimization criterion.

We will discuss a more general robust approach in the next section, in this section

the aim is to apply the most simple and intuitive approach.

Initial density and conditional densities of the Ornstein–Uhlenbeck process, for

i = 1, . . . , n, are given by

fθ (x0) =
√

λ√
πσ

exp

(
−λ

(x0 − µ)2

σ 2

)
,

fθ (xi |xi−1) =
√

λ
√

πσ
√

1 − e−2λd
exp

(
−

λ
(
xi − µ − e−λd(xi−1 − µ)

)2

σ 2(1 − e−2λd)

)
.

Applying the Markovian and Gaussian properties of the process, we easily obtain the

following likelihood for the sample x0, x1, . . . , xn

L(θ) = −n + 1

2
log

(
πσ 2

λ

)
− 1

2

(√
2λ(x0 − µ)

σ

)2

− n

2
log(1 − e−2λd)

−1

2

n∑

i=1

(√
2λ

(
(xi − µ) − e−λd(xi−1 − µ)

)

σ
√

1 − e−2λd

)2

. (6)
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We now replace the quadratic function 1
2 x2 in (6) by the Huber function

ρ(x) = ρk(x) =
{

1
2 x2 |x | ≤ k

sign(x)k(x − k) + 1
2 k2 |x | > k

, (7)

for some k; 1 ≤ k ≤ 2, see Huber (1981).

This gives

Lρ(θ) = −n + 1

2
log

(
πσ 2

λ

)
− ρ

(√
2λ(x0 − µ)

σ

)
− n

2
log(1 − e−2λd)

−
n∑

i=1

ρ

(√
2λ

(
(xi − µ) − e−λd(xi−1 − µ)

)

σ
√

1 − e−2λd

)
.

Denote

ψ(x) = ψk(x) = ρ′
k(x) =

{
x |x | ≤ k

sign(x)k |x | > k
, (8)

and

ri =
√

2λ
(
(xi − µ) − e−λd(xi−1 − µ)

)

σ
√

1 − e−2λd
i = 1, . . . , n. (9)

Then the first derivatives of Lρ(θ) may be written as

∂Lρ

∂µ
=

√
2λ

σ
ψ

(√
2λ(x0 − µ)

σ

)
−

√
2λ(e−λd − 1)

σ
√

1 − e−2λd

n∑

i=1

ψ(ri ),

∂Lρ

∂σ
= −n + 1

σ
+

√
2λ(x0 − µ)

σ 2
ψ

(√
2λ(x0 − µ)

σ

)
+ 1

σ

n∑

i=1

ψ (ri ) ri ,

∂Lρ

∂λ
= n + 1

2λ
− x0 − µ√

2λσ
ψ

(√
2λ(x0 − µ)

σ

)
− nde−2λd

1 − e−2λd
− 1

2λ

n∑

i=1

ψ (ri ) ri

−
n∑

i=1

ψ (ri )

√
2λe−λdd(xi−1 − µ)

σ
√

1 − e−2λd
+ e−2λdd

1 − e−2λd

n∑

i=1

ψ (ri ) ri .

Hence, the M-estimator µ̂ is given as the solution of

ψ

(√
2λ̂(x0 − µ̂)

σ̂

)
− e−λ̂d − 1√

1 − e−2λ̂d

n∑

i=1

ψ
(
r̂i

)
= 0, (10)
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where the arguments of ψ are

r̂i =

√
2λ̂

(
(xi − µ̂) − e−λ̂d(xi−1 − µ̂)

)

σ̂

√
1 − e−2λ̂d

i = 1, . . . , n. (11)

And the M-equations for σ and λ are

χ

(√
2λ̂(x0 − µ)

σ̂

)
+

n∑

i=1

χ
(
r̂i

)
= 0, (12)

−
√

2λ̂

σ̂

n∑

i=1

ψ
(
r̂i

)
(xi−1 − µ̂) + e−λ̂d

√
1 − e−2λ̂d

n∑

i=1

χ
(
r̂i

)
= 0, (13)

where

χ(x) = ψ(x)2 − a(k), (14)

and a(k) = 2Φ(k) − 1 − 2kϕ(k) + 2k2(1 − Φ(k)), with ϕ(k) and Φ(k) denoting the

standard Gaussian probability density function and the standard Gaussian distribution

function, respectively, see Huber (1981).

Although we adopt Huber’s choice of the functions ψ and χ in (8) and (14), we

should be aware however, that the Ornstein–Uhlenbeck process is quite different from

a location model with i.i.d errors.

The M-equations (10), (12), and (13) can be solved numerically, e.g. by apply-

ing the Newton method with the robustified MoM estimates as initial values: µ0 =
med(x), σ0 =

√
2λ0 mad(x), and λ0 = − log(̂ACF(d))

d
, ÂCF(d) denoting the empir-

ical autocorrelation function with time lag d, med the median, and mad the median

absolute deviation.

4 Approach based on LAN and shrinking neighborhoods

However, since the theory in Huber (1981) does not cover the dependent case, the

M-approach from the previous section may be reasonable practical but is not optimal

in general. Therefore we apply a more general concept to the Ornstein–Uhlenbeck time

series, the approach based on local asymptotic normality (LAN) and shrinking neigh-

borhoods due to Kohl et al. (2010), Rieder (1994, 2003), and Staab (1984). It will lead

in fact to IC and estimates of a different kind than those based on the M-approach. In

the simulation study in Sect. 6 we then compare the estimators of the two approaches,

and use also the M-estimator as initial estimator for the One-Step construction of the

more general approach.
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4.1 LAN condition

For this approach the LAN-condition from Hájek (1972) and LeCam (1986) is required.

We give this condition in terms of the following general notation.

Let for n ≥ 1 (X1, . . . , Xn) be a sequence of random vectors defined on a proba-

bility space (Ω,F , Pθ ), with k-dimensional parameter θ ∈ Θ , and Θ ⊂ Rk an open

subset.

Further we denote by Fn := σ(X1, . . . , Xn) the σ -field induced by the random vector

(X1, . . . , Xn) and by P
(n)
θ the restriction of Pθ to Fn .

Then the family of probability measures P :=
{

P
(n)
θ ; θ ∈ Θ

}
on (Ωn,Fn) is

local asymptotic normal (LAN) at θ if there exists a sequence of random variables

Zn : (Ωn,An) → (Rk,Bk) that are asymptotically normal, i.e. Zn → N (0, C) in law

under P
(n)
θ , such that for each h ∈ Rk

log

(
d P

(n)

θ+ h√
n

/
d P

(n)
θ

)
−

(
h′ Zn − 1

2
h′Ch

)
−→ 0 (15)

stochastically in P
(n)
θ -probability.

So far in literature the LAN property has been shown for general ergodic diffusion

processes, containing the Ornstein–Uhlenbeck process, in Gobet (2002). In case of the

Standard Ornstein–Uhlenbeck process the property has been also verified by Hallin

et al. (2000). Since the LAN property remains valid under location-scale transforma-

tions, Hallin et al. (2000) contains also the general Ornstein–Uhlenbeck process. In

addition, Swensen (1985) showed the LAN property for general AR(p) time series,

which includes AR(1), thus also the Ornstein–Uhlenbeck process by a location-scale

transformation.

Another possibility is to verify the LAN-condition of the Ornstein–Uhlenbeck time

series by means of L2-differentiability in the sense of Jeganathan (1982), Theorem 1,

in the special case of LAN instead of LAMN. For the definition of L2-differentiability

we refer to Jeganathan (1982), (2.A.1)–(2.A.5).

Then the random sequence and asymptotic variance from (15) are given by Zn =
1√
n

∑
Λθ (x≤ j ), where

Λθ (x≤ j ) = ∂θ log f (x j |x< j ),

and C = Iθ with Iθ = E(Λ′
θΛθ ).

In case of the Ornstein–Uhlenbeck process, we obtain Λθ = (Λµ,Λσ ,Λλ)
′ with

coordinates

Λµ = 2λz j

σ 2(1+e−λd )
(16)

Λσ = − 1
σ

+ 2λz2
j

σ 3(1−e−2λd )
(17)

Λλ = 1
2λ

− d
e2λd−1

− z2
j +2λz j (x j−1−µ)de−λd

σ 2(1−e−2λd )
+ λz2

j e−2λd 2d

σ 2(1−e−2λd )2 , (18)
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where z j = x j − µ − e−λd(x j−1 − µ), j = 1, . . . , n, and

Iθ =

⎛
⎜⎜⎜⎜⎝

2λ

σ 2
1−e−λd

1+e−λd 0 0

0 2
σ 2 − 1

λσ
+ 2d

σ(e2λd−1)

0 − 1
λσ

+ 2d
σ(e2λd−1)

1
2λ2 + d2(1+e2λd )

(e2λd−1)2 − 2d
λ(e2λd−1)

⎞
⎟⎟⎟⎟⎠

. (19)

Proposition 1 Being L2-differentiable, the Ornstein–Uhlenbeck time series is LAN

with derivative (score-function) Λθ and Fisher-Information Iθ , given by (16)–(19).

From the properties of (x j )
n
j=1, it follows that the sequence (Λθ (x≤ j ))

n
j=1 is a sta-

tionary, ergodic martingale difference sequence. And since the sequence (z j )
n
j=1 from

(17) and (18) depends only on x j and x j−1, we have that

Λθ (x≤ j ) = Λθ (x j , x j−1), (20)

which reflects the Markovian property of the Ornstein–Uhlenbeck process.

4.2 Asymptotically linear estimators

We define now asymptotically linear estimators. Since many estimators (e.g. MLE

and M-estimates) have an asymptotic expansion as given in (21) below, which is often

derived in proofs of asymptotic normality, we define our more general estimators by

such an expression.

More precisely, an estimator S = (Sn), Sn : (Ωn,Fn) → (Rk,Bk), is asymptot-

ically linear (AL) at θ if there exists an IC ψθ , necessarily unique (Pθ -a.s.), such

that

√
n(Sn − θ) = 1√

n

n∑

j=1

ψθ (x≤ j ) + o
P

(n)
θ

(n0) (21)

where o
P

(n)
θ

(n0) → 0 in product P
(n)
θ -probability as n → ∞, and n0 = 1 indicates

the index tending to infinity.

Remark 1 For mathematical reasons—ergodicity, stationarity, and the martingale dif-

ference property of (ψθ (x≤ j ))
n
j=1—we consider in (21) the whole past of x≤ j , that

is, also observations at negative time points. Later, for the implementation, we have

to make sure that the influence of x≤0 on Sn is asymptotically negligible.

Moreover, we define the set Ψ (θ) of all (conditionally centered, square integrable,

Rk-valued) ICs by

ψθ ∈ Lk
2(Pθ ), Eθ (ψθ (x≤ j )|x< j ) = 0 Pθ (dx< j )-a.s., Eθ ψθΛ

′
θ = 1k, (22)
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where Eθ denotes expectation, respectively conditional expectation, under Pθ , and 1k

is the k × k identity matrix.

Remark 2 (a) The originally intended interpretation of an IC by Bickel (1984), Ham-

pel et al. (1986), and Huber (1981) is extended to the dependent setup: The

summand ψθ (x≤ j ) in (21) represents the asymptotic influence of observation x j

given the past x< j on the standardized estimator
√

n(Sn − θ).

(b) The class of AL estimators covers the MLE ψθ = ψ̂θ := I −1
θ Λθ , and other

M-estimates, see for example Bustos (1982).

(c) Influence curves in the statistical literature have traditionally been defined as

Gâteaux derivatives of statistical functionals, see Mancini et al. (2005). But even

if a Gâteaux derivative exist it is too weak to cover the empirical measure (since

for sample size n > 1 the empirical measure is not a Dirac measure), and thus

too weak to derive properties from the Gâteaux derivative corresponding to the

functional.

The asymptotic derivations for time series can be simplified by the method of

Fréchet differentiability, see Bednarski (2010).

Because the Ornstein–Uhlenbeck process is stationary and ergodic, and since

Eθ (ψθ (x≤ j )|x< j ) = 0, the sequence (ψθ (x≤ j ))
n
j=1 is a stationary and ergodic mar-

tingale difference sequence. Then, with ψθ ∈ Lk
2(Pθ ), the CLT in McLeish (1974),

Theorem 2.3, applies. This gives us the asymptotic normality at θ of the AL estimators

under Pθ .

Assuming only ψθ ∈ Lk
2(Pθ ) and Eθ (ψθ (x≤ j )|x< j ) = 0, the condition Eθ ψθΛ

′
θ =

1k (Fisher-consistency), turns out to be equivalent to a locally uniform extension of

this asymptotic normality under Pθ . That is

L
P

(n)

θ+h/
√

n

√
n(Sn − (θ + h/

√
n)) → N (0, Covθ (ψθ )) ∀h ∈ R3. (23)

This follows by one of LeCam’s contiguity lemmas.

Furthermore, we get the Cramér-Rao bound for the asymptotic variance under Pθ

Covθ (ψθ ) ≥ I −1
θ = Covθ (ψ̂θ )

with equality iff ψθ = ψ̂θ = I −1
θ Λθ .

This easily follows from the positive semidefinity of the expectation and the Fisher-

consistency, Eθ ψθΛ
′
θ = 1k . More precisely

0 ≤ Eθ

(
ψθ − I −1

θ Λθ

)
(ψθ − I −1

θ Λθ )
′

= Eθ

(
ψθψ

′
θ

)
− Eθ

(
ψθΛ

′
θ

(
I −1
θ

)′)
− Eθ

(
I −1
θ Λθψ

′
θ

)
+ Eθ

(
I −1
θ ΛθΛ

′
θ

(
I −1
θ

)′)

= Eθ

(
ψθψ

′
θ

)
− I −1

θ ,
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since Eθ

(
I −1
θ ΛθΛ

′
θ

(
I −1
θ

)′)
= I −1

θ Eθ

(
ΛθΛ

′
θ

)
I −1
θ = I −1

θ .

And we have equality 0 = Eθ

(
ψθ − I −1

θ Λθ

) (
ψθ − I −1

θ Λθ

)′
iff ψθ = I −1

θ Λθ , as

asserted.

4.3 Infinitesimal perturbations

We are now contaminating the transition distribution of the ideal law Pθ . That means

that the observations x≤n may now follow any law Q where the transition dis-

tribution is given in terms of the j-th transition distribution of Q(n), denoted by

Q(n; j |< j)(dx j |x< j ), and the ideal initial distribution Q(n,0)(dx≤0) = Pθ (dx≤0).

More precisely, the joint law Q(n) is for all f : (R≤0 ×· · ·×R, B≤0 ⊗· · ·⊗B) →
(R+, B) given by

∫

R≤n

f (x≤n)Q(n)(dx≤n) =
∫

R≤0

· · ·
∫

R

f (x≤n)

n∏

j=1

Q(n; j |< j)(dx j |x< j ) Q(n,0)(dx≤0).

Furthermore Q(n; j |< j)(dx j |x< j ) belongs to a neighborhood about the j-th ideal tran-

sition distribution, P
(n; j |< j)
θ (dx j |x< j ), with a radius, depending on the past.

In this article, the neighborhoods will be restricted to convex combination type. We

consider contamination balls

Bc,ε

(
P

(n; j |< j)
θ (dx j |x< j ), r/

√
n

)

consisting of all convex combinations

(
1 − r/

√
n ε(x< j )

)
P

(n; j |< j)
θ (dx j |x< j ) + r/

√
n ε(x< j )H(dx j |x< j ), (24)

where H(dx j |x< j ) is any Markov kernel, ε(x< j ) ≥ 0 a bounded and measurable

function, a so-called contamination curve, see Bickel (1984) and Rieder (1994).

The factor 1/
√

n implies that the contamination neighborhoods are shrinking as

n → ∞. For a derivation of this factor in the i.i.d. case see Ruckdeschel (2006).

Taking the union over all convex contamination balls with respect to ‖ε‖1 ≤ 1, we

obtain the average convex contamination ball, denoted by

Bc,1

(
P

(n; j |< j)
θ (dx j |x< j ), r/

√
n

)
=

⋃

‖ε‖1≤1

Bc,ε

(
P

(n; j |< j)
θ (dx j |x< j ), r/

√
n

)
.

We now introduce the bounded, conditionally centered tangents

Z∞(θ) =
{
q ∈ L∞(Pθ ) | Eθ (q(x≤1)|x<1) = 0 Pθ (dx<1)-a.s.

}
.
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Along any q ∈ Z∞(θ), simple perturbations from the ideal transition distribution are

for each x< j defined by

Q
(n; j |< j)
n,q (dx j |x< j ) =

(
1 + r/

√
n q(x≤ j )

)
P

(n; j |< j)
θ (dx j |x< j ),

provided that
√

n ≥ −r inf Pθ
q, where inf Pθ

denotes the Pθ -essential infimum.

It holds that, for each x< j

Q
(n; j |< j)
n,q (dx j |x< j ) ∈ Bc,ε

(
P

(n; j |< j)
θ (dx j |x< j ), r/

√
n

)
⇐⇒

q(x j , x< j ) ≥ −ε(x< j ) Pθ (dx j |x< j )
(n; j |< j)-a.s.

As a consequence of LAN and the AL expansion in (21) AL estimators, under such

simple perturbations, are still asymptotically normal

L
Q

(n)
n,q

√
n(Sn − θ) → Nk(r Eθ ψθq, Covθ ψθ ), (25)

but we obtain the bias r Eθ ψθq. This is shown similarly to (23).

Remark 3 The asymptotic behavior of M-estimates for general ergodic diffusion pro-

cesses is studied in Sakamoto and Yoshida (1998), and under deviations from the ideal

law in Yoshida (1990). Contrary to our approach, Yoshida (1990) obtains no bias in the

asymptotic law under model deviations and does not treat neighborhoods of transition

distributions.

We denote the standardized maximal asymptotic bias under shrinking neighborhoods

Bc,1 by

ωc,1(ψ) = sup
q

| Eθ ψθq|, (26)

provided that q ∈ Z∞(θ), and q(x j , x< j ) ≥ −ε(x< j ) Pθ (dx j |x< j )
(n; j |< j)-a.s.

4.4 Maximum asymptotic MSE

In the case of convex contamination the standardized maximal asymptotic bias from

(26) can be explicitly calculated as

ωc,1(ψθ ) = ess sup |ψθ |, (27)

see Bickel (1984), Rieder (1994), and Staab (1984).

Our aim is to minimize the maximum asymptotic mean square error (maxasyMSE)

on shrinking neighborhoods about the ideal model.
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Applying the weak convergence from (25) we may write this maxasyMSE,

maxasyMSE(Sn) = supq limn→∞ EQn

(
|√n(Sn − θ)|2

)
, as

maxasyMSE(Sn) = r2ω2
c,1(ψθ ) + tr Covθ ψθ (28)

with ωc,1(ψθ ) from (27).

4.5 Optimal influence curves

The optimally robust IC ψ∗
θ is the unique minimizer of maxasyMSE(Sn) from (28)

among all ψθ ∈ Ψ (θ).

In the case of the Ornstein–Uhlenbeck process, where Λθ = Λθ (x1, x0), see (20),

we obtain the following sufficient condition for ψ∗
θ .

Theorem 1 Assume there exist some a : R → R3, A ∈ R3×3, and b ∈ [0,∞) such

that, denoting

w(x1, x0) = min{1, b|AΛθ (x1, x0) − a(x0)|−1},
E((AΛθ (x1, x0) − a(x0))w(x1, x0)|x0) = 0, (29)

A−1 = E
(
(Λθ (x1, x0) − a(x0))(Λθ (x1, x0) − a(x0))

′w(x1, x0)
)
, (30)

r2b = E(|AΛθ (x1, x0) − a(x0)| − b)+. (31)

Then

ψ∗
θ (x1, x0) = (AΛθ (x1, x0) − a(x0))w(x1, x0) (32)

is an IC and the optimal one.

Proof We first verify that ψ∗
θ is an IC. The conditional centeredness of ψ∗

θ is (29). For

the Fisher-consistency of ψ∗
θ , we apply that, by the iterated expectation property and

since E(Λθ |x0) = 0, we have

E
(
(Λθ − a)wΛ′

θ

)
= E

(
ΛθwΛ′

θ

)
.

Therefore, and by (30), we have E(ψ∗
θ Λ′

θ ) = A E
(
(Λθ − a)(Λθ − a)′w

)
= 13, the

desired Fisher-consistency.

The uniqueness of ψ∗
θ follows from Ψ (θ) in (22) being a nonempty, closed, convex

subset of the Hilbert space L2, and the fact that every nonempty, closed, convex subset

of a Hilbert space contains a unique element of smallest norm.

With (28) it remains now to show that ψ∗
θ minimizes

E |ψθ |2 + r2ess sup |ψθ |, (33)

among all ψθ ∈ Ψ (θ).
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In a first step, we rewrite (33). For ψθ ∈ Ψ (θ) it is

E(|ψθ − AΛθ − a|2) = E(|ψθ |2) + E(|AΛθ − a|2) − 2 E(ψ ′
θ (AΛθ − a)). (34)

The last term in (34) may be further written as

E
(
ψ ′

θ (AΛθ − a)
)

= E
(
ψ ′

θ AΛθ

)
− E

(
a′ψθ

)
= E

(
tr

(
ψ ′

θ AΛθ

))
− E

(
E(a′ψθ |x0)

)

= E(tr(AΛθψ
′
θ )) = trA E(ψθΛθ ) = trA,

since E(ψθ |x0) = 0 and E(ψθΛθ ) = 13, see (22).

Therefore (34) is equal to

E(|ψθ − AΛθ − a|2) = E(|ψθ |2) + c,

where c is a constant not depending on ψθ .

That means that minimizing (33) is equal to minimize, among all ψθ ∈ Ψ (θ),

E(|ψθ − AΛθ − a|2) + r2ess sup |ψθ |. (35)

In a second step, we minimize (35) for fixed b := ess sup |ψθ |.
We obtain that the minimum of E(|ψθ − AΛθ − a|2) is

ψb =
{

AΛθ − a if AΛθ − a ≤ b

b AΛθ−a
|AΛθ−a| else

. (36)

In a last step, we minimize with respect to b. Since ψb is the minimum and because

of (36), we have

E(|ψθ − AΛθ − a|2) + r2b2 ≥ E(|ψb − AΛθ − a|2) + r2b2

= E(|AΛθ − a| − b)2
+ + r2b2. (37)

The integrand in E(|AΛθ −a)|−b)2
+ being a convex function in b, we may interchange

integration and differentiation. Therefore differentiating (37) with respect to b gives

−2 E(|AΛθ − a| − b)+ + 2r2b = 0,

that is condition (31). ⊓⊔

5 Calculation of influence curves

We are now comparing graphically the ICs of the two approaches.
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5.1 Influence curves of M-estimates

In order to find the ICs of M-estimates, we first have to derive an asymptotic expression

as in (21).

We start with the M-equations given in (10), (12), and (13). Since the initial terms

in (10) and (12) are negligibly small compared to the sum, we may simplify the system

of equations to

n∑
i=1

ψ
(
r̂i

)
= 0 (38)

n∑
i=1

χ
(
r̂i

)
= 0 (39)

−
√

2λ̂
σ̂

n∑
i=1

ψ
(
r̂i

)
(xi−1 − µ̂) + e−λ̂d√

1−e−2λ̂d

n∑
i=1

χ
(
r̂i

)
= 0 (40)

with the arguments of ψ and χ given by

r̂i =

√
2λ̂

(
(xi − µ̂) − e−λ̂d(xi−1 − µ̂)

)

σ̂

√
1 − e−2λ̂d

i = 1, . . . , n.

Introducing the function ζ : R2×3 → R3, we may write (38), (39), and (40) as

n∑

i=1

ζ
θ̂
(xi , xi−1) = 0, (41)

where θ̂ = (µ̂, σ̂ , λ̂)′, 0 = (0, 0, 0)′, and

ζ
θ̂

=

⎛
⎝

ζ
θ̂ ,1

ζ
θ̂ ,2

ζ
θ̂ ,3

⎞
⎠ =

⎛
⎜⎝

ψ
(
r̂i

)

χ
(
r̂i

)

−
√

2λ̂
σ̂

ψ
(
r̂i

)
(xi−1 − µ̂) + e−λ̂d√

1−e−2λ̂d
χ

(
r̂i

)

⎞
⎟⎠ . (42)

Applying now a first order Taylor expansion about θ = (µ, σ, λ)′ to (41), we get

n∑

i=1

ζθ (xi , xi−1) +
n∑

i=1

Dζθ (xi , xi−1)(θ̂ − θ) ≈ 0, (43)

where the components of ζθ are given by (42), θ̂ replaced by θ , and with the Jacobian
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Dζθ (xi , xi−1) =

⎛
⎝

∂µζθ,1 ∂σ ζθ,1 ∂λζθ,1

∂µζθ,2 ∂σ ζθ,2 ∂λζθ,2

∂µζθ,3 ∂σ ζθ,3 ∂λζθ,3

⎞
⎠ .

Solving (43) for θ̂ − θ and multiplying afterwards by
√

n gives

√
n(θ̂ − θ) ≈

(
1

n

n∑

i=1

Dζθ (xi , xi−1)

)−1 (
− 1√

n

n∑

i=1

ζθ (xi , xi−1)

)
. (44)

Since the explicit inversion of 1
n

∑n
i=1 Dζθ (xi , xi−1) is too time-consuming, we pro-

ceed as follows: We first apply the ergodic theorem to the matrix 1
n

∑n
i=1 Dζθ (xi , xi−1),

then simplify by integration by parts, and invert the resulting matrix afterwards.

Since the (xi )
∞
i=1 are stationary and ergodic, also functions g(xi , xi+1, . . .), i =

1, . . . ,∞, have these properties, see Breiman (1992), Proposition 6.6. Therefore

ri , ψ(ri ), and χ(ri ), i = 1, . . . ,∞, are also stationary and ergodic, and the ergo-

dic theorem applies, such that

1

n

n∑

i=1

Dζθ (xi , xi−1)
a.s.−→ E(Dζθ (x1, x0)). (45)

Further we may write this limiting matrix, assumed finite, as

E(Dζθ (x1, x0)) =
∫

Dζθ (x1, x0) f (x1, x0)d(x1, x0)

=
∫ (∫

Dζθ (x1, x0) f (x1|x0)dx1

)
f (x0)dx0.

We continue with an integration by parts on the inner integral

∫
Dζθ (x1, x0) f (x1|x0)dx1 = −

∫
ζθ (x1, x0)

∂θ f (x1|x0)

f (x1|x0)
f (x1|x0)dx1

= −
∫

ζθ (x1, x0)Λ
′
1,θ f (x1|x0)dx1

with Λ1,θ := ∂θ log f (x1|x0).

Therefore we showed that

E(Dζθ (x1, x0)) = −
∫ (∫

ζθ (x1, x0)Λ
′
1,θ f (x1|x0)dx1

)
f (x0)dx0

= − E
(
ζθ (x1, x0)Λ

′
1,θ

)
,

and by (45) it is
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1

n

n∑

i=1

Dζθ (xi , xi−1)
a.s.−→ − E

(
ζθ (x1, x0)Λ

′
1,θ

)
. (46)

Remark 4 In addition the CLT for stationary and ergodic martingale differences from

McLeish (1974) may be applied on the second term in (44); this results in the asymp-

totic normality of
√

n(θ̂ − θ).

The sequence (ζθ (xi , xi−1))
∞
i=1 is stationary and ergodic. For the martingale dif-

ference property we show that

E(ζθ (xi , xi−1)|x<i ) = 0, (47)

since conditioning once more and by the properties of the conditional expecta-

tion (47) implies E(ζθ (xi , xi−1)|ζθ (xi−1, xi−2), ζθ (xi−2, xi−3), . . .) = 0, the desired

martingale difference property.

Now let |ri | ≤ k, hence ψ(ri ) = ri and χ(ri ) = r2
i − 1.

By definition ri is only a function of xi and xi−1, further E(xi |xi−1) = µ + e−λd

(xi−1 − µ), and then we have

E(ri |x<i ) = E(ri |xi−1) = E(xi |xi−1) − E
(
µ + e−λd(xi−1 − µ)

)
= 0.

Applying this and Var(xi |xi−1) = σ 2

2λ
(1 − e−2λd) leads further to

E(r2
i |x<i ) = Var(ri |x<i ) + E(ri |x<i )

2

= 2λ

σ 2(1 − e−2λd)
(Var(xi |xi−1) + e−2λd Var(xi−1|xi−1)

−2e−λd Cov(xi , xi−1|xi−1)) = 1,

since Var(xi−1|xi−1) = 0 and Cov(xi , xi−1|xi−1) = 0.

Therefore we have E(ψ(ri )|x<i ) = 0, E(χ(ri )|x<i ) = 0, and we may deduce (47).

Then the CLT of McLeish applies such that

1√
n

n∑

i=1

ζθ (xi , xi−1)
D→ N

(
0, E ζθζ

′
θ

)
.

Now with (44) we have the following ICs of M-estimates.

Lemma 1 Denoting ζθ by (42), the ICs ψθ : R2 → R3 of M-estimates are given by

ψθ (xi , xi−1) =
(
E

(
ζθ (x1, x0)Λ

′
1,θ

))−1
ζθ (xi , xi−1).

For the graphical illustration of these curves we consider ψθ (x1, x0) = ζθ (x1, x0), that

is, the components ψµ(x1, x0) = ψ (r1) , ψσ (x1, x0) = χ (r1) , and ψλ(x1, x0) =
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Fig. 1 Classical influence curves

−
√

2λ
σ

ψ (r1) (x0 − µ) + e−λd√
1−e−2λd

χ (r1), where the functions ψ and χ are given by

(8) and (14), respectively.

In addition, the parameters of the process are fixed to µ = 0, σ = 1, λ = 1, and

the time lag to d = 1. The ICs ψθ (x1, x0) are plotted as functions of x0 for fixed

x1, x1 = 0, 0.5, 1, 1.5, 2 and for two cases: The classical case (for k = 10), and in a

second case the cut-off point k is set to k = 2.

Figure 1 shows the set of curves in the classical case: We obtain a straight line for

ψ∗
µ, a parabola for ψ∗

σ , and we also get a parabola for ψ∗
λ , however with a smaller

curvature than ψ∗
σ . We remark that in the classical case all curves are unbounded.

Figure 2 summarizes the results for k = 2: The IC for µ is a cut-off line, both ψσ

and ψλ are parabolas, the λ-component is however not bounded.

Remark 5 Choice of the time lag: For the estimation of the parameters of a general

diffusion process sampled at discrete time, different schemes of observation are possi-

ble, see Iacus (2008). Moreover, this choice influences the estimation results, see Rao

(1999).

In this article, we focus on the large sample scheme, where d is fixed and n → ∞,

in particular, we set d = 1.

However, one should keep in mind that different choices of the time lag are possi-

ble; the effect of this choice on the ICs and the estimation results is not investigated

in this article but would be worthwhile to study in future research.
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Fig. 2 Influence curves of M-estimates

5.2 Algorithm for optimal influence curves

For the optimally robust ICs, we have to solve the equations given in Theorem 1

numerically. Therefore, we transform (29) into a fixed-point equation.

With some basic calculus and introducing the function z : R → R3, (29) is equiv-

alent to a(x0) = Az(x0), where

z(x0) = E(Λθ (x1, x0)w(x1, x0)|x0)

E(w(x1, x0)|x0)
. (48)

For the numerical solution of (31), (30), and (48), we start with the initial values

b0 ∈ (0,∞), A0 = I −1
θ , a0 = (0, 0, 0)′, and

w0(x1, x0) = min
{

1, b0|I −1
θ Λθ (x1, x0)|−1

}
.

Then, in a first iteration step,

z1(x0) = E(Λθ (x1,x0)w0(x1,x0)|x0)
E(w0(x1,x0)|x0)

,

A−1
1 = E(Λθ (x1, x0) − z1(x0))(Λθ (x1, x0) − z1(x0))

′w0(x1, x0),

a1(x0) = A1z1(x0),
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and

r2b1 − E(|A1Λθ (x1, x0) − a1(x0)| − b1)+ = 0.

In a second step, we may calculate

w1(x1, x0) = min
{

1, b1|A1Λθ (x1, x0) − a1(x0)|−1
}

.

The n-th iteration step, n ≥ 2, is given by

zn(x0) = E(Λθ (x1,x0)wn−1(x1,x0)|x0)

E(wn−1(x1,x0)|x0)
, (49)

A−1
n = E(Λθ (x1, x0) − zn(x0))(Λθ (x1, x0) − zn(x0))

′wn−1(x1, x0), (50)

an(x0) = Anzn(x0),

and

r2bn − E(|AnΛθ (x1, x0) − an(x0)| − bn)+ = 0. (51)

Then we have wn(x1, x0) = min{1, bn|AnΛθ (x1, x0) − an(x0)|−1}, and the n-step

numerical approximation of the optimal IC is

ψ∗
θ,n(x1, x0) = (AnΛθ (x1, x0) − an(x0))wn(x1, x0).

Remark 6 Solving the equations given in Theorem 1 numerically, the n-th approxima-

tion of the optimal IC is not yet an IC. Conditional centering and Fisher-consistency

however, may be obtained easily by standardization. A further issue, not treated here,

would be to investigate how close one gets this way to the minimum maxasyMSE.

So far we rely on ψ∗
θ,n approximating the optimal IC.

We solved the equations (49), (50), and (51) with Matlab. For the numerical integra-

tion we applied the method quad, based on the recursive adaptive Simpson quadrature

method.

The exact numerical evaluation of the conditional expectation in (49) was however

too time-consuming, and we proceeded as follows: First, we evaluated the function

zn(x0) on a grid, afterwards we plugged in the interpolation in (50).

For the numerical solution of (49), (50), and (51), the parameters of the process

were fixed to µ = 0, σ = 1, λ = 1, and the time lag to d = 1.

We solved the system of equations for the radius r = 0.02. The algorithm con-

verged fast, when going from the third to the fourth iteration we had a change of 10−6

with respect to b and the matrix A.

We plotted the optimal ICs ψ∗
θ as a function of x0 for fixed values of x1, x1 =

0, 0.5, 1, 1.5, 2.

Figure 3 summarizes the set of curves with the choice b0 = 1 and r = 0.02. Even for

this small radius, we see already a remarkably big deviation from the classical case:

ψ∗
µ is a cut-off line and redescending, and both ψ∗

λ and ψ∗
σ become bounded parabolas.
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Fig. 3 Optimal influence curves with r = 0.02

This effect is similar to the one described in Kohl et al. (2010): There the normal loca-

tion and scale model was studied, that is Pθ = N (µ, σ 2). Our plot of ψ∗
µ is consistent

with the location part in Kohl et al. (2010), ψ∗
λ with the scale part, and ψ∗

σ is between

the two.

5.3 Comparison

We derived the optimally robust IC and the IC of M-estimates, both extending the

classical IC. From Figs. 1, 2 and 3 we see: The classical IC is not bounded, the IC of

M-estimates is not bounded either, as seen from the λ-component in Fig. 2.

Comparing the IC with respect to µ of M-estimates with the optimally robust IC,

there is a surprising difference: The optimally robust IC for µ is redescending, contrary

to the clipping in the M-approach.

Moreover, the graph of the optimally robust ICs is more refined than the graph of

the ICs of M-estimates.

6 Estimator construction, simulations, and open problems

In this section, we construct, given the optimally robust IC ψ∗
θ , one for each θ ∈ R3, an

estimator S∗ = (S∗
n ) that should be AL at each θ , with IC ψ∗

θ . In addition, when pass-

ing from the submodel to full neighborhoods, the maxasyMSE should not increase.

In the independent case, this construction was treated with considerable technical

effort and complexity in Rieder (1994, Chapter 6) using M-estimates, minimum
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distance (MD)-estimates and One-Step estimates based on suitable initial estimates.

However, our approach is not to get into this theoretical complexity, but to carry out

in our context the One-Step construction dating back to LeCam (1986), and to ana-

lyze it by means of simulations. This part of the article is therefore rather intuitively

and theoretically incomplete; the remaining theoretical problems are summarized in

Sect. 6.2 for future research.

On the theoretical side, Staab (1984) reports a counterexample for an AR(1)-pro-

cess in which the risk does increase when passing from the submodel to the full model.

This is due to the instability of the asymptotic variance, and contrary to the independent

case. Therefore, in the dependent case, the estimator construction is more demanding

and one might have to settle down on some neighborhood submodels.

6.1 Estimator construction and simulations

In this subsection, we carry out the One-Step construction based on the optimal IC

and compare it afterwards with MoM, MLE, and M-estimates in a simulation study

for different contamination models.

More precisely, we consider the following one-step estimator S

Sn = θ0 + 1

n

n∑

i=1

ψ∗
θ0

(xi , xi−1), (52)

where ψ∗
θ0

denotes the optimally robust IC, numerically obtained from Theorem 1,

and θ0 = θ0(x0, x1, . . . , xn) is an initial estimate.

Remark 7 (a) Choice of the initial estimate: The One-Step estimator in (52) heavily

depends on the choice of the initial estimator θ0, which is required
√

n-consistent,

uniformly on the neighborhoods. In the independent case, this influence disap-

pears asymptotically and minimum distance (MD)-estimators were employed as

initial estimates. However, in the dependent case, the uniformly consistency of

those estimators is not yet studied on neighborhoods. In our simulation study we

consider therefore an intuitively robustified MoM estimator as initial estimator.

In addition, the M-estimator given by the system of Eqs. (10), (12), and (13) is

used as initial estimator.

(b) AL: It remains to show that the One-Step estimator in (52) is asymptotically

linear. In the independent case this has been shown in Rieder (1994), and for

ARMA time series this has been shown in Staab (1984).

For the simulation study, as contamination models, we consider an additive outlier

(AO)-model, and a contamination of the ideal transition distributions by Dirac mea-

sures. As estimates we calculate MoM, MLE, M-estimates, and the One-Step estimator

from (52) based on θ̂0 = (µ̂0, σ̂0, λ̂0)
′. The components µ̂0 and σ̂0 are obtained by

replacing the mean x̄ and the standard deviation s in the MoM estimates by med and

mad, the median and the median absolute deviation, that is
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Table 1 Different estimators
for an ideal Ornstein–Uhlenbeck
process with k = b0 = 1, and
rad = 0

Mean Median SD RMSE

MoM

µ = 0 −0.0425 −0.0531 0.1167 0.3751

σ = 1 2.6276 2.7605 0.3786 5.2709

λ = 1 7.0969 7.2824 1.8052 20.0263

MLE

µ = 0 −0.0440 −0.0503 0.1162 0.3752

σ = 1 0.9730 1.0018 0.1024 0.3189

λ = 1 0.9893 0.9857 0.2256 0.6776

M-estimate

µ = 0 −0.0453 −0.0255 0.1131 0.3685

σ = 1 0.9578 0.9563 0.1017 0.3331

λ = 1 0.9566 0.9766 0.2011 0.6786

One-step(M)

µ = 0 −0.0413 −0.0511 0.1186 0.3791

σ = 1 0.9748 0.9975 0.1046 0.3238

λ = 1 0.9778 0.9695 0.2274 0.6858

θ̂0

µ = 0 −0.0386 −0.0364 0.1156 0.3676

σ = 1 0.5483 0.5716 0.0745 1.4459

λ = 1 0.4800 0.4980 0.0921 1.6674

One-step (θ̂0)

µ = 0 −0.0417 −0.0475 0.1201 0.3836

σ = 1 0.8891 0.9014 0.1031 0.4675

λ = 1 0.8911 0.9029 0.1770 0.6328

µ̂0 = med(x), σ̂0 =
√

2λ̂ mad(x), (53)

whereas the component λ̂0 is obtained by minimizing numerically the l1 distance

between empirical and theoretical autocorrelation of time lag k, that is by minimizing

the sum
∑

| exp(−λkd) − ÂCF(k)|.
This estimator and in addition the M-estimator are used as initial estimate for the

construction in (52), resulting in One-Step estimates denoted by One-Step (θ̂0), and

One-Step (M), respectively.

Table 1 summarizes the estimation results in case of the ideal law with cut-off points

set to k = b0 = 1, as well as the estimators mean, median, standard deviation, and

root MSE (RMSE).

The σ and λ components of the MLE being close to the exact values and having a

small RMSE, the MLE is preferable to the other estimates in the uncontaminated case.

The estimator One-Step (M) performs also well, in particular it improves the M-esti-

mate. The initial estimator θ̂0, however, heavily underestimates each of the parameter
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Table 2 Different estimators
for an AO-model
(AO ∼ N (3, 1))

Mean Median SD RMSE

MoM

µ = 0 0.1583 0.1918 0.1122 0.6032

σ = 1 3.6925 3.7336 0.5562 8.6764

λ = 1 7.2224 6.4953 2.3949 20.9475

MLE

µ = 0 0.1577 0.1913 0.1126 0.6023

σ = 1 1.8789 1.7734 0.5837 3.2849

λ = 1 1.8622 1.5919 0.7969 3.6262

M-estimate

µ = 0 0.0548 0.0678 0.1096 0.3716

σ = 1 1.2757 1.2259 0.2907 1.2332

λ = 1 1.7532 1.5270 0.7356 3.2470

One-step (M)

µ = 0 0.1215 0.0975 0.0998 0.4870

σ = 1 1.4286 1.2306 0.4566 1.9269

λ = 1 1.0097 0.9481 0.4569 1.3712

θ̂0

µ = 0 0.0655 0.0627 0.1316 0.4459

σ = 1 0.7388 0.7292 0.0964 0.8752

λ = 1 0.5931 0.5947 0.1066 1.3260

One-step (θ̂0)

µ = 0 0.0778 0.0927 0.1053 0.4003

σ = 1 1.0256 1.0282 0.1173 0.3611

λ = 1 0.9184 0.8944 0.1606 0.5466

components, whereas the One-Step construction based on θ̂0 improves θ̂0 and leads

to better results. The MoM estimate always leads to poor results under the ideal law,

resulting from the small autocorrelation in the data, which leads to large values for the

λ-estimate.

For the contamination models the percentage of contamination is set to p = 0.04.

The cut-off point of the M-estimates is k = 1, for the calculation of the optimally robust

ICs we consider the radius r = p
√

n = 0.4, and the initial cut-off point b0 = 1.

In a first contamination, we select randomly times and add an additive outlier being

distributed according to N (3, 1), that is we consider for i = 1, . . . , n the model

yi = xi + wi · zi ,

where Wi ∼ B(1, p), a Bernoulli random variable with p = 0.04, independent of

Zi ∼ N (3, 1), and xi , i = 1, . . . , n, follows an ideal Ornstein–Uhlenbeck process.
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Table 3 Different estimators
for the transitions being
contaminated with
H(dx j |x< j ) = x j−1 + 5

Mean Median SD RMSE

MoM

µ = 0 0.1289 0.1021 0.1287 0.5615

σ = 1 3.8810 3.8659 0.5967 9.2847

λ = 1 6.3045 6.0899 1.3021 17.2233

MLE

µ = 0 0.1292 0.1034 0.1277 0.5601

σ = 1 2.1761 2.0589 0.4810 3.9894

λ = 1 1.9825 1.9567 0.4974 3.4467

M-estimate

µ = 0 −0.0012 −0.0095 0.1516 0.4548

σ = 1 1.3105 1.3461 0.2213 1.1851

λ = 1 1.6970 1.6515 0.4472 2.5803

One-step (M)

µ = 0 0.0193 −0.0328 0.1785 0.5391

σ = 1 1.1271 1.0989 0.1290 0.5581

λ = 1 0.3652 0.6647 0.9162 3.4034

θ̂0

µ = 0 0.0341 0.0155 0.1827 0.5587

σ = 1 0.8187 0.7808 0.1103 0.6619

λ = 1 0.6757 0.6555 0.0939 1.0635

One-step (θ̂0)

µ = 0 −0.0026 −0.0384 0.1771 0.5313

σ = 1 1.0513 1.0430 0.1185 0.3908

λ = 1 0.9409 0.9085 0.1748 0.5566

Table 2 shows the different estimators as well as their mean, median, standard devi-

ation, and RMSE. The MLE behaves very poorly, the M-estimate improves the MLE,

but especially the estimation for the λ-component is not satisfying.

The One-Step estimators behave well, in particular they improve the initial estimates

(θ̂0 and M-estimates) used for their calculation. The estimator θ̂0 performs however

better as initial estimate in the One-Step construction than the M-estimator. Even if

the estimator for the λ-component is not so close to the exact value, One-Step (θ̂0) has

less standard deviation and a smaller RMSE than One-Step(M).

In a second contamination study, we consider H(dx j |x< j ) = x j−1 + 5 as Mar-

kov kernel in the convex contamination (24). The estimation results are summarized

in Table 3: MLE and M-estimate give very poor results, as well as the estimate for

the λ-component of One-Step(M-estimate). However, the One-Step estimator based

on θ̂0, One-Step (θ̂0), leads again to very satisfying results, therefore we may con-

clude that θ̂0 is preferable to the M-estimator as initial estimator in the One-Step

construction.
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6.2 Open problems

The following theoretical problems remain for future research:

(a) The asymptotic linearity of the One-Step estimator from (52).

(b) The limes normality in the submodel of simple perturbations remains to be shown

uniformly in q, that is the convergence in (25) for q ∈ Z∞ with q(x≤ j ) ≥
−ε(x< j ) Pθ (dx j |x< j )

(n; j |< j)-a.s.

(c) From the counterexample in Staab (1984) we know that the estimator construc-

tion does not extend from the submodel to the full neighborhood system in the

dependent case. However, once the uniform asymptotic normality is shown in the

submodel, see (b), one could try to show this property in a larger submodel. That

is, to find a submodel which is large enough such that the uniform asymptotic

normality extends. Under so-called ϕ-mixing conditions, this was attempted in

Ruckdeschel (2002).

7 Conclusion

We have derived elementary M- and optimally robust estimators for the parameters of a

discretely observed Ornstein–Uhlenbeck process. The M-estimator has been obtained

by adopting Huber’s ψ and χ functions from Huber (1981), whereas the ψ- function

of the second approach has been determined by an optimality criterion (minimizing

the maxasyMSE on shrinking neighborhoods).

Comparing the ICs of the two approaches graphically showed that the more general

robust approach is clearly preferable to the first, rather intuitive approach; we obtained

for all parameter components bounded ICs.

Concerning the parameter estimation, we have carried out a One-Step construction

based on the optimal IC and compared this One-Step estimator with MoM, MLE, and

M-estimator for different contamination models. The One-Step estimates improved the

initial estimates (θ̂0 from (53) and M-estimates) used for their construction. Moreover,

the One-Step estimate based on θ̂0 led to very satisfying results under our contamina-

tion models.

We summarized remaining problems for future research in Sect. 6.2; a real data

application seems worthwhile to study as well.
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