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Abstract. Password-protected secret sharing (PPSS) schemes allow a
user to publicly share its high-entropy secret across different servers and
to later recover it by interacting with some of these servers using only
his password without requiring any authenticated data. In particular,
this secret will remain safe as long as not too many servers get cor-
rupted. However, servers are not always reliable and the communication
can be altered. To address this issue, a robust PPSS should additionally
guarantee that a user can recover his secret as long as enough servers
provide correct answers, and these are received without alteration. In
this paper, we propose new robust PPSS schemes which are significantly
more efficient than the existing ones. Our contributions are two-fold:
First, we propose a generic technique to build a Robust Gap Threshold
Secret Sharing Scheme (RGTSSS) from some threshold secret sharing
schemes. In the PPSS construction, this allows us to drop the verifiable
property of Oblivious Pseudorandom Functions (OPRF); Then, we use
this new approach to design two new robust PPSS schemes that are quite
efficient, from two OPRF's. They are proven in the random-oracle model,
just because our RGTSSS construction requires random non-malleable
fingerprints, which is provided by an ideal hash function.

Keywords: Password-Protected Secret Sharing - Robust Gap Thresh-
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1 Introduction

Nowadays, cloud storage is quite popular with zettabytes of data spread all over
the world. Even if providers give some backup guarantees, they cannot always
prevent compromises, and so the data are subject to leakage, with possibly huge
consequences if the data are sensitive (financial, economic, medical, etc.). Clearly,
the provider can encrypt the data before storing them, but this is not an end-to-
end protection for the user: the provider itself has access to the data. For better
security, the user should encrypt the data before sending them to the cloud. But
this leads to a key management issue: Users have to remember their secret keys!

Humans cannot remember large secret keys, but just low-entropy passwords
(and not too many). Such a password is definitely not enough to deterministically
derive a symmetric encryption key, since a simple offline dictionary attack would
allow the recovery. On the other hand, there are techniques using passwords that
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are not vulnerable to such offline dictionary attacks, like password authenticated
key exchange (PAKE) [7]. For these PAKE protocols, the best attacks require
the adversary to be online, and to make the exhaustive search by interacting
with the honest parties, hence the idea to combine PAKE with secret sharing, in
order to achieve the best of the two worlds. This allows the recovery of a high-
entropy symmetric key by interacting with several servers while just using a
low-entropy password [18,22], without relying on any authenticated data, where
the best attacks are online dictionary attacks.

Password-Protected Secret Sharing. A (t,n)-password-protected secret shar-
ing (PPSS) is a protocol that allows a user to reconstruct a high-entropy secret
from a single (human-memorable) password, by communicating with at least ¢t +1
honest servers (among n possible ones).

This framework formalized in [2] first defines a secure initialization phase
where the secret is processed together with the password, and some server infor-
mation, in order to distribute the secret among n independent servers. Only
public information (to enable the later reconstruction) is eventually stored on
each server. We however stress that this public information does not have to be
authentic for the later security. Then, during the reconstruction phase, the user
can recover his secret by interacting with any subset of ¢+ 1 honest servers using
just his password. If the public information has been altered, the knowledge of
the password will be enough to detect it. However, in [2] they prove their scheme
secure in the random-oracle model assuming an additional PKI. Whereas this
assumption of a safe PKI makes sense during the initialization phase, which can
be run in a safe environment, it is not reasonable to make this assumption for
the reconstruction phase, which will be executed many times on various weak
devices.

A PPSS protocol satisfies the following properties: (i) the user can retrieve
the data by executing the reconstruction protocol with the same password as
the one used in the initialization phase and it is guaranteed to succeed as long
as at least ¢ 4+ 1 honest servers are available. (ii) An attacker who controls up to
t servers cannot learn any information about the secret other than doing an
online dictionary attack with another server. Two additional properties have
been defined: Soundness and Robustness. The first guarantees that even if the
adversary compromises all the servers, and provides consistent but fake public
information, it cannot make the user reconstruct and accept a secret differ-
ent from the one originally stored by the user. On the other hand, robustness
guarantees the recovery of the secret as long as the user communicates without
disruptions with at least ¢t + 1 honest servers.

We stress that the adversary can control all the communication network by
blocking, delaying, altering, or duplicating any flow. As such, no server is trusted,
and no PKI is assumed either, since the only authenticated data we allow is a
short password that the user can remember.
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Contributions. Our PPSS protocol follows the methodology from [23]: it is
based on the use of pseudorandom functions (PRFs) evaluated on the password
to mask the shares of the secret. These evaluations are performed, in an obliv-
ious way, with servers that own the PRF keys, hence the so-called oblivious
pseudorandom functions (OPRFs).

Our main contribution is the efficient realization of the robustness in only one
round of communication with each server, possibly in a concurrent way. We also
avoid any complex zero-knowledge proof. This comes from the fact that we do
not need to distinguish between correct and incorrect shares at each individual
evaluation with a server as in [23]. Compared to the later solution with ZK proofs
given in [24], our scheme needs only a single global check at the very end, during
the secret reconstruction, which significantly reduces the communication costs.

Actually, we propose a new efficient method to convert some Secret Shar-
ing Schemes into (tg,t.,n)-Robust Gap Threshold Secret Sharing Schemes
(RGTSSS) that guarantees to efficiently identify the correct values (and recon-
struct the secret) if at least ¢, shares are correct. However, if at most t,— 1 shares
are correct, the protocol leaks no information about which shares are correct.
Our construction is more general and with similar efficiency than using error-
correcting code such as Reed-Solomon [27]. Such a (ts,t,,n)-RGTSSS allows
constructing a sound and robust PPSS scheme: If the number of correct servers’
answers is above the threshold ¢,., the user can efficiently identify the valid ones
and reconstruct the secret. If the number of answers is strictly below another
threshold ty, no information about the secret is leaked. It is indeed important
that not too few correct shares can be detected as correct as this could result in
offline dictionary attacks. For instance, in the case where shares could be individ-
ually checked, a dishonest server could easily mount an offline dictionary attack.
With our new primitive, even t;, — 1 corrupted servers cannot perform an offline
dictionary attack as they would still need to interact with at least one additional
server. The main difference to [23] is in the way to achieve robustness: We ask a
bit more from the secret sharing scheme, but much less from the OPRF, allowing
more efficient constructions for the latter, which highly improves on the global
efficiency.

While similar to [24] in terms of server interaction efficiency for the PRF
evaluation, our technique takes advantage of the RGTSSS to optimize the secret
reconstruction. The scheme proposed by [24] has one significant drawback: the
client is supposed to specify the exact set of servers involved in the secret recovery
from the beginning, which may lead to frequent failures as the servers may
misbehave. Moreover, in case of such a failure, the user is unable to detect the
cheating servers. To overcome this drawback when a large number of servers are
involved in the protocol, our approach makes use of the robustness feature of
the secret sharing scheme to ensure the recovery of the secret and the detection
of dishonest servers.

We propose two efficient OPRF constructions: The first one is based on the
One-More Gap Diffie-Hellman assumption and its efficiency is quite similar to
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the one in [24]. Secondly, we introduce a new oblivious evaluation of the Naor-
Reingold PRF [25], based on the sole DDH assumption.

For this new construction, we compare very favorably to other oblivious eval-
uations of the Naor-Reingold PRF: our protocol simply uses ElGamal encryp-
tion [17] in prime order groups with simple zero-knowledge proofs, whereas for
example the scheme in [23] has to work in composite order groups with Paillier
encryption [26] and more complex zero-knowledge proofs.

By combining these building bricks, we eventually reach efficient PPSS
schemes that satisfy Soundness and Robustness properties. The two proposed
solutions are eventually proven in the Random-Oracle Model (ROM) [4], as our
RGTSSS construction requires random non-malleable fingerprints. This can be
achieved by using a hash function that is modeled as a random oracle [4].

Related Work. A threshold secret sharing scheme allows a user to distribute a
secret among different participants preventing a sole party breaking the security
or obstructing the reconstruction. This idea was introduced by Shamir [28] and
Blakey [9]. This concept was later generalized by using two thresholds, a upper
and a lower one to set the size of the sets to reconstruct and to preserve privacy
respectively. In Shamir’s secret sharing scheme, the privacy threshold is defined
as t and the reconstruction threshold as t + 1. When this gap is higher, then
the secret sharing scheme is called ramp scheme. Ramp schemes to achieve a
robust secret sharing scheme have been extensively studied, we refer the reader
to [8,14]. While this is well-known that the Shamir secret sharing scheme can be
made robust using Reed-Solomon error correcting codes, our approach is more
general with similar efficiency.

The first formal definition of Password Protected Secret Sharing was intro-
duced by Bagherzandi et al. [2]. They proved their scheme secure in the random-
oracle model assuming an additional PKI. Moreover, if an adversary is able to
obtain the keypair of one server, the adversary can perform an offline attack.
Later, Camenisch et al. [12] introduce a protocol of password-authenticated
secret sharing that also assumes a PKI and only two servers. Both protocols
contradict the requirement to be password-only, since they assume additional
authenticated data. Whereas this assumption of a safe PKI makes sense dur-
ing the initialization phase, which can be run in a safe environment, it is not
reasonable to make this assumption for the reconstruction phase, which will be
executed many times on various weak devices. Later, Camenisch et al. [10] intro-
duce a (t,n)-PPSS (called TPASS, for Threshold Password-Authenticated Secret
Sharing) in the Universal Composability (UC) framework [13] that is password-
only during the reconstruction phase. However, in this protocol all servers jointly
validate if the password matches or not. Yi et al. [29] propose a more efficient
TPASS based on distributing the password, a secret and a digest of the secret.
Nevertheless, in the recovering protocol, at least ¢ servers execute a broadcasting
protocol to generate and return the ElGamal encryptions of both the secret and
the digest. Then the users verify it matches.
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Camenisch et al. [11] present a very lightweight protocol with a similar con-
struction to our work, yet with differences. Since this protocol does not rely on
robust secret sharing scheme nor zero-knowledge, it is not possible to identify
which shares are valid. Then, if in the end the validation fails, the protocol must
restart with a different set of servers contradicting the requirement of robustness
and leading to a possible Denial-of-Service (DoS) attack.

Jarecki et al. [23] have been the first to design a PPSS scheme that is both
password-only during the reconstruction phase and robust, to avoid easy DoS
attacks. It makes use of a Verifiable Oblivious Pseudorandom Function (VOPRF)
that assures robustness by providing computation guarantees from the servers:
the user actually knows which server has tried to cheat, or which communication
links have been altered. Recently, the work [24] improves the performance of
this password-only PPSS on the cost of dropping the robustness property. Their
protocol is relaxing the verifiable property of the OPRF, giving up the ability
to discard incorrect computations during interactions with servers. This can be
a good alternative for a small number n of servers, the only setting that allows
checking in a reasonable time different subsets of servers until finding a non-
corrupted one.

2 Security Model

In order to analyze the security of PPSS protocols, we first provide a formal descrip-
tion of the security model. This is a game-based security definition, in the same
vein as [5,6] for key distribution schemes and [3] for password-authenticated key
exchange. It adapts the PPSS definition from [2] and the security model from [23].
We define security in terms of a key derivation mechanism or indistinguishabil-
ity of the actual secret from a random one, as in [23], since our goal is to later use
the secret as a symmetric key. In particular, we do not want to rely on a PKI or
any authenticated public values, hence our model description is similar to security
models for PAKE.

2.1 Password-Protected Secret Sharing

Participants and Parameters. We assume a fixed set of participants involved
in the protocol, each of which is either a user or a server. The set of all partici-
pants is the union of the nonempty disjoint and finite sets, User U Server.

Each user U € User holds two threshold values t;, and t,., where ¢, is the
number of shares required to recover the secret and t, is the number of shares
that start leaking some information about the secret, as well as some password
pw chosen independently and uniformly from a dictionary D of cardinality #D.

Each server S € Server holds a secret key sk, and possibly an associated
public key pk. However we stress that even if there is a public key pk, authenticity
cannot be assumed a priori during the reconstruction phase since users will just
have to remember their passwords and nothing else that would be required to
authenticate additional data.
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Initialization. The goal of the user U is to generate a key K so that he later
can recover it with the help of ¢, servers among n available servers, just using
his password. He thus runs an initialization protocol with n servers, using their
public keys, his password and some random coins. He ends up with a random
key K and some additional information Plnfo: nobody else than U has any
information about K, however Plnfo can be made public.

Secret Reconstruction. While the initialization phase assumes that all the
servers are honest, the public keys are authentic, and the data are not modified
during the communication, for the reconstruction phase, the adversary controls
the network and can forward, alter, delay, replay, or delete any message. The
adversary can also provide fake public data: nothing is authenticated anymore!

Anyway, just using his password, the user U should be able to recover K,
with the help of the servers, in a verifiable/robust way, even if some information
in Plnfo is not guaranteed to be correct.

Each participant (either user or server) can run several executions of the
protocol, possibly concurrently, we thus denote an instance i of player P as P°.
Each instance may be activated once only: the adversary is given oracle accesses
to interact with all the user’s and server’s instances that are stateful interactive
polynomial-time Turing machines.

2.2 The Adversarial Model

During the reconstruction phase, the adversary is given total control of the
network. It is thus given access to the following oracles:

~ Execute(U?,{S]*}): This query models a passive attack. This makes an
instance U? to interact with several instances of servers {S,jc’“} as they would do
during the reconstruction protocol. The adversary gets the entire transcript;

— Send(P?,m): This query models an active attack. This sends a message m to
the instance P’. A specific message Start] to a user’s instance U’ makes it
initiate a communication with the server’s instance S,z.

The security goal is to guarantee the privacy of the secret key K reconstructed
by the user. This is usually modeled by an indistinguishability game, with access
to a Test-query, where b is a global secret random bit:

— Test(U"): This query characterizes the indistinguishability of the key K com-
puted by instance U?. If this instance has not yet completed the reconstruction,
the answer is UNDEFINED; if the reconstruction failed, the answer is L; oth-
erwise, the answer is either the real reconstructed value if b = 1 or a random
one (always the same for user U, but independent of the real one) if b = 0.

The adversary eventually outputs its guess b’ for the bit b. One can note that
in the random case (b = 0), which models the ideal executions, a user U always
terminates with the same key, or fails. This means that the adversary should not
be able to make him accept a different key.
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In addition to control the network and the communications, the adversary can
corrupt servers, and get back their secret keys, due to, e.g., a poorly-administered
server, compromise of a host computer, or cryptanalysis. This is modeled by the
Corrupt-query:

— Corrupt(Sk): This outputs the secret key sk of the server Sj.

2.3 Semantic Security

Definition. Once the initialization phase is completed for many users, with
random passwords uniformly and independently drawn from a dictionary D, the
security game models the indistinguishably of the secret keys, a.k.a. semantic
security, the adversary can ask as many oracle queries (Execute, Send, Test, and
Corrupt), as it wants, in any order it wants, in order to guess the bit b: it outputs
its guess b’. We measure the quality of an adversary A by its advantage

Adv(A) = Prlt = 1]b=1] — Pr[t/ = 1|b = 0] = 2 x Pr[p/ = b] — 1.

Trivial Attacks. Two kinds of “on-line dictionary attacks” are unavoidable:

— if the adversary guesses the correct password, it will be able to reconstruct
the actual secret K after g. corruption queries and ¢, — q. interactions with
honest servers. Even after just ¢, — ¢. interactions, it may come up with ¢,
shares, which may leak some information about the actual secret key: it there-
after asks for an Execute-query, and tests the instance involved in this session,
to distinguish the real case from the random case. Its success probability is
however upper-bounded by ¢s/(t¢ — q.) X 1/#D, where ¢s is the number of
server instances involved during the attack, g. the number of Corrupt-queries,
and #D the size of the password dictionary.

— whereas the initialization phase was assumed to be done with authentic server
public keys, for the reconstruction phase, the adversary can send totally fake
public keys in PInfo that it generated itself from a randomly chosen password
pw. It thus also knows the secret keys and can simulate the view of the user by
emulating all the servers. If the password guess was correct, the user should
successfully terminate, whereas a wrong guess would lead to inconsistent infor-
mation. Its success probability is therefore upper-bounded by ¢, /#D, where
@y 1s the number of user instances involved in the attack.

2.4 Secure PPSS

As a consequence, we will say a (t.,n)-PPSS scheme is (s, €, t)-secure if for any
adversary A, running within time ¢, asking at most ¢. < t;, Corrupt-queries and
invoking at most g, user instances and g, server instances,

1 qs
Adv(A) < — x +qu | €.
V( )_#D (tf_(k q)
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In [23], they proposed such a protocol that achieves the optimal ¢y-security, for
ty = t,, but at the cost of verifiable oblivious pseudorandom functions. Our goal
is to build much more efficient protocols, possibly with a larger gap between ¢,
and t,.

Correctness. To be viable, a password-protected secret sharing must guarantee
that at least ¢, honest servers should allow the user that plays with his password
pw to recover his secret K.

Soundness. As guaranteed by our security model, when a user terminates with
a key K', this is the correct key K in almost all the cases, unless the adversary
guesses the password. More precisely, when playing with the correct password
pw, the user should end up with K’ € {K, 1}:

Pr[K' ¢ {1,K}] < #—11) X (tgqsqc +qu) +e.

Robustness. While one cannot avoid Denial-of-Service (DoS) attacks, since the
adversary can simply block any communication, an important property, already
required by [23], is the so-called robustness: even if the adversary alters many
messages, as soon as t, communications with servers are unmodified the user
can efficiently recover its secret.

The general issue with robustness is that when the user has interacted with
n servers but only ¢, shares are valid, the cost of trying all the t,.-subsets is
exponential! In [23], they addressed this issue by making some inner protocols
secure against malicious servers, with additional zero-knowledge proofs of honest
behavior, but this is at a high communication cost. Our goal is to provide this
property at a much lower cost.

3 High-Level Description

We review the well-known computational assumptions and the classical building
blocks in the full version [1]. Our general construction follows the one from [23],
with first an initialization phase and then a reconstruction phase.

Each server S; owns a key-pair (sk;, pk;) that defines a PRF F;, with public
parameters defined by pk; and a secret key defined by sk;. For a password pw € D,
the user asks for an oblivious evaluation of m; = F;(pw) to n servers, where
IT = (pk;); is the tuple of the public keys of the involved servers. The secret
key K is then split into shares (s1,...,s,) and some extra public information
PlInfo, specific to the user, is derived from it and distributed to all servers. This
information allows the user to later recover his secret, in a robust way.

We stress that, during this initialization phase, (pk;); are all the true public
keys, and (m;); are the correct evaluations of the PRFs. However, during the
reconstruction phase, the values provided by the servers are sent through an
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insecure channel and they might be altered by the adversary: the user inter-
acts with at least ¢, servers, that provide him PlInfo, and help him to compute
each m; = F;(pw) in an oblivious way. We assume that the user received the
same value PInfo from at least ¢, servers, and then the user keeps the majority
value. Using Plnfo and enough evaluations 7;, the user can extract enough shares
among (s1,...,8,) and reconstruct a value K. He can then verify whether this
is the expected secret key, from the majority Plnfo which is however not con-
sidered authentic. We can note that there are two crucial tools for this generic
construction:

— a pseudorandom function F' that can be evaluated in an oblivious way: the
server input is the secret key sk and the user input is the password pw, and the
user only gets the output Fy(pw), but none of the players learn any additional
information about the other player’s input;

— a (tg,t,,n)-threshold secret sharing scheme that allows to share a secret among
n players so that any subset of ¢, shares allows efficient reconstruction of the
secret, while ¢y — 1 shares do not leak any information.

An additional non-malleable commitment scheme [16] will provide the soundness,
by limiting the ability for an adversary to present a modified Plnfo, whereas it
controls all the communications.

However, in order to achieve the robustness to the PPSS protocol, we need
to make sure that when ¢, communications with the servers are unmodified, the
user can reconstruct the secret: either one can detect alterations of the com-
munications during the oblivious evaluations of the PRF, which is the approach
followed by [23] with Verifiable Oblivious PRFs (VOPRFS), or one can efficiently
reconstruct a secret from any set of shares that contains at least ¢, valid shares,
which is our approach with Robust Gap Threshold Secret Sharing Scheme.

4 A Robust Gap Threshold Secret Sharing Scheme

Our technique can generically apply to most threshold secret sharing schemes,
with two algorithms ShareGen and Reconstruct that respectively share a secret
into n parts and reconstruct it from ¢, shares (while no information leaks from
t,—1 shares, which look independent random elements). One can for example use
the classical Shamir’s secret sharing scheme [28] to which we will add this new
robustness feature, at the cost of having a threshold gap secret sharing scheme
that is enough to get a robust PPSS scheme (for details about secret sharing
schemes see the full version [1]).

4.1 Intuition

The valid shares are denoted (s1,...,s,) and the fingerprints of these shares
(01,-..,0n). At the same time of the share distribution, the product S of all
fingerprints modulo an integer N is published. In order to reconstruct the secret,
having received m candidate shares, one computes its fingerprints (71,..., 7m)
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and the product of them 7 = [[7;. The ratio 7/S mod N will cancel out the
fingerprints of all the correct share values leading to the ratio 7'/S’ mod N,
where &’ is the product of the fingerprints of the valid shares that the receiver
does not have in the list of candidates and 7’ the product of the fingerprints
of the candidates that are invalid. From &', one could easily check for every
candidate, whether it is in this product or not, and therefore identify which
candidate is correct or not.

Of course, 8’ has to be computed with good precision to allow the last verifi-
cation, but not too much in order to avoid individual checks or any unnecessary
leakage of information. The computations are thus performed modulo N, for a
well-chosen value.

4.2 Description

We now explain how one can detect the valid shares when the fingerprints are
either correct or random.

Initialization. We assume we have a set of n initial values (s1,...,$,), and
their k-bit string fingerprints (o1, ...,0,). As fingerprint function we use a hash
function F : {0,1}* — {0, 1}* modeled as a random oracle.

In the following, we will be given a set of m candidate shares, whose fin-
gerprints are (71,...,7m): these fingerprints are either correct (the same as in
the list (o1, ...,0,) or random for incorrect candidate shares). From this set of
candidate shares, if at least ¢, are correct, we want to efficiently identify the cor-
rect values (to recover the secret in a threshold secret sharing scheme, hence the
r-subscript in ¢,.). However, if at most ¢, — 1 are correct, the protocol should not
leak any information about which candidates are valid and which are not (hence
the ¢-subscript in ¢y, the number of shares that start leaking information).

From the initial set (o1,...,0,) of size n and the threshold ¢,., one chooses
a prime number N such that 22F(—t)+1 < N < 92k(n—t)+2 " computes the
product S = [[!, o; mod N, and publishes SSInfo = (S, N).

Reconstruction. Given the SSinfo = (S, N) and fingerprints (71,...,7,) of
the m < n candidates, which are either correct (at least ¢, of them) or random
(all the other ones), one computes the ratio v = [[\", 7;/S mod N, which can
be written as v = 7’/S’ mod N, where 7" is the product of the fingerprints of
the invalid candidates and S’ the product of the fingerprints of the values that
are not in the list of the candidates, both over the integers. Then, we know that
T < Qk(m—tr) < 2k(n—tr) and S’ < 2k(n—tr).

Unfortunately, using the following result from [19], we can only recover the
irreducible fraction 7" /8" of v, where all the small common factors of 7' /S’
were canceled out, with 7”7 < 7' < 2k0=t) and 8" < &' < 2k(—t) under
appropriate conditions.



Robust Password-Protected Secret Sharing 71

Theorem 1 (Numerical Rational Number Reconstruction). Let z = & mod N
such that — X < 2 < X and 0 < y < Y. If N is relatively prime to y and
2XY < N then the solution is unique and it is possible to recover x and y
efficiently by using two-dimensional lattice theory.

Considering X = 2¢=t) — 1 and Y = 2F»=%) _ 1 we indeed have 2XY <
2(2k(=tr) — 1)(2k(=t) — 1) < N and X > 0, Y > 0, hence we can efficiently
recover 7" and 8" from ~y. Now, if 7; is the fingerprint of a valid share, it should
be canceled out in 7', but there might still be some small factors in common
between 7; and 7" (we assume that the size of the common part is less than
half of the size of 7;). On the other hand, if 7; is the fingerprint of a random
invalid share, it should not be completely canceled out in 7’. However, there is
still a chance that some small factors have been canceled out, leading to 7" in
the irreducible form (we assume that less than half of it cancels). Hence, our
decision algorithm is the following one: we denote ¢; the bit size of | ged(7T”, 74)|;
if t; > k/2, this is an invalid share, otherwise this is a valid share.

In Fig. 1, we present experimental results that validate this decision algorithm
for 128-bit fingerprints. It clearly shows that for a valid 7;, ¢; is a small number
(half of them equal to 1) and for an invalid 7;, ¢; is a large number (44 % of them
is equal to 2¥). We have computed 22! times the value of ged(7”, 7;) and in case
of Fig. 1a, the highest bit size of ¢; is 35 (much less than 64). On the other hand,
in Fig. 1b the least value is 96 (much more than 64). A more fine analysis can
be found in the full version [1].

Information Leakage. On the opposite, we would like to evaluate the infor-
mation leaked by & when there are at most ¢, — 1 valid values. More precisely,
given S, is it possible to distinguish ¢, — 1 valid values for the shares from
ty — 1 random values? We focus on a t,.-threshold secret sharing scheme, for
a k-bit secret and k-bit shares. Then, the entropy of the tuple (o1,...,0,)
is k(t, — 1). Since S reveals the product of the k-bit fingerprints modulo
N, with N < 2%n=t)+2 the remaining entropy on the shares is at least
k(t, —1)—2k(n—t,) —2 = k(3t, —2n—1) — 2. If this is greater than k(t, —1), no
one can distinguish ¢, — 1 random values from ¢y — 1 correct values for the shares:

(a) ged(T", 7;)-bitlength for valid 7;.  (b) ged(7”, 7;)-bitlength for invalid 7;.
osf
oa}
oaf
02}

01F 0.05F
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Fig. 1. Length in bits of gcd(7"', ;) for a fingerprint of size 128-bits and 32 shares
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we thus need k(3t, —2n—1) —2 > k(ty — 1). When k > 2, this essentially means
ty < 3t — 2n: by choosing t, = 3t,, — 2n, we are safe. For example, one can take
t, = [3n/4] and t, = |n/4]. And the same argument, with 2k-bit secret and
shares but still k-bit fingerprints, leads to ¢, = [2n/3] and t, = |n/3], which
makes sense for a 256-bit secret key and 128-bit fingerprints.

5 Owur Password-Protected Secret Sharing Protocols

Thanks to our new (¢4,t,,n)-RGTSSS, we do not need to use a VOPRF, as
in [23], which is at the cost of complex zero-knowledge proofs. We can now
describe our general structure of PPSS protocol, using an OPRF as black-box.
We thereafter provide two instantiations, with two appropriate OPRFs, in the
same vein as the ones proposed in [23], using similar computational assumptions
(see the full version [1]):

— the first OPRF relies on the CDH evaluation, similar to the protocol 2HashDH,
but without NIZKs. The PPSS construction is then quite similar to [24].

— the second OPRF is an oblivious evaluation of the Naor-Reingold PRF [25].
Then, in the PPSS, the gain of the zero-knowledge proofs by the server is
quite significant.

5.1 General Description

As already presented in the high-level description, our protocols are in two
phases: the initialization phase which is assumed to be executed in a safe environ-
ment and the reconstruction phase during which the password only is considered
correct, while all the other inputs can be faked by the adversary.

Initialization. We assume that each server S; owns a key pair (sk;, pk;) that
defines a PRF F;, with public parameters defined by pk; and a secret key defined
by sk;, that admits an OPRF protocol to allow a user with input m to evaluate
F;(m) without leaking any information on m to the server.

We additionally use a (t¢,t,, n)-robust gap threshold secret sharing scheme
and a non-malleable commitment scheme (see the full version [1]). Since we
already are in the random-oracle model for the PRF, we can implement the com-
mitment scheme with a simple second-preimage-resistant hash function Hcom,
which allows a better efficiency. The user U first chooses a secret password pw:

1. the user interacts with n servers to obliviously evaluate m; = F;(pw), and
IT = (pk;); is the tuple of the public keys of the involved servers;

2. for a random value R = K||r, where K is the random secret key the user
wants to reconstruct and r some random coins for the commitment. The user
generates (s1,. .., Sp, SSInfo) < ShareGen(R), so that any subset of ¢, shares
among {s1,..., S, } can efficiently recover R;

3. then, the user builds o; = 7; ® s;, for i = 1,...,n, and sets X = (04)4;
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4. the user generates Com = Hcom(pw, I, X, SSInfo, K; 7). We denote by Plnfo =
(I, X, SSInfo, Com) the public information that the user will need later to
recover his secret K;

5. the user thus gives Plnfo to all the servers.

We stress that during this initialization phase, all the values of II are the real
public keys and (m;); are the correct evaluations of the PRFs. On the opposite,
during the reconstruction phase, all the values in PInfo will be provided by the
servers, but through the adversary, who might alter them.

Reconstruction. For the reconstruction, the user interacts with at least ¢,
servers, that provide him Plnfo = (I, X, SSInfo, Com), and help him to compute
m; = F;(pw) for several values of i, using pk; from IT. No information is trusted
anymore, and so the reconstruction phase perform several verifications:

1. the user first limits the oblivious evaluations of m; = F;(pw) to the servers
that sent the same majority tuple Plnfo = (II, ¥, SSInfo, Com). If the number
of such servers is less than ¢,., one aborts with K «_L;

2. for all these 7; (or similarly, all the i he kept), the user computes s; = o; ®7;,
using o; from X (from Plnfo);

3. using these {s;} with at least ¢, correct shares, and SSinfo (from PlInfo), with
RGTSSS, the user reconstructs the shared secret R (or aborts with K « L if
the reconstruction fails);

4. the user parses the secret R as K ||r, and checks, from Plnfo, whether Com =
Hcom(pw, IT, X, SSInfo, K;1);

5. if the verification succeeds, K is the expected secret key, otherwise the user
aborts with K «— 1.

5.2 Protocol I: One-More-Gap-Diffie-Hellman-Based PRF

Our first instantiation is based on CDH-like assumptions in the random-oracle
model. The arithmetic is in a finite cyclic group G = (g) of prime order q. We
need a full-domain hash function H; onto G, and another hash function Hy onto
{0, 1}52 . The commitment scheme uses a simple hash function Hcom = H3 onto
{0,1}"%.

For a private key sk = x € Z,;, we consider the pseudorandom function
F.(m) = Ha(m, g%, Hi(m)%), for any bitstring m € {0,1}", where the public
key is pk = y = ¢*. In the full version [1], we prove this is indeed a PRF, as
already shown in [23].

In addition, it admits an oblivious evaluation, that does not leak any infor-
mation, thanks to the three simulators Sim, Simy and Simg, as presented
in Fig.2: Sim simulates an honest transcript, Simy simulates an honest user
interacting with a malicious server, and Simg simulates an honest server with a
malicious user. These simulators will be used by our simulator in the full secu-
rity proof. They generate perfectly indistinguishable views to the adversary, but
they require CDH(y, -) and DDH(y, -, -) evaluation, and thus oracle access when
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the secret keys are not known. Since the indistinguishability of the PRF relies
on the CDH,(y, -) assumption, the overall security relies on the One-More Gap
Diffie-Hellman (OMGDH) assumption (see the full version [1]) as shown in the
last step of the proof.

User Server
m pk=y=g¢g" sk ==

a 75, A e Hy(m)® A

If B = 1, then abort e B B« A®

C «— BY* R« Hy(m,y,O)

Sim Simy Simg
alz; AlG A4, 4 ,
A—g® A R « B < B B« CDHg(yaA)
B B« y~ | ~DDHy(y, A, B)
= fail

Fig. 2. Secure oblivious evaluation of the PRF based on OMGDH

Theorem 2. For any adversary A, against the Protocol I, that corrupts no more
than q. servers, involves at most qs instances of the servers, q, instances of the
user, and asks at most q1, q2, q3 queries to Hy, Hy, Hs, respectively

4qs
Adv(A) < <qu + q> X — +e.
where & =n X Succomgdh(ql’ Gs; 6 M- qu + CI2) + (qg + 2) : 2_63/4.

Security Proof. The complete and detailed proof of the Theorem is given in the
full version [1]. The rough idea is the following: in the real attack game, we focus
on a unique user, against a static adversary (the corrupted servers are known
right after the initialization, and before any reconstruction attempt). All the
parameters are honestly generated, the simulator knows the secret informations
to answers the queries, and two random keys Ky (random) and K (real), as well
as a bit b, are selected randomly to answer Test-queries. In the final game, we
simulate all the answers to the adversary without using a password. A random
value will be chosen at the very end of the simulation and used as a password in
order to decide if some bad events should have occurred, which will immediately
upper-bound the advantage of the adversary.

We first modify the way Execute-queries are answered, using Sim that per-
fectly simulates honest transcripts user-servers, and we set user’s key to Kj.
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Then, we deal with Send-queries to the honest user, trying to exclude the
cases of a fake public information Plnfo’ (sent by the majority of servers): first,
we do as before if the commitment Com’ in Plnfo’ is different from the expected
value C generated during the initialization, but eventually we set K «_L. This
would just make a difference for the adversary if Com’ indeed contains the good
password pw, which is defined as the event PWinC. This event PWinC can be
evaluated using the list of queries asked to Hs. Then, a similar argument applies
when a wrong Plnfo’ is sent, but with a correct Com, under the binding propriety
of the commitment Hs.

Once we have fixed this, and we trust the public values, we can use Simy,
that perfectly simulates a flow A from the user to a server, and can decide on
the honest behavior of the servers. Then Simy accepts with K «— K; in the
honest case or aborts with K «_1 otherwise. Hence, we remark that we answer
Send-queries without calling the H; or Hy oracles, but just using K;j, and no
secret sharing reconstruction is used anymore.

Next step is to replace all the shares in the initialization phase by random
and independent values. We know that until the adversary does not get more
than t; = n/4 of these shares, it cannot detect whether they are random or
correct. We define the event PWinF to be the bad event, where the adversary
has enough evaluations of the PRF to notice the change. Again, our simulator is
able to decide the event PWinF by checking whether pw has been queried with
the right inputs to Hs, and how many times. We eventually replace the hash
value Com in the initialization phase by a random Com.

One can note that, in the end, the password pw is not used anymore during
the simulation, but just to determine whether the events PWinC or PWinF hap-
pened. In addition, K; does not appear anymore during the initialization phase,
hence one cannot make any difference between Ky and K;: Succq = 1/2 in the
last game. As a consequence, Adv(A) < Pr[PWinC|] + Pr[PWinF] 4 ¢, where ¢
comes from the collisions or guesses in the random oracles. To evaluate the two
events PWinC or PWinF to happen, we choose a random password pw at the very
end only: Pr[PWinC] is clearly upper-bounded by g, /#D, since g, is the maxi-
mal number of fake commitment attempts containing the right pw that can be
different from the expected ones; PWinF means that the adversary managed to
get n/4 — q. evaluations of the PRFs under the chosen pw, since it can evaluate
on its own the values under the g. corrupted servers. But unless the adversary
gets more evaluations than the number g5 of queries asked to the servers (which
can be proven under the OMGDH assumption), the number of bad passwords
(for which the knows at least n/4 — ¢. evaluations of the PRFs) is less than
gs/(n/4 — q.). So the probability that the chosen pw is such a bad password is
less than ¢s/(n/4 — ¢.) X 1/#D.

5.3 Protocol II: DDH-Based PRF

Our second instantiation makes use of the Naor and Reingold [25] pseudorandom
function. We consider the group G = (g) of prime order ¢ that is a safe prime:
q = 2s+1. In the multiplicative group of scalar Z;, we consider the cyclic group
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User Server
x=(x1,2T2,...,2¢) € {0,1}2 pk,{c; = Encok(a;)} sk € Zg
also seen as an f-bit scalar in Zg

a < Gs, C «— Encpu(ax ag [T a;™)

C »
{: Proof(a, z;) =} D « Decg(C)
If G =1, then abort « G G — gP

R — Gl/a

Fig. 3. Secure oblivious evaluation of the NR-PRF

Gs of order s (this is the group of elements in Z; with Jacobi symbol equals to
+1). In both groups, the DDH assumption can be made.

The PRF key is a tuple a = (ag,ay,...,as) < (G\{1})!, and F,(z) =
g“onafi, where © = (21,29,...,2¢) € {0,1}4. This function has been proven
to be a PRF under the DDH assumption [25] on ¢-bit inputs. It also admits
a simple oblivious evaluation (just the messages C' and G from Fig.3), using
a multiplicatively homomorphic encryption scheme in Gg, such as ElGamal for
(Encpk, Decgy), which allows the computation of C from x, a, and the ciphertexts
{ci }:. Unfortunately, without additional proofs, this is not secure against mali-
cious users, since it works only for honest inputs = € {0, 1}[. Hence the more
involved protocol presented in Fig. 3 that makes use of a zero-knowledge proof
of knowledge of (z;); € {0,1}* and o € G,. This can be efficiently done under
the sole DDH assumption. Whereas our oblivious evaluation of the PRF is in
the standard model, overall, the PPSS protocol based on this OPRF is in the
random-oracle model as it makes use of the RGTSSS. As a consequence, one
could replace the interactive ZK proofs by NIZK proofs “a la Schnorr”. This
would reduce the number of flows to only 2. The full proof of our protocol II
(including the DDH-based OPRF') can be found in the full version [1].

6 Comparisons

We can assume that Plnfo is stored in the Cloud, it does not need to be sent by
each server, then the global communication is linear in n. More precisely, our
first protocol is quite similar to the one from [24]. Of course, we did not provide
any security result in the UC framework [13], but our ultimate goal was the
same as [23]: an efficient robust password-protected secret sharing scheme, in a
BPR-like security model [3]. To this aim, there is no reason to use UC-secure
building blocks, but tailored primitives.

Our algebraic OPRF structure is more efficient than the one in [20], since
their construction makes use of Oblivious Transfers (OT) and expensive public-
key operations. In the online setting, this kind of protocols are almost infeasible,
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as the number of desired OTs is not known in advance while our zero-knowledge
proofs are much simpler to use. Given the work of Ishai et al. [21], a better effi-
ciency can be achieved, considering each OT evaluation at the cost of a private-
key operation. In our case, the main cost in communication is that of a single
zero-knowledge proof.

Our second protocol, based on this oblivious evaluation and with an addi-
tionally CRS turns out to be much more efficient than the one from [23]. Even if
it uses the same Naor-Reingold PRF, the oblivious evaluation is much more effi-
cient and relies on the DDH assumption only. Our full construction only makes
use of ElGamal and Cramer-Shoup encryption schemes, and no Paillier’s encryp-
tion [26] nor Cramer-Shoup signature [15] that require both stronger assump-
tions, such as the strong-RSA assumption and the decisional composite residuos-
ity assumption, and much larger parameters, which lead to huge communication
load. The main reason comes from the relaxation on the OPRF: since we do
not need verifiability of server’s computations, it does not have to make any
zero-knowledge proof, which allows us to use a much more efficient OPRF.
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