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Robust Parametric Macromodeling Using
Multivariate Orthonormal Vector Fitting

Dirk Deschrijver, Tom Dhaene, Senior Member, IEEE, and Daniël De Zutter, Fellow, IEEE

Abstract—A robust multivariate extension of the orthonormal
vector fitting technique is introduced for rational parametric
macromodeling of highly dynamic responses in the frequency do-
main. The technique is applicable to data that is sparse or dense,
deterministic or a bit noisy, and grid-based or scattered in the
design space. For a specified geometrical parameter combination,
a SPICE equivalent model can be calculated.

Index Terms—Least squares, parametric macromodels, rational
functions, surface approximation, vector fitting.

I. INTRODUCTION

A
CCURATE parametric macromodeling is becoming

increasingly important for the design, study, and opti-

mization of microwave structures. Parametric macromodels

approximate the complex electromagnetic (EM) behavior of

high-speed multiport systems at the input and output ports in the

frequency domain. This behavior is typically characterized by

the frequency and several geometrical parameters that describe

physical properties of the structure, such as metallizations

or substrate parameters. Such models are frequently used for

efficient design space exploration, design optimization, and

sensitivity analysis. Unfortunately, the calculation of models

that exhibit sufficient accuracy is not a trivial task.

In the past, several multivariate modeling techniques were

presented to tackle this problem. Artificial neural networks

(ANNs) are a commonly used approach to calculate parametric

models [1], [2]. Despite their ability to handle highly nonlinear

behavior, it is hard to find a good topology, and large training

sets may be required. Lamecki et al. applied the multivariate

Cauchy method to calculate a parametric model by solving a set

of interpolatory conditions [3]. It was found that the use of or-

thogonal Chebyshev polynomials or a parameter space division

is required to avoid numerical ill-conditioning. Lehmensiek

and Meyer avoid these numerical instabilities by using a multi-

variate extension of Thiele-type continued fractions as a rational

interpolant [4], [5]. The continued fraction is recursively ex-

panded by selecting additional data samples until a predefined

accuracy level is reached. Despite its computational efficiency,
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the technique cannot be applied if the data samples are contam-

inated with noise. De Geest et al. introduced multidimensional

adaptive parameter sampling (MAPS) [6], which represents

the multivariate model as a linear combination of multinomial

basis functions with frequency-dependent coefficients. Even

though the approach can provide accurate models, it was found

that the combined rational-multinomial representation of the

model can be somewhat restrictive if the data exhibits a large

dynamic variation. The use of radial basis functions [7] and

Kriging [8] has also been considered, but it was found that

these methods provide less favorable results since they lack a

theoretical connection with the physical problem at hand [9].

The parametric macromodeling technique that is presented

in this paper is a robust multivariate extension of the vector

fitting methodology [10]. It combines the use of an iterative

least squares estimator [11], and orthonormal rational functions,

which are based on a prescribed set of poles [12]. The approach

allows the modeling of data sets, which are sparse or dense, and

deterministic or noisy, using data samples, which are grid-based

or scattered in the design space. It can also be applied to fit the

entire scattering matrix of a structure using a common pole-

behavior, which increases the efficiency of time-domain con-

volutions. Based on a fixed choice of geometrical parameters,

the multivariate model can easily be realized as an equivalent

SPICE circuit [13]. Although the algorithm is applied to EM

modeling problems in this paper, the basic concepts can be gen-

eralized to several other modeling problems in the field of com-

puter-aided design.

II. GOAL STATEMENT

The goal of the identification algorithm is to find a multi-

variate rational function , which approximates a large set

of data samples in a least squares

sense. These data samples are usually -parameters, which de-

pend on a complex frequency , and several geometrical

parameters . The geometrical parameters are de-

sign variables, which describe, e.g., the metallizations in an EM

circuit (such as lengths, widths, etc.) or the substrate parameters

(like thickness, dielectric constant, losses, etc.). The data sam-

ples are often deterministic, or contaminated by a small amount

of measurement or simulation noise. In addition, the samples

can be located on a grid or scattered in the design space. A

generalization of the technique is required to fit the lower trian-

gular part of the scattering matrix ( elements) using a common

pole behavior. By fixing the geometrical parameters of the mul-

tivariate model, a univariate model is obtained that can be real-

ized as an equivalent SPICE circuit.

0018-9480/$25.00 © 2008 IEEE
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III. MODEL REPRESENTATION

The multivariate rational model is represented as the

ratio of a numerator and denominator

(1)

where represents the complex frequency variable, and is

the predefined maximal order of the frequency-dependent basis

functions . The basis functions are multivariate

basis functions, which depend on a real parameter vector

, containing real geometrical parameters.

Such a basis function is defined as the product of univariate

basis functions whose order is denoted by subindices

(2)

is a set that con-

tains all distinct tuples with nonnegative multiindices, while

represents the predefined maximal order of the univariate

basis functions . Therefore, it follows that

IV. MODEL IDENTIFICATION

The goal of the identification algorithm is to find the op-

timal values of the coefficients and in (1) such that the

-norm over all data samples is min-

imized. A linear approximation to this nonlinear optimization

problem is obtained by using an iterative procedure called the

Sanathanan–Koerner iteration [11], [14]. In the first iteration

step , Levi’s cost function is minimized to obtain an

initial (biased) estimate of the model parameters [15]

(3)

Based on the initial estimate of the coefficients , the denom-

inator can be used as an inverse weighting to the

system equations. By repeating this process iteratively

, updated values of the coefficients and can

be derived by minimizing the following cost function [16]:

(4)

The trivial null solution can typically be avoided by fixing one

coefficient (e.g., the constant term of the denominator) to unity.

This can be done without loss of generality since both the nu-

merator and denominator can be divided by the same constant

value. In this implementation, the null solution is avoided by

introducing a more relaxed nontriviality constraint as an addi-

tional row in the system matrix. The constraint imposes that the

sum of the denominator samples approaches a nonzero value

without fixing any of its coefficients

(5)

This equation is given a weighting in relation to the size of the

data with . It was shown in [17]

that usage of this constraint often leads to more accurate results,

especially when the data samples are contaminated with noise.

To ensure that the model coefficients are real, each

equation is split in the real and imaginary parts. Therefore, the

eventual cost function that needs to be minimized at iteration

step is defined as follows:

(6)

provided that and are defined as

(7)

(8)

In order to improve the numerical accuracy of the results, each

column of the system equations is scaled to unit length.

V. CHOICE OF BASIS FUNCTIONS

A. Frequency-Dependent Basis Functions

The frequency-dependent behavior of a complex structure

is often highly dynamic due to the occurrence of resonances

and coupling effects. Therefore, a set of Muntz–Laguerre or-

thonormal rational basis functions is chosen, which are

based on a prescribed set of stable poles pro-

vided that [12], [18]. If is a real pole, then these

basis functions are defined by the following expression:

(9)

If and constitute a complex conjugate pair of poles

(such that ), then a linear combination of the two

corresponding basis functions is formed as follows:

(10)

(11)

It was shown in [19] and [20] that the use of orthonormal rational

basis functions leads to a numerically more robust procedure

than the use of a partial fraction basis, especially if the initial

pole location is specified in a suboptimal way.
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B. Geometrical Parameter-Based Basis Functions

1) Polynomial Basis Functions: It is observed in many prac-

tical applications that the model response varies smoothly if a

geometrical parameter is adjusted. This means that the geomet-

rical basis functions usually have relatively low orders.

Therefore, a suitable choice of basis functions for these param-

eters is a set of polynomial basis functions, which depend on

a real variable having real coefficients. The most obvious

choice is a classical power series basis. In that case, the multi-

variate basis functions are defined as

(12)

In some cases where ill-conditioning may arise (e.g., due to

a highly dynamic behavior in the parameter ranges), orthog-

onal Chebyshev polynomials of the first kind can be applied

[21]. If the parameter ranges are appropriately scaled, it is well

known that they can improve the numerical conditioning of the

system equations [22]. Even though polynomial basis functions

are used, the model representation (1) remains completely ra-

tional both in terms of the frequency and geometrical parame-

ters. Perhaps it should be emphasized that the choice of poly-

nomial basis functions does not impose a polynomial variation

of the model in terms of the geometrical parameters. However,

a known drawback of orthogonal polynomials is that the eval-

uation of their three-term recurrence relation is slow and may

require a prohibitive amount of computation time.

2) Rational Basis Functions: An alternative solution to deal

with high model orders is obtained by using a set of rational

basis functions, which are formulated as a function of .

These basis functions are based on a prescribed set of starting

poles , which is computed for each geomet-

rical parameter individually. The poles are chosen as com-

plex pairs , which have real parts of opposite

sign. Using these poles, it is possible to analytically enforce that

the response of the basis functions has a zero-phase angle. This

ensures that the corresponding basis functions

and are real by construction. The basis func-

tions are, therefore, defined as

(13)

and

(14)

with [23]. Complex conjugacy of the poles

is not enforced here because there is no symmetric relation-

ship between the model response for and .

VI. CHOICE OF STARTING POLES

A. Frequency

The starting poles of the frequency-dependent basis func-

tions and are chosen as stable complex con-

jugate pairs , which have small real parts

, and their imaginary parts linearly spaced

over the frequency range of interest such that

(15)

(16)

It was shown in [10] that this distribution of the poles reduces

the probability that poles must be relocated over long distances

and, therefore, avoids that the Sanathanan–Koerner weighting

exhibits a large dynamic variation, which breaks down the nu-

merical conditioning of the system equations [20].

B. Geometrical Parameters

The starting poles of the geometrical basis functions

and are chosen as complex

pairs, which have small real parts of opposite sign ,

and their imaginary parts linearly spaced over the geomet-

rical parameter range of interest such that

(17)

(18)

This choice of starting poles ensures that the geometrical basis

functions have a zero-phase angle since .

VII. MULTIVARIATE MODEL TO SPICE

Given a fixed choice of values for the geometrical parameters

, the multivariate rational model (1) re-

duces to a univariate frequency-dependent transfer function

(19)

(20)

where and

are real coefficients. Since the prescribed poles of

and cancel out, it is clear that the poles of are

actually the zeros of . By constructing the real minimal

state space realization ( ) of ,

(21)

(22)

the poles of are directly identified by solving the

eigenvalues of . More details on this procedure

are described in [19]. For the convenience of the reader, a

short summary of the key results is reported in the Appendix.

Once the poles of a univariate transfer function
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are known, unstable poles can be flipped into the left

half-plane and the corresponding residues are found by solving

a linear problem. This univariate pole-residue model can then

be subjected to standard passivity enforcement techniques

(see [24] and [25]), and the realization of an equivalent circuit

is straightforward (see [24] and [13]). The construction of

multivariate macromodels, which are stable and passive by

construction, will be reported in a future paper [26].

VIII. MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO)

FITTING USING COMMON POLES

In some cases, it is desired to fit multiport systems such that

the pole-behavior as a function of the geometrical parameters

is identical. This pole behavior is characterized by pole trajecto-

ries for bivariate rational models or pole hyperplanes for higher

dimensional systems. The goal of this approach is that the uni-

variate transfer function of each element (for a given geomet-

rical parameter configuration ) shares a common set of poles,

which increases the efficiency of the time-domain convolutions.

Therefore, a vector of elements is modeled by rational func-

tions, which share a common denominator having

coefficients and a distinct numerator having co-

efficients (for ). These coefficients are esti-

mated in such way that the following cost function is minimized

at each iteration step :

(23)

provided that and are defined as

(24)

(25)

It is observed that the system equations corresponding to (23)

may become very large. To obtain a significant speed up in terms

of computation time and memory requirements, a fast imple-

mentation of the vector fitting technique can be used, which ex-

ploits the sparsity of the system equations [27].

IX. 2-D EXAMPLE: IRIS IN RECTANGULAR WAVEGUIDE

The reflection coefficient and transmission coefficient

of equidistantly placed 2-D irises in a rectangular wave-

guide are computed using the mode-matching method [3], as

shown in Fig. 1. Based on a dense set of -parameter data sam-

ples, a multivariate macromodel is calculated as a function of a

varying iris height with – mm over the frequency

range (12–18 GHz).

Initially, 34 complex conjugate starting poles are selected

to model the frequency behavior, and 18 complex starting

poles are chosen for the geometrical parameter, as described

in Section VI. In order to have an accurate model, an overall

absolute fitting error of 60 dB or smaller is desired, which

corresponds to approximately three significant digits. The

Fig. 1. Iris in rectangular waveguide [4].

Fig. 2. Reflection coefficient � of bivariate model.

Fig. 3. Transmission coefficient � of bivariate model.

proposed algorithm is applied to the data samples, and an

accurate macromodel is calculated in only four iterations. The

approximation error of and in the selected data samples

corresponds to 68.16 dB and 68.91 dB , which

is quite satisfactory.

Figs. 2 and 3 show the response of the multivariate rational

model when evaluated on a grid that is much denser than the

initial sampling. The smoothness of the approximation surface

indicates that a good overall approximation is obtained, also in

between the selected data samples. An overall assessment of

the model quality can then be acquired by computing a set of

validation data samples using the mode-matching method. As
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Fig. 4. Model validation: frequency response for � � ��� mm.

Fig. 5. Exponential tapered microstrip transmission line [29].

an illustration, the univariate frequency response of the model is

calculated for mm, as shown in Fig. 4. Clearly, an good

correspondence is observed between the interpolated response

and 200 calculated validation samples.

X. 3-D EXAMPLE: TAPERED TRANSMISSION LINE

The presented technique is used to model the reflection co-

efficient of a lossless exponential tapered transmission line

[28], [29] that is terminated with a matched load, as shown in

Fig. 5, where and represent the refer-

ence impedance and the load impedance, respectively.

A parametric macromodel is computed as a function of the

varying relative dielectric constant and varying line

length (1–10 cm) over the frequency range (1 kHz–3 GHz).

The initial data is computed over a grid of 10 20 30 samples,

and the corresponding number of poles is set to 4, 6, and 12, re-

spectively. Fig. 6 shows the frequency response of the trivariate

structure for a fixed value of , while Fig. 7 shows the

variation of the response for an increasing line length . The

proposed algorithm converges to accurate results in only two

iterations. The calculation of the macromodel takes approxi-

mately 28 s on a standard desktop computer in MATLAB, and

requires 87 MB of RAM to store the least squares matrix in (6).

The maximum absolute error of in the initial data samples

corresponds to 74.51 dB. An overall assessment of the model

quality is then acquired by computing a set of validation data

Fig. 6. Reflection coefficient � for � � �.

Fig. 7. Reflection coefficient � for � � �� �� �� �� �	 cm.

samples on a very dense grid of size 30 50 70. The number

of validation samples that corresponds to a certain absolute error

is shown by a histogram in Fig. 8. It clearly shows that the com-

puted macromodel has a good overall accuracy since the max-

imum absolute error over all the validation samples is bounded

by 65.72 dB.

XI. PRACTICAL ASPECTS AND LIMITATIONS

• Finding the least squares solution of (6) is computation-

ally the most expensive part of the algorithm because the

complexity scales cubically with the size of the problem.

As the number of geometrical parameters increases, the re-

quired amount of data samples grows exponentially with

the dimension. Even for a moderate amount of parameters,

the memory storage requirements and overall computation

time may become prohibitively large. In order to reduce

the computational burden, adaptive sampling strategies, as

shown in [6] and [3], can be applied.

• As most full-wave EM techniques [including the fi-

nite-difference time-domain (FDTD), finite-element
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Fig. 8. Histogram: error distribution over 105 000 validation samples.

method (FEM), and method of moments (MoM)] dis-

cretize the computational space, the computed simulation

data can sometimes be polluted by discretization noise.

This is caused by the fact that the relative grid size may

vary in a nonsmooth way as a function of the geometrical

parameters. The presented method can handle data with a

sufficiently high signal-to-noise ratio because it is based

on least squares fitting and relaxation. However, if the

input data contains nonnegligible discontinuities, then the

modeling error between the parametric macromodel and

the data may increase locally. Such problems are inherent

to the quality of the data and do not affect the validity of

the parametric macromodeling approach.

XII. CONCLUSION

A multivariate extension of the orthonormal vector fitting

technique has been presented for the calculation of parametric

macromodels from frequency-response data. The robustness of

the proposed method has been obtained by combining the use

of rational basis functions and an iterative weighting scheme.

Several examples have illustrated that the approach is able to

model highly dynamical responses with a good accuracy. Once

the model has been calculated, it can efficiently be used for fast

design space exploration, design optimization, and sensitivity

analysis.

APPENDIX

The minimal continuous-time linear time-invariant (LTI)

state–space realization

(26)

(27)

of the denominator

(28)

is defined as

(29)

provided that the poles are real. If and consti-

tute a complex conjugate pair of poles (i.e., ),

then a real-valued realization is obtained by replacing

(30)

in the state matrix A by

(31)
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