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Robust Parameter Estimation in
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Abstract. Estimation techniques in computer vision applications must estimate accurate model pa-
rameters despite small-scale noise in the data, occasional large-scale measurement errors
(outliers), and measurements from multiple populations in the same data set. Increas-
ingly, robust estimation techniques, some borrowed from the statistics literature and oth-
ers described in the computer vision literature, have been used in solving these parameter
estimation problems. Ideally, these techniques should effectively ignore the outliers and
measurements from other populations, treating them as outliers, when estimating the
parameters of a single population. Two frequently used techniques are least-median of
squares (LMS) [P. J. Rousseeuw, J. Amer. Statist. Assoc., 79 (1984), pp. 871–880] and
M-estimators [Robust Statistics: The Approach Based on Influence Functions, F. R. Ham-
pel et al., John Wiley, 1986; Robust Statistics, P. J. Huber, John Wiley, 1981]. LMS handles
large fractions of outliers, up to the theoretical limit of 50% for estimators invariant to affine
changes to the data, but has low statistical efficiency. M-estimators have higher statistical
efficiency but tolerate much lower percentages of outliers unless properly initialized.

While robust estimators have been used in a variety of computer vision applications,
three are considered here. In analysis of range images—images containing depth or X, Y ,
Z measurements at each pixel instead of intensity measurements—robust estimators have
been used successfully to estimate surface model parameters in small image regions. In
stereo and motion analysis, they have been used to estimate parameters of what is called the
“fundamental matrix,” which characterizes the relative imaging geometry of two cameras
imaging the same scene. Recently, robust estimators have been applied to estimating a
quadratic image-to-image transformation model necessary to create a composite, “mosaic
image” from a series of images of the human retina. In each case, a straightforward
application of standard robust estimators is insufficient, and carefully developed extensions
are used to solve the problem.
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1. Introduction. The goal of computer vision algorithms is to extract geometric,
photometric, and semantic information from image data. This may include the posi-
tion and identity of an object [2, 8, 21, 39, 50, 60], the motion of a camera attached to
a car or an autonomous vehicle [1, 6, 19], the geometry of object surfaces [10, 15, 72],
or the transformations necessary to build a large composite image (a mosaic) from a
series of overlapping images of the same scene [37, 71]. Each of the processes used
to extract this information requires some form of parameter estimation to describe
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Fig. 1 Simple examples demonstrating the effects of (a) multiple image structures (data populations)
plus outliers and (b) a single outlier (a “leverage point”) on linear least-squares fits. If the
example in (a) is thought of as the plot of the cross section of a range image (section 3),
then the x coordinate represents image position, the y coordinate represents the depth mea-
surement, and the two populations correspond to measurements from two different surfaces,
one closer to the sensor and perhaps occluding the other.

intensity edge curves; motion models; surface normals and curvatures; and Euclidean,
affine, and projective transformation models [25].

An intensity image typically contains 250,000 pixels or more, with each pixel
storing an 8-bit grey level vector or three 8-bit components of a color vector. Range
images, where pixels record X,Y, Z scene coordinates as measured by special-purpose
sensors, may contain as many measurement vectors. Each pixel measurement is sub-
ject to small-scale random variations (noise) caused by the processes of sensing and
digitization. This huge volume of data implies that parameter estimation techniques
in vision are heavily overconstrained, even for problems where low-level feature ex-
traction, such as edge detection, is used as a preprocessing step. This in turn implies
that parameter estimation problems in vision should be solved by least squares or,
more generally, maximum likelihood estimation (MLE) techniques.

Unfortunately, computer vision data are rarely drawn from a single statistical
population as required for effective use of MLE. Intensity and range images may
contain light and depth measurements from multiple scene surfaces. A moving cam-
era, which induces apparent image motion, may also image an independently moving
object, inducing a second apparent motion. In both cases, multiple structures (pop-
ulations) are represented in the image data. Additionally, some image data may be
measurements that are difficult to assign to any population. These data are gross
errors (“outliers”) which may be caused by specular highlights, saturation of sensors,
or mistakes in feature extraction techniques such as edge and corner detectors. It
is important to note that these gross errors may be arbitrarily large and therefore
cannot be “averaged out,” as is typically done with small-scale noise. As illustrated
in Figure 1, when image data are drawn from multiple populations or outliers, applica-
tion of MLE can produce nonsense results. Much work in computer vision, therefore,
has been directed at separating (segmenting) data into distinct populations prior to
or during parameter estimation. Complete segmentation, however, is not possible
without parameter estimation, because the process of assigning data points to popu-
lations depends, at least partially, on the parameters describing the structure of each
population. A simple illustration of this is that it is impossible to know which points
belong to a line until the line parameters are known.
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This difficulty has sparked growing interest among the computer vision commu-
nity in the use of robust estimation techniques, which have been developed over the
last 25 years in both the computer vision and the statistics literatures [26, 28, 35,
36, 53, 63]. These techniques are attractive because they are specifically designed
to accommodate data from multiple populations when estimating the parameters de-
scribing the dominant population. Ideally, the parameters estimated should not differ
substantially from those estimated via MLE for the dominant population in isolation.

This paper provides a tutorial introduction to robust parameter estimation in
computer vision. The paper starts with a summary of commonly used robust estima-
tion techniques and then describes how they have been applied and extended. Three
applications are considered in detail. The first is estimating the parameters describing
low-order surface geometry from range data [7]. The second is fundamental matrix
estimation—the problem of using corresponding points to establish the relationship
between two different images of a scene taken with uncalibrated cameras [51, 81].
The third problem is building a “mosaic” image of a human retina by matching and
combining overlapping retinal images into a single, larger image [5]. The last two
problems are closely related.

In thinking about the techniques presented, it is important for the reader to note
that robust estimators are not necessarily the only or even the best technique that
can be used to solve the problems caused by outliers and multiple populations (struc-
tures) in all contexts. Specialized heuristics for handling occasional outliers appear
throughout the computer vision literature, and in some cases, most notably when
estimating surfaces from raw range or intensity images, multiple populations may be
treated as an edge detection or segmentation problem (see textbook discussions in
[29], for example). On the other hand, since robust estimation techniques have been
designed to handle outliers and multiple populations and since these problems are per-
vasive, knowledge of robust estimation and its limitations is important in addressing
parameter estimation problems in computer vision.

2. Robust Estimation. The first step in describing robust estimators is to state
more clearly what is meant by robustness. Several measures of robustness are used
in the literature. Most common is the breakdown point [63]—the minimum fraction
of outlying data that can cause an estimate to diverge arbitrarily far from the true
estimate. For example, the breakdown point of least squares is 0 because one bad
point can be used to move the least squares fit arbitrarily far from the true fit. The
theoretical maximum breakdown point is 0.5 because when more than half the data are
outliers they can be arranged so that a fit through them will minimize the estimator
objective function.

A second measure of robustness is the influence function [28, 35] which, intuitively,
is the change in an estimate caused by insertion of outlying data as a function of the
distance of the data from the (uncorrupted) estimate. For example, the influence
function of the least squares estimator is simply proportional to the distance of the
point from the estimate. To achieve robustness, the influence function should tend to
0 with increasing distance.

Finally, although not a measure of robustness, the efficiency of a robust estimator
is also significant.1 This is the ratio of the minimum possible variance in an estimate
to the actual variance of a (robust) estimate [48], with the minimum possible variance

1There is a potential confusion between the statistical notion of efficiency and the computational
notion of efficiency, which is associated with the algorithm implementing a robust estimator. Where
the meaning is not clear from the context, the phrases “statistical efficiency” and “computation
efficiency” will be used.
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being determined by a target distribution such as the normal (Gaussian) distribution.
Efficiency clearly has an upper bound of 1.0. Asymptotic efficiency is the limit in
efficiency as the number of data points tends to infinity. Robust estimators having
a high breakdown point tend to have low efficiency, so that the estimates are highly
variable and many data points are required to obtain precise estimates.

Robust estimators are usually defined and analyzed in terms of either linear re-
gression or estimation of univariate or multivariate location and scatter [28, 35, 63].
(Most computer vision problems requiring robust estimation are similar to regression
problems.) To set a general context, let X = {xi} be a set of data points (vectors) and
let a be a k-dimensional parameter vector to be estimated. The objective functions
used in robust estimation, like those used in MLE, are defined in terms of an error
distance or residual function, denoted by ri,a = r(xi;a). Ideally this should be a true
geometric distance—e.g., the Euclidean distance between a point xi and the curve
determined by a—or better yet, a Mahalanobis distance if the covariance matrix of
xi is known.

2.1. M-Estimators. While many variations on robust estimation have been pro-
posed in the statistics literature, the two main techniques used in computer vision are
M-estimators and least median of squares (LMS). M-estimators are generalizations of
MLEs and least squares [28, 35]. In particular, the M-estimate of a is

â = argmin
a

∑

xi∈X

ρ(ri,a/σi),(1)

where ρ(u) is a robust loss function that grows subquadratically and is monotonically
nondecreasing with increasing |u|. Also, σ2

i is the variance (scale) associated with the
scalar value ri,a. Constraints on â are easily incorporated.

The minimization in (1) is solved by finding a such that

∑

xi∈X

ψ(ri,a/σi)
dri,a
da

1

σi
= 0,

where ψ(u) = ρ′(u). A common, although certainly not the only, next step [30], [33],
[35, pp. 179–192] is to introduce a weight function w, where w(u) · u = ψ(u), and to
solve

∑

xi∈X

w(ri,a/σi)
1

σ2
i

dri,a
da

ri,a = 0.(2)

This leads to a process known as “iteratively reweighted least squares” (IRLS), which
alternates steps of calculating weights wi = w(ri,a/σi) using the current estimate of
a and solving (2) to estimate a new a with the weights fixed. Initial estimates of a

may be obtained in a variety of manners, including nonrobust least squares or other
robust estimators discussed below.

The many M-estimators that have been proposed differ in the shape of the func-
tions ρ(·) and, as a result, ψ(·) and w(·). Three common functions are listed in
Table 1, with weight functions plotted in Figure 2. The ψ functions, essentially,
are proportional to the influence function. Hence, ψ functions tending to zero most
quickly (“hard redescenders” in the terminology of [33]), such as the Beaton and
Tukey function, allow the most aggressive rejection of outliers. This has been found
to be important in computer vision problems [69] when outliers have small residual
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Table 1 Three different robust loss functions, ρ(u), and associated ψ functions. The “tuning pa-
rameters” a, b, and c are often tuned to obtain 95% efficiency [33].

Beaton and Tukey [4] ρ(u) =
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Fig. 2 Plots of the weight functions for the robust loss functions given in Table 1. The horizontal
axis units are scale-normalized residuals ri,a/σi.

magnitudes such as in the range 4σ to 10σ. Unfortunately, when redescending ψ
functions are used, the objective function

∑

xi∈X ρ(ri,a/σi) is nonconvex, implying
that IRLS will converge at local minima.

The scale values, σi, are used to normalize the error distances and to further
weight the contribution of each point when scale varies with i. Scale values may
be provided a priori from analysis of the sensor or process (such as edge detection)
from which the data are obtained. In some cases, scale will not be known in advance
and must be estimated from the data. In this case, σi is replaced by σ̂ in the above
equations. Equation (1) may be rewritten to jointly estimate a and σ [35, Chap. 7].
Alternatively, σ may be estimated from an initial fit prior to IRLS and reestimated
after each of the first few IRLS iterations. Robust scale estimation techniques such as
the median absolute deviation [33] (4) are used. Scale must be fixed, however, before
allowing IRLS to converge. The particularly difficult case of σi being both unknown
and varying with i (heteroscedastic) will not be treated here.

An example of line parameter estimation using an IRLS implementation and the
Beaton and Tukey [4] weight function is shown in Figure 3(a). Scale was reestimated
after each of the first 3 iterations, and IRLS took 10 iterations to converge. Conver-
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Fig. 3 Example robust line estimates: (a) shows initial, intermediate, and final estimated lines for
an M-estimator using IRLS; (b) shows a number of lines hypothesized and tested during a
random sampling implementation of LMS.

gence is typically faster with fewer iterations of scale estimation, but the result on
this example is less accurate.

The breakdown point of standard M-estimators in regression is 0 because of the
possibility of leverage points (Figure 1(b))—outliers positioned far from the remainder
of the data in the independent variables as well as far from the fit to the uncorrupted
data. A local minimum of (1) will generally occur for a fit rotated to pass through
(or near) the leverage point(s), as in Figure 1(b). A generalization of M-estimates,
GM-estimators (see discussion in [62]), which downgrade the influence of points based
on both independent and dependent variables, can have breakdown points as high as
1/(k + 1), where k is the length of a.
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2.2. Least-Median of Squares. Least-median of squares (LMS) is distinguished
by having a breakdown point of 0.5, the highest value possible. In the notation here,
the LMS estimate [61] is

â = argmin
a

median
xi∈X

r2i,a.(3)

The intuition behind LMS is that up to half the data points can be arbitrarily far
from the optimum estimate without changing the objective function value.

Since the median function is not differentiable, alternative search techniques are
required. In the special case of fitting regression lines to points in ℜ2, computationally
efficient algorithms are known for solving (3) exactly [24, 67]. In more general settings,
a random sampling technique, developed independently in the computer vision [26]
and statistics [61] literatures, is required. The idea is to randomly select a number of
k-point subsets of the N data points. A parameter vector, as, is fit to the points in
each subset, s [59]. Each as is tested as a hypothesized fit by calculating the squared
residual distance r2i,as

of each of the N − k points in X − s and finding the median.
The as corresponding to the smallest median over S subsets is chosen as the estimate,
â. Overall, this computation requires O(S N) time using linear-time median finding
techniques [22].

A crucial parameter in this algorithm is S, the number of subsets. S must be
large enough to have a high probability of including at least one subset containing all
“good” data points—points that are measurements from the structure of interest. If p
is the minimum fraction of good points, then to a first approximation, the probability
of a subset containing all good points is pk. From this, it is easy to see that the
probability that at least one of the S subsets contains all good points is

Pg = 1 − (1 − pk)S .

By choosing a desired value of Pg, the minimum value of S can be found. As an
example with Pg = 0.99, if k = 3 and p = 0.5, then S = 35; if k = 6 and p = 0.6,
then S = 97; and if k = 6 and p = 0.5, then S = 293. Clearly, the required number
of subsets increases dramatically with increasing k and decreasing p. An example of
line parameter estimation using a random sampling implementation of LMS is shown
in Figure 3(b). Several hypothesized and tested lines are shown, including the final
estimate.

The “median absolute deviation” (MAD) scale estimate may be obtained from
the estimate â and used to gather data points to refine the fit. The scale estimate is

σ̂ = 1/Φ−1(0.75)

(

1 +
5

N − k

)

√

median
xi∈X−s∗

r2i,â,(4)

where s∗ is the subset used to form â, Φ−1 is the inverse of the cumulative normal
distribution, and 1+5/(N−k) is a finite sample correction factor [63]. The result is an
unbiased estimate of σ̂, which means that if all N points are sampled from a normal
distribution with variance σ2, then σ̂ → σ as N → ∞. The estimated scale may
be used to refine â: the data points such that r2i,â < (θσ̂)2, for constant θ typically
around 2.5, can be identified and used to calculate a least squares estimate of a. This
is important because LMS has low statistical efficiency.

LMS may be generalized in a number of ways based on the order statistics of the
residual distances [62]. Some of these are discussed later.
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2.3. Requirements for Robust Estimation. The nature of computer vision prob-
lems alters the performance requirements of robust estimators in a number of ways:

• The optimum breakdown point of 0.5 must be surpassed in some domains.
While this is not possible in general, due to the definition of breakdown, it
is possible in particular instances due to problem-specific considerations. For
example, fewer than half the points are from any one line in Figure 1(a), but
each line is clearly visible. A robust estimator should not fail to estimate a
line that approximates one of these two.

• Having enough inliers to satisfy the breakdown limit will not guarantee sat-
isfactory results since it only guarantees that the outliers will not cause the
estimate to stray arbitrarily far. For example, the estimated line shown in
Figure 1(a), which is approximately the LMS estimate when just more than
50% of the points are from the lower line [69], does not represent a breakdown
of the estimator, but it is clearly wrong.

• The low breakdown point of M-estimators can be misleading. A local opti-
mum fit passing near leverage points (Figure 1(b)) can be avoided by proper
(robust) initialization of IRLS iterations. (This issue is explored in [47].) Use
of an M-estimator having an influence function that tends to zero quickly, so
that the weight of the leverage points is zero, will then cause outliers to be
ignored.

• The emphasis is often, although not always, on tolerating large numbers of
outliers rather than on statistical efficiency. One effect of this is on the choice
of tuning parameters for M-estimators—they are often set much lower [9, 69]
than suggested by efficiency experiments [33]. This tends to “narrow” the
weight functions shown in Figure 2, reducing the influence of points on the
tail of the inlier (noise) distribution (hence the loss of efficiency) but making
the estimator less sensitive to outliers near the tail of the distribution.

• In some cases, computational efficiency can be of utmost concern. This could
render impractical random sampling algorithms generating large numbers of
samples.

2.4. Robust Estimation Techniques Developed in Computer Vision. Several
robust estimation techniques have been developed in computer vision, either indepen-
dent of the statistics literature or as an extension of techniques appearing there.2 The
two most important robust techniques developed independently in computer vision
are Hough transforms [36, 43] and RANSAC (random sample consensus) [26, 59].
A Hough transform is a voting technique. The domain (the “parameter space”) of
the parameter vector a to be estimated is discretized, one voting bin is allocated
per discrete parameter vector, and each data point xi “votes” for parameter vectors
a (i.e., the associated voting bin is incremented) for which the fit residual rxi;a is
small enough. The parameter space is searched after voting is complete to locate
maxima or to locate and analyze clusters of large numbers of votes. In the former
case, the objective function underlying the Hough transform is quite similar to that
of an M-estimator and shares some of its limitations [69]. An advantage of Hough
transforms in general is that a thorough sampling of the parameter space is obtained.
A disadvantage is that the size of the voting space is exponential in the number of
parameters, rendering it impractical for many applications.

2In addition, many published algorithms include heuristics for eliminating outliers; these are too
numerous and too application-specific to be reviewed here.
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RANSAC [26, 59] has similarities to both M-estimators and LMS. Like LMS, it is
a minimal subset random sampling search technique, predating LMS by three years.
The objective function to be maximized, however, is the number of data points (in-
liers) having absolute residuals smaller than a predefined value, θ. Equivalently, this
may be viewed as minimizing the number of outliers, which may then be viewed as a
binary robust loss function that is 0 for small (absolute) residuals, 1 for large abso-
lute residuals, and has a discontinuous transition at θ. Interestingly, both RANSAC
and Hough transforms, by virtue of the prespecified inlier band, can be used to find
structures formed by substantially fewer than half the data. A cost of this is that
small, random structures can also be found [69], implying that careful postprocessing
analysis of structures estimated using RANSAC or Hough transforms is required.

Several extensions to LMS have been introduced in the computer vision literature
[44, 54, 55]. The simplest is to alter the fraction of inliers used, moving up or down
from the 0.5 of the median. In general, reducing the fraction will reduce the breakdown
point, since a smaller fraction of outliers is required to corrupt the estimate, but this
is advisable when there are multiple structures in the data, when there are relatively
few true outliers, and when the minimum fraction of data corresponding to a single
structure is known.

A more general approach, which does not rely on a fixed inlier fraction, is based
on realizing that the scale estimate in (4) can be generalized to any inlier fraction p by
replacing Φ−1(0.75) with Φ−1(0.5+p/2). This gives an unbiased scale estimate for the
residuals to the correct fit when these residuals follow a normal distribution. Suppose,
however, that the data consist of k points measured from a normal distribution and
N − k outliers. Here, at the correct fit, the scale estimate will be an overestimate for
p < k/N , but it will be approximately constant. Significantly, the scale estimate will
increase substantially for p > k/N . Also, the scale estimates will increase, especially
for p < k/N , as the fit is moved away from the correct one. These observations have
been built into two estimators, ALKS (adaptive least kth squares) [44] and MUSE
(minimum unbiased scale estimate) [54, 55], which are based on finding the estimate
and associated fraction p that minimize a measure tied to this scale estimate.

The final extension of LMS, an estimator referred to as MINPRAN (minimize
probability of randomness), is based on an assumed outlier distribution, which may
be known or hypothesized when properties of the sensing process are known [68]. The
estimated parameter vector is the one whose chosen inlier set is least likely to be a
set of outliers over all possible inlier sets. This inlier set is determined from an inlier
bound, θ, as in RANSAC, but θ is varied over all possible values to minimize the
probability of randomness. Somewhat surprisingly, the computational cost of this is
only O(SN logN +N2).

3. Surface Estimation from Range Data. The first application of robust esti-
mation in computer vision to be considered here is the problem of estimating the
parameters of surfaces from range data. This problem is closely related to regres-
sion since errors in range measurements tend to be concentrated along the optical
axis of the cameras. This allows the depth measurement to be treated as the only
independent variable.

3.1. Range Data and the Estimation Problem. Range data are sets of measure-
ment vectors (X,Y, Z)T from surfaces in the field of view of a range sensor [10, 58].
Each data set may contain tens or hundreds of thousands of points. There are several
different types of range sensor. Many use triangulation, either from two or more cam-
eras at known positions, or by replacing one camera with a light source that shines
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(a) (b)

Fig. 4 A complicated range image data set. Image (a) shows the original range image using color to
encode depth (red being closer to the viewer). The scene includes a tennis ball can, a coffee
mug, and a planting pot in the foreground, a wire mesh table (on its side) behind these, and
two different planar surfaces in the background. Image (b) shows a small window to which
local surface estimation might be applied; points are from three different surfaces.

known planes of light into a scene, measuring (X,Y, Z)T from reflected positions in
the remaining camera(s). Other techniques determine depth by measuring time of
flight or phase shifts in radiation reflected from surfaces. In general, the (X,Y, Z)T

measurements are usually recorded at the grid locations of an image, creating what is
called a range image (Figure 4(a)). This range image may be either sparsely or densely
populated with points. Accuracy and error of the measured points are around 1/250
to 1/1000 of the depth interval over which measurements are taken, which can vary
from the order of centimeters to the order of meters. Some of the measurements may
be gross errors (outliers) caused by specular highlights, by thresholding effects, or by
interreflection of light from multiple surfaces. For more background on range sensors
see [40, 58], while for background on the analysis and use of range data in computer
vision see [2].

The first goal of range data analysis is to describe the surfaces from which the
measurements were taken [15]. The descriptions may be polynomial models such as
planar or quadratic models [10, 34, 45, 72], implicit functions such as quadrics and
superquadrics [46], or even functions of unknown form, in which case the surfaces are
ultimately defined discretely, at each grid location [14, 27], or using a finite-element
model [73]. Two complications make the problem particularly difficult. First, each
surface will be of limited spatial extent, implying that unknown surface boundaries
may need to be located. Second, there will be multiple surfaces, some abutting or even
overlapping in image locations and perhaps close in depth measurements. These dif-
ficulties suggest what might be termed a “local-to-global” approach, where low-order
polynomials first are estimated in small and potentially overlapping image regions
and then are gathered into more global, complete surface descriptions. Many range
image analysis techniques take this approach [9, 16, 23, 34, 45, 66].

3.2. Local Estimation of Surfaces. The goal of local estimation is to describe
the surfaces represented in small image regions using planar or quadratic polynomials,
identify and eliminate outliers, and perhaps generate an initial estimate of surface
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(a) (b)

Fig. 5 Results (a slightly sideways view) of local surface estimation on the range image data shown
in Figure 4. Planar surface patches with bounding rectangles on their inlier sets are shown
in (a), and estimated inliers are shown in (b). Outliers have clearly been eliminated and
most surfaces accurately estimated. (Use of the rectangular bounding boxes in (a) introduces
some artifacts.) Some surfaces from the wire mesh, unfortunately, were missed because they
did not occupy a large enough fraction of the inliers to form an acceptable MUSE fit.

boundaries. This is easy when only one surface is present but more difficult when
there are two or more surfaces (Figure 4(b)). In the latter case, it is possible for fewer
than 50% of the points to correspond to one surface. Ideally, all surfaces should be
described.

The first work in using robust techniques for local estimation was done by Besl,
Birch, and Watson [9] using M-estimators to robustly compute planar surface patches,
and by Meer et al. [52, 53] using LMS in much the same way. Subsequently, Mirza and
Boyer [56] explored a variety of M-estimators for local estimation, concluding that use
of those with ψ (and weight) functions redescending to an asymptotic limit of zero
at infinity yielded the best performance on data corrupted with random Gaussian
outliers. Sinha and Schunck [66] used LMS locally to eliminate outliers and estimate
local variations in surface orientation. Stewart [68] introduced the MINPRAN method
discussed earlier to estimate multiple, potentially overlapping surface patches, not re-
quiring any patch to contribute more than 50% of the points. Better performance
at small magnitude discontinuities was obtained by Miller and Stewart [54, 55] us-
ing MUSE and by Lee, Meer, and Park [44] using ALKS (section 2.4). The former
incorporates techniques from MINPRAN to determine when the MUSE estimate is
distinctive enough to be considered nonrandom; this allows effective determination
of the correct number of surface estimates to describe the data set taken from small
image regions. An example result using MUSE [54, 55] is shown in Figure 5.

ALKS and MUSE produce accurate surface patches, including multiple surface
patches, except when the depth change (discontinuity magnitude) between abutting
surfaces is less than about 4.5σ [54], where σ is the standard deviation of the noise
in the data. Most standard robust estimation techniques, including LMS and M-
estimators, fail when the discontinuity magnitude is 7.5σ or higher [69]. (Figure 1(a)
is generated from a model of a discontinuity where these estimators would fail.) The
failure in all cases is an estimated surface patch that “bridges” the two real surfaces
(see Figure 1(a)). This bridging surface is the global minimum of the objective func-
tion and is therefore not an artifact of the random sampling or IRLS search techniques
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[69]. In summary, the best robust estimators yield accurate local fits except at ex-
tremely small magnitude depth discontinuities, which may be caused by small-scale
surface structures.

3.3. Global Estimation of Surfaces. In global estimation of surfaces, which
should yield complete descriptions of surfaces and their extents, robust estimation
plays a reduced role. It must at least be used in combination with other techniques
and is often not used at all in current systems. There are several illuminating reasons
for this. First, the appropriate model for the surface is usually unknown, implying
that models must be selected automatically [18, 75]. For example, the technique
of Boyer, Mirza, and Ganguly [16] grows planar and quadratic surfaces from seed
regions—regions of minimum variance in the data—estimated using an M-estimator.
Growth is controlled using the same M-estimator, and the model is selected by a
modified form of [17]. A related growth technique, which uses prediction intervals to
detect finer magnitude discontinuities, is described in [54]. See [34] for a review and
empirical comparison of other techniques that address this “segmentation” problem.

A second reason for the reduced role of robust estimation is that even if the
surface model is known the extent of the surface must be determined. Without it,
robust estimation alone has little chance of success, because a single surface will
generally correspond to an extremely small percentage of the data in the entire range
image and therefore the potential for “bridging fits,” as discussed above, is even more
substantial than in local estimation. This is the reason for growing from seed regions,
as in [10, 16, 72].

A third reason is that the surface may be too complicated to be described in a
closed form and can only be described at discrete locations or using a spline or finite-
element model [15]. Here, while robust estimation can help eliminate outliers [66],
the more common use is to convert least squares error norms on the data and on the
smoothness of the reconstructed surface into robust error norms based on M-estimator
loss functions [13].

3.4. Final Comments on Surface Estimation. Two final comments about the
nature of range data and surface estimation are important in order to raise issues that
have been incompletely addressed in the literature but are important for practical
applications. These affect the use of robust estimation and other techniques. First,
most sensors produce quantized data, often with precisions as low as eight bits. At the
extreme, any “noise” in the data is buried in the quantization. This differs significantly
from the assumptions under which estimators, robust or not, are typically analyzed.
Analytical results should therefore be used with caution when predicting estimator
performance on this quantized range data. Second, the variance in (nonquantized)
range data may vary spatially and with depth, even across a single surface [54, 55].
If this “heteroscedasticity” were known in advance, it could be built into the M-
estimator objective function (as written in (1) above), but prior knowledge is difficult
to obtain. The effect of such heteroscedasticity on high breakdown point estimators
such as LMS has not been studied in computer vision.

4. Estimation of the Fundamental Matrix. Consider two different images of the
same scene, taken from two different viewpoints. A great deal of information may be
gleaned from these images about the relative positions of the camera(s) when the
images were taken, about the structure of the scene, and, if the images were taken at
different times, about changes in position of any scene objects. This information is
encoded in differences between image positions of scene points. By extracting distinc-
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tive features, such as intensity corners, in each image, and then matching them across
the two images, a set of correspondences can be established. Each correspondence is
a pair of image positions, one from each image, and the points in each pair are hy-
pothesized to correspond to the same scene point. These correspondences are used to
estimate image-to-image transformations, camera motion, and scene structure. What
is actually estimated depends on what is known in advance about the camera, the
motion, and the scene.

This section and the next consider two such problems of estimating image-to-
image transformations based on image-to-image correspondences. In each case the
correspondence set is generally contaminated by numerous outliers. Robust techniques
are used to estimate the transformation parameters and identify the outlier (incorrect)
correspondences. The estimated transformation may then be used to return to the
initial feature set and identify new correspondences which are much more likely to be
correct. This aspect of the problem differs from most applications of robust estimation
where the input to the estimation process is fixed.

4.1. Introduction to the Fundamental Matrix. When two images are taken by a
single uncalibrated camera or by two different, uncalibrated cameras, the relationship
between the images can be captured in the “fundamental matrix” [51, 81]. This
matrix imposes a linear constraint on the image positions of corresponding features.
Once the fundamental matrix is known, the scene geometry can be reconstructed up
to a projective transformation, with additional constraints (e.g., the corner of a room
where three orthogonal faces meet) leading to affine or Euclidean reconstructions [25].

Let {x̃i} be a set of feature point locations in image 1 and let {x̃′
i} be a set

of corresponding feature locations in image 2, with each location vector written in
homogeneous coordinates. The features are intensity corners [82] or other distinctive
locations detected by an interest operator [64]. Correspondence for each x̃i is found
by searching an area of image 2 established by the range of scene depths and camera
motions determined a priori. Within this area, which is sometimes as small as 30
pixels on a side [77] but could be much larger depending on what restrictions are
placed on camera motion, x̃

′
i is the location of the image feature most similar to that

of x̃i, as decided by, for example, correlation of the surrounding image regions.
The fundamental matrix, F, is a 3 × 3, rank-2 matrix such that, for each i,

x̃
T
i Fx̃

′
i = 0.(5)

Because it is homogeneous and rank deficient, F has seven degrees of freedom and
therefore can be estimated from at least seven correspondence pairs. For any point,
x̃

′, in image 2, Fx̃′ defines a line in image 1 through which the point corresponding
to x̃

′ must pass. Similarly, for any point, x̃, in image 1, FT
x̃ defines a line in image 2

through which the point corresponding to x̃ must pass. All such lines, known as
“epipolar lines,” pass through the “epipoles,” which are the null spaces of FT and F,
respectively. Figure 6 shows a pair of images and epipolar lines. The epipole is the
focus of expansion if the intercamera motion is purely translational motion.

4.2. Estimating the Fundamental Matrix. Estimating the parameters of F is
first considered when there are no outliers and then again in the presence of outliers.
The first step is to rewrite (5) x̃

T
i Fx̃

′
i as

z
T
i f ,

where if x̃i = (xi, yi, 1)T and x̃
′
i = (x′

i, y
′
i, 1)T , then z

T
i = (xix

′
i, xiy

′
i, xi, yix

′
i, yiy

′
i, yi,

x′
i, y

′
i, 1) and f contains the appropriately ordered parameters of F. This gives what is
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(a)

(b)

Fig. 6 A pair of images and some of the epipolar lines resulting from the robust fundamental matrix
technique of [82]. Points numbered are correspondences. Nonrobust estimation results in
substantial skewing of these lines and the position of the epipole. Reprinted from Artificial
Intelligence 78, Z. Zhang, R. Deriche, O. Faugeras, and Q. Luong, A Robust Technique for
Matching Two Uncalibrated Images through the Recovery of the Unknown Epipolar Geometry,
1995, pp. 87–119, with permission from Elsevier Science.
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typically called a fitting error [29, Chap. 11] or an algebraic distance [32]. Summing
the squares of these algebraic distances over all i gives

∑

i

(zT
i f)2 = f

T

(

∑

i

ziz
T
i

)

f = f
T
Zf .

With appropriate centering and normalization of the data [31], f , and therefore F, may
be estimated directly from this as the unit eigenvector corresponding to the minimum
eigenvalue of Z. Enforcing det(F̂) = 0 is achieved by computing the singular value
decomposition of F̂, setting the smallest singular value to zero, and recalculating F̂.

Some methods minimize an objective function closer to a geometric distance [77].
Letting ri = z

T
i f be the algebraic residual and ri,x, ri,y, ri,x′ , and ri,y′ be its partial

derivatives, then an approximation of the geometric distance of (xi, yi, x
′
i, y

′
i) to the

manifold defined by f is

ri
(r2i,x + r2i,y + r2i,x′ + r2i,y′)1/2

.

This geometric distance value is incorporated into estimation of f by scaling the
algebraic residuals by the weights

wi =
1

(r2i,x + r2i,y + r2i,x′ + r2i,y′)1/2
.

This leads to the objective function
∑

i

(wiz
T
i f)2,

which is minimized iteratively in exactly the same manner as IRLS (section 2.1).

4.3. Robust Estimation. Robust estimation of the fundamental matrix is impor-
tant because the matching process is unreliable and the presence of an independently
moving object in the field of view will induce a distinct fundamental matrix for the
image projections of object points. Outlier percentages of 25% to 50% or more are
not unrealistic. Application of robust estimation techniques appears straightforward,
at first, but several issues arise. Some of these have been addressed in two prominent
papers on the topic [77, 82]. These issues are discussed first for M-estimators and
then for LMS.

M-estimators require a robust starting point and a weight function that tends to
zero quickly. Even with an unrealistically small percentage of outliers (e.g., 10% to
15%), the initial estimate obtained from least squares does not allow M-estimation to
converge to the correct estimate [77]. Because of the relatively small image search area
for correspondences and because of the noise in estimated match positions, outlier
correspondences tend to be close to correct epipolar lines. This implies that the
domain of convergence for the correct estimate will be relatively small, in turn making
it unlikely that the least squares fit used to initialize IRLS will be within this domain.
The proximity of outlier correspondences to epipolar lines shows why the robust weight
function must tend to zero quickly. These observations are all practical realizations
of the theoretical properties of M-estimators: a zero breakdown point but also the
ability to withstand outliers when robustly initialized and used with an appropriate
weight function.

The difficulties associated with LMS are slightly different. The first problem
is that the correct fundamental matrix is often nearly degenerate. (One example
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of such a degeneracy is points from a planar surface.) This has two implications.
First, this degeneracy should be avoided in the random samples themselves. Zhang
et al. [82, 81] divided the image into nonoverlapping regions (buckets) and prevented
a random sample from incorporating more than one match from any one bucket;
spreading the random samples across the image reduces the likelihood of a degenerate
sample. Torr and Murray [77] developed a rank test for degeneracy and considered
degenerate samples no further. Second, LMS, with its low statistical efficiency, will
often yield an unreliable estimate of F, even from a correct set of correspondences.
Therefore, refinement of the LMS estimate is crucial. Zhang et al. [82] applied a least
squares estimate to the matches falling within 2.5σ̂ of the epipolar lines in each image,
σ̂ being taken from the median of the summed squared epipolar distances. Torr and
Murray [77] took the LMS estimate as the starting point for an M-estimator using a
MAD scale estimate (4) refined using an expectation maximization (EM) algorithm.

The second problem in using LMS concerns the random sampling procedure itself.
Zhang et al. [82] generated 8 correspondence samples from which F can be instantiated
with the appropriate constraints. Torr and Murray [77] presented a method that
instantiates F from 7 correspondence samples. Either way, the number of samples
required is quite high, with 382 or 588 required for 7 point samples to have a 0.95
or 0.99 probability of obtaining a good sample and 766 or 1177 required for 8 point
samples. This expense could be prohibitive for some applications.

The final issue in using LMS is that the number of outlier correspondences could
in fact be greater than 50%. There are two interacting causes of the large number of
outliers: (1) intensity corners are relatively weak features and are easily mismatched;
(2) large interimage motions can lead to large matching search ranges and therefore
more mismatches. (The results shown here are based on relatively small motions.)
Torr and Murray [77] suggested the use of RANSAC, which has the concurrent limi-
tation of requiring establishment of a prior inlier bound, when more than 50% of the
matches may be outliers. The recent techniques [44, 54, 55] that surpass the 50%
breakdown limit in a probabilistic sense without prior knowledge of an inlier bound
have not yet been used in fundamental matrix estimation. More generally, the effects
of large motions and large numbers of features require further exploration.

Example results of robust fundamental matrix estimation are shown in Figures 6
and 7. Figure 6, from [82], shows a pair of images and the robustly estimated epipolar
lines. Figure 7, from [77], shows the motion vectors for matched corner features, and
then separates them into those consistent (inliers) and inconsistent (outliers) with the
fundamental matrix estimated from them. Notice that most matches from the inde-
pendently moving person are eliminated as outliers and do not affect the fundamental
matrix estimation. In general, however, unlike the local surface estimation problem,
the conditions under which independent motions, producing distinct fundamental ma-
trices, can be effectively handled are not yet fully understood [76, 78].

5. Construction of Retinal Image Mosaics. A new application of robust esti-
mation is in the construction of image mosaics from overlapping images of the human
retina. Starting from a series of images, the goal is to produce a composite that is
much larger than any individual image and that shows the retina as a whole. Exam-
ple images and a resulting mosaic are shown in Figure 8. This has numerous possible
applications in ophthalmology.

The primary issue is calculating the transformation, T , mapping the coordinate
system and therefore the pixels of a given image Im to a reference image Ir which
will form the “center” of the mosaic. Most mosaic construction techniques in com-



ROBUST PARAMETER ESTIMATION IN COMPUTER VISION 529

(a) (b)

(c) (d)

Fig. 7 Fundamental matrix and motion estimation from an image sequence of a camera panning
to follow a moving person: (a) shows one of these images, (b) shows the motion vectors
obtained from correspondences superimposed on this image, (c) shows correspondences con-
sistent with the estimated epipolar geometry (represented by the fundamental matrix), and
(d) shows correspondences inconsistent with the estimated epipolar geometry. Reprinted from
International Journal of Computer Vision 24, P. Torr and D. Murray, The Development and
Comparison of Robust Methods for Estimating the Fundamental Matrix, 1997, pp. 271–300,
with permission from Kluwer Academic Publishers.

puter vision formulate T as an affine transformation in two dimensions [6] or as
the model of the apparent (image) motion of a planar surface [1]. These yield 6-
parameter and 8-parameter transformation models, respectively. Unfortunately, these
models yield substantial mapping errors for the curved surface of the retina. As a
result, a 12-parameter transformation model is required, which models the motion
of a quadratic surface imaged using weak perspective (scaled orthographic) projec-
tion. The derivation of this model is similar to the derivation of the 8-parameter
planar surface motion model [1] and is omitted here. To see how the transforma-
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Fig. 8 Two retinal images and a mosaic of many images estimated using the robust mapping tech-
nique described here.

tion works, let xm = (xm, ym)T be the coordinates of a point in Im, and define
X(xm) = (x2

m, y
2
m, xmym, xm, ym, 1). Then the transformed point location in Ir is

xr = TX(xm),

where T is a 2×6 matrix. For optimal estimates of T, this yields transformation errors
averaging about one pixel.

Similar to fundamental matrix estimation, T is estimated by establishing corre-
spondence between image features located in Im and Ir. Features are bifurcations in
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(a) (b)

(c) (d)

Fig. 9 Hierarchical retinal image transformation estimation results. Image (a) shows features
extracted from one image, (b) shows the results of applying the estimated zeroth-order,
translation-only model, (c) shows the results of applying the estimated first-order, 6-
parameter, affine model, and (d) shows the results of applying the final, estimated second-
order, 12-parameter quadratic model. In each of (b), (c), and (d), a small region around the
optic disk is shown to emphasize modeling errors.

blood vessels, found through a tracing procedure [20]. Example images are shown in
Figure 8 and extracted features are shown in Figure 9(a). Establishing correspondence
between features, unfortunately, is substantially more difficult than in fundamental
matrix estimation, because the search range is not known in advance and the degree
of overlap between Im and Ir may vary substantially. The result is that initially
nearly every possible feature pair must be considered as a correspondence, and this
correspondence set must be culled during estimation of T .

5.1. Hierarchical Transform Estimation. The combination of the 12-parameter
transformation model and the vast majority of matches being incorrect is too difficult
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to handle directly. Instead, low-order approximations to T are estimated to reduce
the correspondence set and focus the final robust estimation of T . This hierarchy of
transformation models differs from standard hierarchical (multiresolution) techniques
in motion estimation, which start from low-resolution versions of images and gradually
increase this resolution [6].

The first approximation to T is a simple translation:

xm = xr + t.

Each possible match produces a hypothesized image translation vector, t = xm −
xr, and these vectors are recorded in a two-dimensional histogram with overlapping
bins. The radius of each bin equals the experimentally determined maximum position
error that could occur using the translation model. For each hypothesized t, all bins
overlapping t are found. A weight determined by an image similarity measure (e.g.,
cross correlation) between matching features is added to each overlapping bin. At the
end, the translation vector corresponding to the peak bin is taken as the translation
estimate and all matches falling into this bin are retained for estimating the next
finer approximation to the transformation. For some features, several matches could
be retained, while for others, particularly those outside the overlap between images,
there may be no matches. Figure 9(b) shows two images aligned using the translation
model.

T is next approximated using a six-parameter affine model [6, 38]:

xm = Axr + t,

where A is a 2× 2 matrix with no imposed constraints. Here, LMS is used to robustly
estimate the parameters of A and t. Features outside the region of image overlap
determined by the translation model (plus modeling error) are not considered during
LMS. In selecting the matches to form a random sample, image features are first
selected randomly and then a correspondence for each selected feature is chosen at
random from its correspondences that were retained following translation estimation.
Other than this, application of LMS is straightforward. Figure 9(c) shows two images
aligned using an estimated affine model.

The final stage is estimation of the full 12-parameter model using an IRLS im-
plementation of an M-estimator. The scale and residuals used in the first iteration
of IRLS are taken from the optimal LMS affine transformation. In effect, the affine
model estimated by LMS is used to initialize the M-estimate of the full model. This
represents a novel twist on robust initialization of an M-estimator, since it is done
with the robust estimate of a lower order model. The scale value taken from the
affine model is reestimated following the first iteration of IRLS and then fixed for the
remaining iterations.

The most interesting aspect of the computation in the final stage is in the weight-
ing. Let (xm,i,xr,j) be a match, let ri,j = ‖xr,j − TX(xm,i)‖ be the fit residual
(the Euclidean distance between the transformed xm,i and xr,j), let wi,j be the ro-
bust weight, and let si,j be the match similarity measure. The weight calculation
requires two steps. First, for each match the robust weights and similarity measures
are multiplied to obtain

w∗
i,j = wi,jsi,j .

Second, these weights are scaled based on how they stack up against competing
matches. Competing matches are other matches (in Ir) for feature point i (which
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is from Im) or other matches (in Im) for feature point j (which is from Ir). The
scaling factor is

ηi,j =
w∗

i,j

w∗
i,j +

∑

k 6=i w
∗
k,j +

∑

m6=j w
∗
i,m

.

This scaling factor will be at or near 1.0 if no other matches for i or j have large weights
and will be much less than 1.0 if they do. The point is to downgrade the influence
of ambiguous matches. The final weight used in IRLS will be ηi,jw

∗
i,j . One benefit of

this is that it allows matches that were rejected early to reenter the computation. If
they produce extreme residuals, their weights will be zero and the computation will
proceed as though they didn’t exist.

Figure 9(d) shows the final alignment between two images based on the robust
estimate of the 12-parameter model. Figure 8 shows a retinal mosaic of many different
images. The effects of the nonlinear mapping are most easily seen on the boundaries
of the images.

6. Discussion and Conclusions. This paper has summarized several important
robust parameter estimation techniques and outlined their use in three applications
in computer vision. Many other applications have been considered in the computer
vision literature as well, including optical flow and motion estimation [11, 23, 65],
edge and feature detection [49, 57, 59], pose estimation [30, 42], and tracking [12].
Most applications of robust estimators, like the three emphasized here, are based on
LMS, M-estimators, and their variations.

The observations about robust parameter estimation in the foregoing discussion
can be summarized in three important points.

1. The theoretical limit of the 50% breakdown point can and must be surpassed
in certain applications. This can be done through the use of RANSAC or
Hough transforms if a prior error bound is available, through adaptive tech-
niques based on scale estimates such as ALKS [44] and MUSE [54, 55], or
by special-purpose techniques such as the hierarchy of models used in reti-
nal mosaic construction. Care must be taken to ensure that the results are
meaningful, especially when the estimated structure includes only a small
percentage of the data as inliers. For example, MUSE [54, 55] incorporates
a randomness test based on MINPRAN [68] to ensure that the estimated
structures are significant.

2. Without a robust initial estimate, as provided by a high breakdown estimator
such as LMS, M-estimation is likely to yield poor results. This reflects the low
breakdown point of M-estimators. Hence, robust initialization is especially
important when outliers are numerous. These outliers cause a nonrobust least
squares estimate to be far from correct. Their presence requires that a weight
function such as that of Beaton and Tukey [4], which tends to zero quickly,
be used. When using such weight functions, lower tuning parameters than
recommended in the statistics literature should be used, emphasizing outlier
resistance over statistical efficiency. In a practical although not a theoretical
sense, robust initialization is less important when few outliers are expected
and, especially, when leverage points are nonexistent.

3. The nature of the outliers that might arise in the data should be consid-
ered carefully. Most important, of course, is the fact that outliers to one
correctly estimated structure (population) are often inliers to (one or more)
other structures. In this case, successful use of robust estimation depends
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on the distribution of points between structures, the physical proximity of
the point sets, and the similarity between the structures themselves. For ex-
ample, small magnitude depth and orientation discontinuities in range data
can lead to skewed surface estimates—“bridging fits”—when using current
robust estimators. Similar difficulties are likely in fundamental matrix esti-
mation when images include proximate objects undergoing slightly different
motions; the extent of the problem has not yet been fully explored.

The last of these problems is the most difficult. The current best approach to ad-
dressing it is to use mixture model formulations [74] in which multiple structures are
simultaneously and robustly estimated, and data are dynamically assigned to different
structures. This has been studied most heavily in motion and fundamental matrix es-
timation [3, 41, 78, 79, 80] but should be used increasingly elsewhere. Aside from the
added complexity, an important limitation of mixture models is that they are most
effective when all structures in the data can be appropriately modeled. This is some-
times difficult or impossible and perhaps shouldn’t be necessary when only a single
estimate is required; e.g., when estimating a planar surface model for a roof, models
for the leaves and branches of trees near the roof should not be required. Unmodeled
structures must be treated as outliers to all models, which reduces the mixture model
estimation problem to the original robust parameter estimation problem. Further
work is clearly needed.

A new approach currently under investigation combines robust parameter estima-
tion with boundary estimation in a single objective function [70]. This makes explicit
the fact that structures in computer vision, e.g., object surfaces, have limited spa-
tial extent. The objective function effectively treats points far outside boundaries as
outliers, but allows structures to “grow” toward regions of data that are close to the
extrapolated estimate. All of this results from the objective function minimization
process. While still in the early stages of development, this technique has already
shown promise of eliminating some of the problems in local and global surface esti-
mation discussed earlier.

In summary, robust parameter estimation is an important though incompletely
solved problem in computer vision. Computer vision data are numerous, corrupted
by noise and outliers, and usually drawn from multiple statistical populations (struc-
tures). Because robust estimation techniques are designed to handle corrupted and
incompletely modeled data, they provide an attractive set of tools for computer vision
estimation problems. These tools cannot be applied to vision problems successfully,
however, without careful thought about the populations (structures) to be estimated
and the frequency and nature of outliers. Successful application can lead to com-
puter vision techniques that accommodate substantial variations in the data. This
is an important development in extending the overall reliability of computer vision
technology.
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