
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 12, DECEMBER 2006 1979

[7] S. L. Campbell and L. R. Petzold, “Canonical forms and solvable sin-
gular systems of differential equations,” SIAM J. Alg. Discrete Meth.,
vol. 4, pp. 517–521, 1983.

[8] I. M. Gelf́and and G. E. Shilov, Generalized Functions. Beijing,
China: Science Press, 1965, vol. I.

[9] L. Dai, Singular Control Systems. Berlin, Germany: Springer-Verlag,
1989.

[10] A. I. G. Vardulakis, Linear Multivariable Control—Algebraic Analysis
and Synthesis Methods. New York: Wiley, 1991.

[11] Z. Yan and G. Duan, “Time domain solution to descriptor variable sys-
tems,” IEEE Trans. Autom. Control, vol. 50, no. 11, pp. 1796–1799,
Nov. 2005.

[12] K. J. Åström, Introduction to Stochastic Control Theory. New York:
Academic, 1970.

[13] J. Y. Ishihara and M. H. Terra, “Impulse controllability and observ-
ability of rectangular descriptor systems,” IEEE Trans. Autom. Control,
vol. 46, no. 6, pp. 991–994, Jun. 2001.

Robust Partial Pole Assignment for Vibrating Systems
With Aerodynamic Effects

Biswa N. Datta, Wen-Wei Lin, and Jenn-Nan Wang

Abstract—This note proposes a novel algorithm for robust partial
eigenvalue assignment (RPEVA) problem for a cubic matrix pencil arising
from modeling of vibrating systems with aerodynamic effects. The RPEVA
problem for a cubic pencil is the one of choosing suitable feedback matrices
to reassign a few (say 3 ) unwanted eigenvalues while leaving the
remaining large number (3 ) of them unchanged, in such a way that
the the eigenvalues of the closed-loop matrix are as insensitive as possible
to small perturbation of the data. The latter amounts to minimizing the
condition number of the closed-loop eigenvector matrix. The problem is
solved directly in the cubic matrix polynomial setting without making any
transformation to a standard first-order state-space system. This allows
us to take advantage of the exploitable structures such as the sparsity,
definiteness, bandness, etc., very often offered by large practical problems.
The major computational requirements are: i) solution of a small Sylvester
equation, ii) QR factorizations, and iii) solution of a standard least squares
problem. The least-squares problem result from matrix rank-two update
techniques used in the algorithm for reassigning complex eigenvalues. The
practical effectiveness of the method is demonstrated by implementational
results on simulated data provided by the Boeing company.

Index Terms—Cubic matrix ploynomial, least-squares problem, robust
partial ploe, vibrating systems.

I. INTRODUCTION

Consider the following general model of vibrating systems with
aerodynamics effects:

M �q + (C1 + �(s)C2) _q + (K1 + �(s)K2)q = H(s; t) (1)
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where M is the inertia matrix and C1; K1; C2, and K2 are the struc-
tural damping, structural stiffness, aerodynamic damping, and aero-
dynamic stiffness matrices, respectively. The nonhomogeneous term
H(s; t) represents the forcing function which is the combination of
the generalized forces and gust inputs. Here, the parameter s is inter-
preted as the Laplace transform parameter. For more rigorous interpre-
tation of (1), we refer to [28]. Roughly speaking, the terms involving
parameter s should be interpreted as convolution operations. In most
practical applications, the matrices M;K1;K2 are real positive defi-
nite and C1; C2 are real symmetric. However, we assume throughout
the note that M;C1; C2;K1; K2 are real symmetric and M is nonsin-
gular. The factor �(s) in (1) is called the Wagner lift-growth buildup
function which is due to an instantaneous change in angle of attack
[14]. In this work, we take

�(s) = � +
�

s� !

with constants � 6= 0 and ! 6= 0. We first consider the homogeneous
case where H(s; t) � 0 in (1). Multiplying s� ! on both side of (1),
treating s as the t derivative, and setting q = xe�t with x 2 n, the
system (1) leads to a cubic open-loop matrix polynomial (see [12] and
[20]):

P (�) =M�
3 + C�

2 +K�+ L (2)

where

C = C1 + �C2 � !M

K = (K1 + �K2)� !(C1 + �C2) + �C2

L = �K2 � !(K1 + �K2): (3)

Now choosing the control force H(s; t) = BF T _q + B(GT
1 +

�(s)G2 )q in (1), we obtain a controlled system, which gives rise to a
closed-loop matrix polynomial [7]:

Pc(�) =M�
3 + (C �BF

T )�2 + K �BG
T
1 � �BG

T
2

+!BFT
�+ L� �BG

T
2 + !BG

T
1 + !�BG

T
2 :

Here, B 2 n�b is the control matrix and F;G1; G2 2
n�b are the

feedback matrices, where 1 � b � n. Without loss of generality, we
assume throughout that B has full-column rank. Let f�jg3nj=1 be the
self-conjugate spectrum of P (�) and f�jgkj=1 with 1 � k < 3n be
another self-conjugate set. Then the partial pole assignment problem
for the above cubic pencil is to find real gain matrices F;G1; G2 such
that ff�jgkj=1; f�jg

3n
j=k+1g = �(Pc). Here and after, �(Q) denotes

the spectrum of the matrix polynomial Q(�) or the spectrum of the
matrix Q. In other words, one would like to use the low rank perturba-
tionsBFT ; BGT

1 ; andBGT
2 to assign a self-conjugate set f�jgkj=1 �

�(P ) into f�jgkj=1, while keeping the rest of �(P ) unchanged.
There now exist several computationally viable methods for com-

plete eigenvalue assignment (see [4] for details) in the standard first-
order state–space system. The robustness issue for complete assign-
ment also has been dealt in the well-known papers [16] and [25]. Fur-
thermore, robustness and minimum-feedback issues, either jointly or
separately, were discussed in [1], [2], [18], [19], [26], and [27]. A few
specialized methods for a more important practical variation of the
problem, namely, the partial eigenvalue assignment problem, have

0018-9286/$20.00 © 2006 IEEE
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also been proposed [24], [10], [27], [21], and the robustness issue for
the first-order problem was discussed in the last two papers.

Because of practical computational and engineering difficulties in-
cluding the increase in dimensionality, loss of explicable structures
such as the sparsity, symmetry, etc., it is not advisable to solve a second-
order control system problem via transformation into a first-order stan-
dard state–space form. In view of this, the methods that deal directly in
quadratic settings have been developed in recent years, [5], [6], [9], in-
cluding methods for robust quadratic complete eigenvalue assignment
[3], [22] and a the robust quadratic partial assignment [23].

In the meantime, a partial pole assignment algorithm for the cubic
pencil was proposed in [20] and the robustness and minimum norm
issues for this pencil using rather elementary optimization techniques
was given in [7].

In this note, we give another close-look into the cubic problem and
propose a new algorithm for robustness alone. The process of mini-
mization of the condition number of the closed-loop system consists
of judicious selection of eigenvectors from a given subspace. This is
achieved by using rank-two updates for assignment of complex eigen-
values occurring in conjugate pairs. The process gives rise to a mini-
mization problem with nonlinear constraints. Since the latter is a dif-
ficult problem, we propose here a new idea which involves a least-
squares problem with linear constraints. This reformulated problem
is not mathematically equivalent to the original one; it is only an ap-
proximation. However, this reformulated least-square problem is much
easier to solve and our numerical experimental results show that the re-
sults are quite acceptable.

It is to be mentioned in his context that the recent method of Qian and
Xu [23] for the robust quadratic problem is also based on eigenvector
selections. While our method is for a cubic polynomial (and theirs is for
a quadratic pencil), the other main difference between our method and
theirs is that they do not address the minimization problem to assign
complex conjugate eigenvalues. More precisely, their method is a ver-
sion of rank-one update even for complex conjugate eigenvalues. Ours
is truly a rank-two updating algorithm for complex conjugate eigen-
values. Furthermore, their method, as stated by the authors themselves,
does not always converge.

II. A PARAMETRIC SOLUTION OF THE PARTIAL POLE

ASSIGNMENT PROBLEM

Let f�jg3nj=1 be the eigenvalues of P (�), i.e., det(P (�j)) = 0 for
1 � j � 3n. Assume that (�; X) and (~�; ~X) be two eigenmatrix pairs
of P . That is, they satisfy

P (�)X := MX�3 + CX�2 +KX�+ LX = 0

and

P (~�) ~X := M ~X ~�3 + C ~X ~�2 +K ~X ~� + L ~X = 0:

Suppose that

�(�) = f�jg
k
j=1 and �(~�) = f�jg

3n
j=k+1

where 1 � k < 3n and f�jg
k
j=1 and f�jg

3n
j=k+1 are two

self-conjugate sets. Now let the self-conjugate set f�jg
k
j=1 be

arranged as: f�jgkj=1 = ff�2`�1; �2`g
m

`=1; f�jg
k
j=2m +1g; where

0 � m1 � k=2; f�2`�1; �`g
m

`=1 are pairs of conjugate complex
numbers with nonzero imaginary parts, and f�jg

k
j=2m +1 are all

real numbers. We aim to assign f�jg
k
j=1 into a self-conjugate set

of complex numbers f�jg
k
j=1. For this purpose, we assume that

f�jg
k
j=1 \ �(P ) = ;.

Likewise, let us partition f�jg
k
j=1 =

ff�2r�1; �2rg
m
r=1; f�jg

k
j=2m +1g; where 0 � m2 � k=2;

f�2r�1; �2rg
m
r=1 are pairs of conjugate complex numbers with

nonzero imaginary parts, and f�jg
k
j=2m +1 are all real numbers.

Correspondingly, the eigenvectors associated with f�jg
k
j=1 are

grouped into

fx2`�1; x2`g
m

`=1; fxjg
k
j=2m +1

where x2`�1 = �x2` for all 1 � ` � m1 and fxjgkj=2m +1 are real
vectors. Notice that m1 is not necessarily equal to m2. Now, suppose
that U = [u1; . . . ; uk] is a b� k complex matrix with column vectors
uj satisfying

u2r�1 = �u2r for 1 � r � m2

uj 2
p�1 for 2m2 + 1 � j � k.

(4)

Subsequently, let zj be the jth column of BU , i.e., zj = Buj 6= 0 for
1 � j � k. Notice that fzjgkj=1 satisfy the same relations as in (1). In
view of the above, we define

yj = P (�j)
�1zj ; 1 � j � k:

That is, yj satisfies

P (�j)yj = Myj�
3

j +Cyj�
2

j +Kyj�j +Lyj = zj ; 1 � j � k:

Notice that yj 6= 0 for all 1 � j � k. It should be noted that the degrees
of freedom in the choice of yj is reflected by the degrees of freedom
in choosing zj for any given �j . The following solution of the partial
eigenvalue assignment for the cubic pencil (2) has been proposed in
[7].

Theorem 2.1: Let �(�) \ �(~�) = ; and let the gain matrices be
chosen as

F = MX��

G1 = [�!(K1 + �K2) + �K2]X� + (1� !)[MX�2

+ (C1 + �C2)X�]�

G2 =
1

�
f[!(K1 + �K2)� �K2]X�

+ ![MX�2 + (C1 + �C2)X�]�g (5)

where � 2 Ck�b is arbitrary. (i) Then ( ~X; ~�) is an eigenmatrix pair of
Pc(�), i.e., Pc(~�) ~X = 0. ii) Moreover, if � is chosen so as to satisfy
the system of k � k linear algebraic equations

�T	 = U (6)

where 	 is a solution of the Sylvester equation

	�� �	 = �XTBU � = diag(�1; . . . ; �k)

then �fPc(�)g = f�1; . . . ; �k;�k+1 . . . ; �3ng and yj is an eigen-
vector of Pc(�) associated with �j for j = 1; . . . ; k.
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III. MEASURE OF ROBUSTNESS

In this section, we present a measure of the robustness of the eigen-
value problem for cubic pencils which will be used later on to measure
the robustness of the partial pole assignment problem. One obvious
way is to apply various available measures of the robustness to the first
order linearization of the cubic pencil. However, this does not comply
with the principle of the note. Therefore, we work directly on the cubic
pencil. Let A(�) = A3�

3+A2�
2+A1�+A0 be a cubic pencil with

det A3 6= 0. Assume that (U; J; V ) is a Jordan triple of A(�) with
J = diag(�1; . . . ; �3n), i.e., (U; J) is a Jordan pair of A(�) and

V =

U

UJ

UJ2

�1 0

0

A�13

=

U

UJ

A3UJ
2

�1 0

0

I

Let � =2 �(A). Then the inverse of A(�) is given by

A�1(�) = U(�I � J)�1V: (7)

Suppose that the cubic pencilA(�) is perturbed into ~A(�) with associ-
ated coefficient matricesAl being perturbed intoAl+El for 0 � l � 3.
We now prove the following.

Leema 3.1: Let � 2 �( ~A) then

min
j

j�� �j j � kUkkV k
3

l=0

kElkj�jl (8)

where k � k is any matrix norm.
Proof: If � 2 �(A) then (8) is trivial. Thus, we assume that

� =2 �(A) and x is a nonzero vector satisfying ~A(�)x = 0. It is clear
that

[A(�)� ~A(�)]x = A(�)x

and so

A�1(�)[A(�)� ~A(�)]x = x:

Hence, we have that

1 � kA�1(�)[A(�)� ~A(�)]k:

From (7) and the form of J , the bound (8) follows immediately.
In view of this lemma, we define the condition number for the eigen-

values of A(�) to be �(A) = kUkkV k. For computational simplicity,
we will use the Frobenius norm throughout the rest of the note. Now, we
can discuss the condition number for the eigenvalues of the closed-loop
pencil Pc(�). Let us define

Y = [y1; . . . ; yk; xk+1; . . . ; x3n]

and

D = diag(�1; . . . ; �k; �k+1; . . . ; �3n):

To illuminate the main idea, we assume that (Y;D) is a Jordan pair of
Pc(�). That is, (Y;D;Z) with

Z =

Y

Y D

MYD2

�1 0

0

I

= ( ~MS)�1
0

0

I

form a Jordan triple of Pc(�), where ~M = I �M and

S =

Y

Y D

Y D2

:

Therefore, it follows that �(Pc) = kY kkZk. It should be noted that
for the partial eigenvalue assignment problem only the first k column
vectors in Y can be freely chosen. In other words, the condition
number �(Pc) is partially minimized. However, note that even though
the gain matrices F;G1; G2 given in (5) leave the remaining eigen-
pairs f(�j ; xj)g3nj=k+1 unchanged, the condition numbers for the
remaining eigenvalues can still be perturbed. It is therefore reasonable
to consider the global condition number �(Pc) even for the partial
pole assignment problem.

IV. MINIMIZATION OF �(Pc)

As indicated in [3] it is difficult to select eigenvectors to directly min-
imize �(Pc). However, by normalizing all eigenvectors in Y , we can
see that �(Pc) = kY kkZk �

p
3n2k ~M�1kkS�1k. Thus, to achieve

our goal, it suffices to minimize kS�1k. We will use a rank-2 update
technique proposed in [16] to minimize kS�1k by selecting appropriate
eigenvectors. Since all complex column vectors of S appear in com-
plex-conjugate pairs, we can define a real matrix Ŝ as follows: if the
jth column vector of S is real, then Ŝ has the same jth column vector.
If the jth and (j + 1)th column vectors of S form complex-conjugate
pair, say v and �v, then the jth column of Ŝ is defined to be the real
part of v and the (j+1)th column of Ŝ is the imaginary part of v. It is
easy to check that Ŝ is nonsingular if and only if S is nonsingular and
kS�1k � ~CkŜ�1k for some constant ~C > 0. Therefore, kŜ�1k can
be minimized by the column update technique.

Since the rank-2 update method gives rise to a minimization problem
with nonlinear constraints, which needs to be solved by complicated
numerical methods, we reformulate the problem into a least-squares
problem with linear constraints. The assignment of the real eigenvalues
can be handled by using a rank-1 update and has been discussed in more
detail in [8].

Let � = �r+{�i be a complex eigenvalue that needs to be assigned,
and y = yr+ {yi with yTr yr+yTi yi = 1 be the associated eigenvector,
where { =

p�1. Then rearranging Ŝ yields Ŝ = [v; V ]; where

v =

yr yi
�ryr � �iyi �ryi + �iyr

(�2r � �2i )yr � 2�r�iyi (�2r � �2i )yi + 2�r�iyr

2 3n�2; V 2 3n�(3n�2):

Let the QR decomposition of V be

V = [qV ; QV ]
0T

RV

= ~QV

0T

RV

~QV = [qV ; QV ]
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then

Ŝ = [v; V ] = ~QV

qTV v 0T

QT

V v RV

:

So the inverse of Ŝ is

Ŝ�1 =

�1
2

0T

�R�1
V
QT

V v

�1

2
R�1
V

where 
2 = qTV v is a 2 � 2 matrix. Thus, to minimize Ŝ�1 we must
minimize


�1
2

R�1
V
QT

V v

�1

2

: (9)

Let the QR decomposition of P (�)�1B be P (�)�1B = QBRB ;
where QB satisfies QH

BQB = I with QH

B being the Hermitian of QB .
Consequently, if we letQB = QBr+ {QBi, then we haveQT

BrQBr+
QT

BiQBi = I and QT

BrQBi �QT

BiQBr = 0. In view of the structure
of v, we can set v = BH; where

B =

QBr QBi

�rQBr � �iQBi �rQBi + �iQBr

(�2r � �2i )QBr � 2�r�iQBi (�2r � �2i )QBi + 2�r�iQBr

and

H =
hr hi
�hi hr

2 2b�2 with hTr hr + hTi hi = 1: (10)

Performing the QR decomposition on qTV B gives

qTV B = [�2; 0]
qT2
QT

2

= �2q
T

2 : (11)

Now, let us denote � = qT2 H  = QT

2H; and �T = [�T ;  T ], then
from HTH = I we have �T� = I . Thus, we can find 	 such that
[�;	] is orthogonal. Also, it follows from (11) that 
2 = �2q

T

2 H =
�2�. Note that 	T� = 0. Consequently, we obtain that


�12 = ��1��12 = ��1��12 = [�;	]T���1��12

= ���1��12 ] =  ��1��12

and

R�1V QT

V v

�1

2 = R�1V QT

V B[q2; Q2]�

�1

2

= kR�1V QT

V B[q2; Q2]I �
�1��12 k:

Therefore, we need to solve the minimization problem

min
H

�1

V QT

V B[q2; Q2]�
�1

2  ��1��12

= min
H

[q2; Q2]
T �1

V QT

V B(q2�
�1

2 +Q2 �
�1��12 ) (12)

withH 2 2b�2 subject to constraints (10). One possible way to solve
the minimization problem (12) is to regroup  ��1��1

2
as new vari-

ables, say  ��1��1
2

= Ĥ, and then problem (12) becomes equivalent
to

min Ĥmin
q2; Q2]

T

R�1
V
QT

V B
(q2�

�1

2 +Q2Ĥ) (13)

with Ĥ subject to some nonlinear constraints. However, the problem
(13) is very difficult to handle numerically. Here we will take a different
approach to deal with (13). We show how to reformulate the problem
(13) into a least squares problem with linear constraints which can be
solved easily by standard numerical methods. We first observe that

[q2; Q2]
T �1

V QT

V B(q2�
�1

2 +Q2 �
�1��12 ) � [q2; Q2]

T �1

V

QT

V B k��12 k kq2 +Q2 �
�1k:

Therefore, it suffices to minimize

kq2 +Q2 �
�1k = q2 +Q2Q

T

2H qT2 H
�1

(14)

with H satisfying (10). Note that Q2Q
T

2 (cH)(cqT2 H)�1 =
Q2Q

T

2H(qT2 H)�1 for any 0 6= c 2 . Thus, the unit length
constraint hTr hr+h

T

i hi = 1 in (10) can be removed. Since the inverse
of qT2 H is involved in (14), instead of solving (14), it is reasonable to
consider the following minimization problem:

minH q2 +Q2Q
T

2H

subject to qT2 H = I:
(15)

Now, let

~h =
hr
hi

2 2b�1 and q2 =
q11 q12
q21 q22

2 2b�2

then the constraint qT2 H = I becomes

qT11 �qT21
qT21 qT11
qT12 �qT22
qT22 qT12

~h =

1

0

0

1

(16)

which gives to an affine hyperplane whenever b � 3. Next, we denote
Q2Q

T

2 = [p1; p2]; where p1; p2 2 2b�b. Thus, the minimization
problem (15) is equivalent to

min~h
q11
q21

+ [p1;�p2]~h
2

+
q12
q22

+ [p2; p1]~h
2

subject to (16)
:

(17)

It should be noted that the objective function in (17) can be transformed
into kc + N~hk2 + constant for some c 2 2b�1, where NTN is
the Cholesky factorization of [p1;�p2]T [p1;�p2] + [p2; p1]

T [p2; p1].
Therefore, to solve (17), it suffices to consider the following least
squares problem with linear equality constraints:

min~h kc+N~hk2

subject to (16)
(18)

which can be easily solved numerically [13]. Let ~hmin be the minimizer
of (18), then the jth and j + 1th columns of U are u and �u with u =
R�1
B

(h1 + {h2), and h1 and h2 are defined by (~hmin)=(k~hmink) =
h1
h2

.
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V. ALGORITHM 5.1 A COMPUTATIONAL ALGORITHM FOR ROBUST

PARTIAL EIGENVALUE ASSIGNMENT IN CUBIC PENCILS

In this section, we give a numerical scheme to solve the robust partial
pole assignment problem for the cubic pencil P (�).

Step 1: Find the QR decomposition of P (�j)
�1B:

P (�j)
�1B = QB;jRB;j ; 1 � j � k

where QB;2r�1 = �QB;2r. Take H = [h1; h2; . . . ; hk] 2 CCCb�k with
unit column vectors such that the relations (10) are satisfied. Set yj =
QB;jhj for 1 � j � k and form

S =

Y

Y D

Y D2

where

Y = [y1; . . . ; yk; xk+1; . . . ; x3n]

and

D = diag(�1; . . . ; �k; �k+1; . . . ; �3n):

From S construct a new matrix Ŝ with real column vectors as in
Section IV.

Step 2.: Minimize �(Pc) by performing the minimization process
described in Subsection IV.

Remark: The minimization process is stopped in at most k sweeps.
At the end, we obtain a matrix U 2 CCCbxk.

Step 3: Find the feedback matricesF;G1, andG2 from the formulas
in (5) with � determined from (6).

A. Structure Preserving Properties of Algorithm 5.1

Advantages of the special structures of the matrices M;C , and K ,
often offered by practical problems, can be taken in implementing the
algorithm, as described in the following.

• Forming the matrix P (�j)
�1B in Step 1 is computationally

equivalent to solving linear systems of algebraic equations:
P (�j)X = B, where the matrix X needs to be determined. The
special structures of M;C;K , and L, can be exploited in both
forming P (�j) and solving the linear systems. For example,
in many practical instances, the matrix M is diagonal, K is
symmetric tridiagonal and L and C are small matrices. If this is
the case, the matrix P (�j) for a given �j is almost a tridiagonal
matrix and solving a tridiagonal system requires O(n) flops
compared to O(n3) flops required to solve an arbitrary system
[11].

• Special structures of these matrices can be exploited in computing
the QR factorization in Step 1 and the subsequent solution of the
least-squares problem in Step 2. (Note that the QR factorization
of a tridiagonal matrix requires O(n) flops compared to O(n3)
flops for an arbitray matrix) [11].

• The matrix multiplications in Step 3 in forming the matrices F;
G1, and G2 using (5) can also be efficiently performed using
the structures of those matrices. Furthermore, since computations
here are independent and rich is matrix multiplications, these com-
putations are ideal for high-performance computing, which is an
additional advantage.

Unfortunately such computational advantages are not possible if the
problem had been solved by transforming to a standard state-space
form; all the exploitable properties, such as the sparsity, positive defi-
niteness, and others would be completely destroyed by such a transfor-
mation.

TABLE I
Initial Relative Errors of the Assigned Eigenvalues

TABLE II
Final Relative Errors of Assigned Eigenvalues

Numerical Experiment: A numerical experiment was performed
with simulated data obtained from the Boeing Company. The sizes of
matrices M; C1; C2; K1. and K2 are all 42� 42. Therefore, the total
number of eigenvalues (counting multiplicity) is 126.

A set of six pairs of complex eigenvalues f�jg12j=1 =
f�1; �2; �3; �4; . . . ; �11; �12g = f�1; ��1; �3; ��3; . . . ; �11; ��11g
were assigned to the eigenvalues

f�jg12j=1 = f�1; �2; �3; �4; . . . ; �11; �12g
= f�1; ��1; �3; ��3; . . . ; �11; ��11g

Their specific values are omitted for the lack of space.
We choose the input matrix B = [b1; b2; b3; b4] with
bT1 = (1=

p
21)[1; 0;�1; 0; 1; 0;�1; 0; . . . ;�1; 0; 1]; bT2 = bT1

except b2(21) = 0:99; bT3 = (1=
p
42)[1; 1; . . . ; 1] and bT4 = bT3

except b4(42) = 1:03.
The initial relative errors (without using Algorithm 5.1) and the

Final relative errors (with the use of Algorithm 5.1) are plotted in
Tables I and II. Six sweeps were required to move the eigenvalues.

The results show an improvement of both the assigned and the re-
maining eigenvalues with the use of Algorithm 5.1, as expected.

The results obtained in an earlier paper [7] were a little bit more ac-
curate than those presented in the above Tables. This is because in [7],
minimizations of both feedback norms and eigenvector conditioning
were considered and, furthermore, a more powerful optimization tech-
nique was used there rather than the simple least-squares technique
used in the current note. Note that the technique in [7] is quite compu-
tationally intensive, it involves solution of a nonlinear unconstrained
optimization problem which is to be solved iteratively and requires
evaluation of the first derivative of the objective function to find the
search direction at each iteration, resulting in a very high-order of com-
putational complexity and convergence problems. On the other hand,
the technique of the present note requires solution of a least-squares
problem which can be done in a finite number of steps using a direct
method, such as the QR Factorization. Thus, the technique of this note
is more efficient but is likely less accurate.

VI. CONCLUSION

Numerically robust feedback control design concerns with choosing
a suitable feedback matrix (matrices) such that the closed-loop eigen-
values are as insensitive as possible to small perturbations of the data.
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While several algorithms have been developed for computing robust
feedback matrices for complete pole assignment in standard first-order
state-space and also for the matrix second-order systems, such algo-
rithms for partial pole-placement (which is more practical for large
and sparse systems) are rare. In this note, a computationally simple
least-squares based algorithm for robust partial pole placement in a
cubic matrix pencil arising from modelling of vibrating structures with
aerodynamics effects is proposed. It should be emphasized that here we
formulate the rank-two update method (for complex poles) into a least
square problem with linear constraints which can be solved easily by
elementary linear algebra techniques. Moreover, our new algorithm is
not an iterative method. For instance, if we want to assign k pairs of
complex poles, i.e., 2k number of eigenvalues then we only need to do
exact k steps in our method. Clearly, this new algorithm is much sim-
pler and more efficient than the only other algorithm proposed so far
for this problem.

REFERENCES

[1] S. P. Bhattacharyya and E. deSouza, “Pole assignment via Sylvester’s
equation,” Syst. Control Lett., no. 4, pp. 261–263, 1982.

[2] R. Byers and S. G. Nash, “Approaches to robust pole assignment,” Int.
J. Control, no. 49, pp. 97–117, 1989.

[3] E. K. Chu and B. N. Datta, “Numerical robust pole assignment for
second-order systems,” Int. J. Control, no. 64, pp. 1113–1127, 1996.

[4] B. N. Datta, Numerical Methods for Linear Control Systems Design
and Analysis. New York: Elsevier, 2003.

[5] B. N. Datta, S. Elhay, and Y. M. Ram, “Orthogonality and partial pole
assignment for the symmetric definite quadratic pencil,” Linear Alg.
Appl., no. 257, pp. 29–48, 1997.

[6] B. N. Datta, S. Elhay, Y. M. Ram, and D. R. Sarkissian, “partial eigen-
structure assignment for the quadratic pencil,” J. Sound Vibrat., vol.
230, pp. 101–110, 2000.

[7] B. Datta, W.-W. Lin, and J.-N. Wang, “Robust and minimum gain par-
tial pole assignment for a third order system,” in Proc. IEEE Conf. Dec.
Control, 2003, pp. 2358–2363.

[8] B. Datta, W.-W. Lin, and J.-N. Wang, “Robust partial pole assignment
for vibrating systems with aerodynamic effects,” in Proc. IEEE Conf.
Dec. Control, 2004.

[9] B. N. Datta and D. R. Sarkissian, “Theory and computation of some
inverse problems,” Contemp. Math., vol. 280, pp. 221–240, 2001.

[10] B. N. Datta and D. R. Sarkissian, “Partial eigenvalue assignment in
linear systems; Existence, uniqueness and numerical methods,” in
Proc. Math. Theory Networks Syst., 2002.

[11] B. N. Datta, Numerical Linear Algebra and Applications. CA:
Brooks/Cole, 2005.

[12] W. R. Ferng, W. W. Lin, D. J. Pierce, and C.-S. Wang, “Nonequiva-
lence transformation of lambda-matrix eigenproblems and model em-
bedding approach to model tuning,” Numer. Lin. Alg. Appl., vol. 8, pp.
53–70, 2001.

[13] G. H. Golub and C. F. Van Laon, Matrix Computations, 3rd ed. Bal-
timore, MD: Johns Hopkins Univ. Press, 1996.

[14] F. Hoblit, Gust Loads on Aircraft: Concepts and Applications 1988,
AIAA Education Series.

[15] D. Inman, Vibration with Control, Measurement, and Stability. En-
glewood Cliffs, NJ: Prentice-Hall, 1989.

[16] J. Kautsky, N. K. Nichols, and P. Van Dooren, “Robust pole assignment
in linear state feedback,” Int. J. Control, vol. 41, pp. 1129–1155, 1985.

[17] J. Kautsky and N. K. Nichols, “Robust multiple eigenvalue assignment
by state feedback in linear systems,” in Linear Algebra and Its Role in
Systems Theory. Providence, RI: AMS, 1985, pp. 253–264.

[18] L. H. Keel, J. A. Fleming, and S. P. Bhattacharyya, “Minimum norm
pole assignment via Sylvester’s equation,” Contemp. Math., vol. 47,
pp. 265–272, 1985.

[19] R. K. Kevin and S. P. Bhattacharyya, “Robust and well conditioned
eigenstructure assignment via Sylvester’s equation,” Optm. Control
Appl. Meth., vol. 4, pp. 205–212, 1983.

[20] W.-W. Lin and J.-N. Wang, “Partial pole assignment for the vibrating
system with aerodynamic effect,” Numer. Linear Algebra Appl., vol.
11, pp. 41–58, 2004.

[21] N. K. Nichols, “Robustness in partial pole placement,” IEEE Trans.
Autom. Control, vol. AC-32, no. 8, pp. 728–732, Aug. 1987.

[22] N. K. Nichols and J. Kautsky, “Robust eigenstructure assignment in
quadratic matrix polynomials: Nonsingular case,” SIAM J. Matrix
Anal. Appl., vol. 23, pp. 77–102, 2001.

[23] J. Qian and S. Xu, “Robust partial eigenvalue assignment problem for
the second-order system,” J. Sound Vibrat., vol. 282, pp. 937–948,
2005.

[24] Y. Saad, “Projection and deflation methods for partial pole assignment
in linear state feedback,” IEEE Trans. Autom. Control, vol. 33, no. 2,
pp. 290–297, Feb. 1988.

[25] A. L. Tits and Y. Yang, “Globally convergent algorithms for robust
pole assignment by state feedback,” IEEE Trans. Autom. Control, vol.
41, no. 10, pp. 1432–1452, Oct. 1996.

[26] A. Varga, “Robust and minimum norm pole assignment with peri-
odic state feedback,” in Proc. IEEE Conf. Dec. Control, 1998, pp.
3837–3842.

[27] A. Varga, “Robust pole assignment techniques via state feedback,” in
Proc. IEEE Conf. Dec. Control, 2000, pp. 4655–4660.

[28] J.-N. Wang, S.-H. Chou, Y.-C. Chen, and W.-W. Lin, “Pole assign-
ment for a vibrating system with aerodynamic effect,” SIAM J. Control
Optim., pp. 2116–2129, 2004.

Analysis and Synthesis of Robust Control Systems Using
Linear Parameter Dependent Lyapunov Functions

José C. Geromel and Rubens H. Korogui

Abstract—This note provides sufficient robust stability conditions for
continuous time polytopic systems. They are obtained from the Frobe-
nius–Perron Theorem applied to the time derivative of a linear parameter
dependent Lyapunov function and are expressed in terms of linear matrix
inequalities (LMI). They contain as special cases, various sufficient stability
conditions available in the literature to date. As a natural generalization,
the determination of a guaranteed cost is addressed. A new gain
parametrization is introduced in order to make possible the state feedback
robust control synthesis using parameter dependent Lyapunov functions
through linear matrix inequalities. Numerical examples are included for
illustration.

Index Terms—Linear matrix inequalities (LMIs), linear systems, robust
control design, robust stability and performance.

I. INTRODUCTION

Robust stability and performance of polytopic systems has received
special attention during the last decades. The main motivation for its
development was the possibility to analyze and to design control strate-
gies to cope with uncertain parameters, that is, parameters that can not
be considered precisely known. Classes of linear systems denominated
affine and polytopic came to light in order to put in evidence the linear
dependence of the model with respect to the uncertain parameters. The
first stability criterion denominated quadratic stability condition was
established using a quadratic in the state Lyapunov function and inde-
pendent of the unknown parameters, see [3] for a discussion on this
point. Naturally, this condition provides conservative results but it is
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