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Abstract—In this paper a novel feature extraction technique for micro-
Doppler classification and its real time implementation using SVM on an
embedded low-cost DSP are presented. The effectiveness of the proposed
technique is improved through the exploitation of the outlier rejection
capabilities of the Robust PCA in place of the classic PCA.

Index Terms—Micro-Doppler, Radar, Classification, Embedded Sys-
tems, SVM, Robust PCA.

1. INTRODUCTION

Moving targets illuminated by a radar system introduce frequency
modulations due to the time-varying delay occurring between the
target and the system sensor. The main bulk translation of the target
relative to the sensor induces a frequency shift of the echo as a result
of the Doppler effect. However, the target may contain parts which
have additional movements with respect to the main target motion.
Such movements can contribute frequency modulations around the
main Doppler shift and that are commonly referred to as micro-
Doppler (m-D) modulations. Micro-Doppler can be regarded as a
unique signature of the target and it provides additional information
that is complementary to existing methods for target classification and
recognition. Specific applications include the recognition of space, air
and ground targets. Chen [1], [2f] models the radar m-D phenomenon
and simulates m-D signatures for various targets, such as rotating
cylinders, vibrating scatterers and human targets. The author also
shows that an effective tool in extracting the m-D signature of the
received signal is time-frequency analysis. Recently, novel techniques
and technologies have opened a wider set of applications for micro-
Doppler signatures, such as imaging radar, passive radar and acoustic
micro-Doppler [3|-[6]. For example m-D signatures can be used for
human identification under different weather and lighting conditions.
In particular, specific components of an m-D gait signature can be
related to parts of the body for identification purposes [7[], [8|l. The
motion of human bodies is an articulated locomotion [2]]. The motion
of limbs in a human body can be characterized by a repeated periodic
movement. Walking is a typical human articulated motion and can be
decomposed into a periodic motion in the gait cycle. Various human
movements, such as walking, running, or jumping, have different
body movement patterns. Compared with visual image sequences,
radar micro-Doppler signatures are not sensitive to distance, light
conditions and background complexity, this is advantageous in order
to estimate gait characteristics.

Effective signature extraction techniques have been developed
and tested on real data [8|—[17], providing features which lead to
classification results with a high level of confidence. However, a
feature extraction and classification technique which, at the same
time, is effective and can be implemented for real time applications
on low-cost embedded processing devices has not previously been
proposed in the literature. In addition, in some of the best techniques

proposed to date, in terms of classification rate, the performance
analysis is inaccurate and fails to provide a good estimate of the
classifier. For example, the robust extraction method described in [9]]
for feature vectors invariant to the target average velocity, aspect angle
and initial target phase is shown to yield good results; however, the
analysis provided in the article lacks details and the dependence of
the performance on the training dataset is not analysed. In [14]] and
[16] a template-based approach with interesting results is proposed;
nonetheless, the overall performance of this method does not achieve
very high levels of confidence and further developments are not
proposed. In [13] a simple method for feature extraction from the
time-frequency distribution of the radar return is described, but the
resulting feature vector may contain a high number of components,
making its implementation on low-cost embedded devices difficult.
Moreover, the performance analysis in this case is not rigorous.

The main contribution of this paper is a novel robust feature
extraction method for micro-Doppler signatures that allows real
time implementation on low-cost embedded processing devices. The
proposed method exploits the robust PCA based on the minimum
covariance determinant (MCD) estimator [18]-[22] to improve the
classification performance. Such a novel micro-Doppler classification
algorithm combines high confidence of the classification results
and low memory and power consumption requirements. The second
contribution of the paper is the implementation of the Support Vector
Machine (SVM) classifier on a Texas Instruments TMS320C6713
DSP embedded board [23|], which demonstrates the ability to achieve
classification with high confidence in real time. The proposed system
is tested on real data and a rigorous performance analysis is also
given.

The remainder of the paper is organised as follows. Section
introduces the novel feature extraction algorithm and classification
method and gives details of their DSP embedded implementation.
Section shows the effectiveness of the proposed system with
results on real data, while Section [[V| concludes the paper.

II. MICRO-DOPPLER CLASSIFICATION ALGORITHM

A block diagram of the proposed micro-Doppler classification
algorithm is illustrated in Figure [I] The two branches of the diagram
show the training (left) and the test (right) flow of the data to obtain
the feature vectors (FVs) fed to the SVM classifier. The training data
set is only used to train the SVM. The feature extraction technique
described in the following subsection is also calibrated based on the
training data set for the reduction of the feature dimensionality.

A. Feature extraction method

In order to distinguish the returns from different targets, a synthetic
feature must be obtained. The feature must retain characteristics of the
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Flow diagram of the proposed micro-Doppler classification

original signal, but with a reduced number of components, in order to
have a fast decision from the classifier. For this reason a novel feature
extraction method simpler than those used in other works |]§|], is
proposed. The starting point of such a novel technique is the signal
model s(t) of a target with micro-motion, defined as:

s(0) = pexo { SO  expizmfot - om0

where Ry is the reference distance between the target and the radar, A
is the carrier wavelength, fo is the carrier frequency and fr.p(t) is the
function of the micro-Doppler frequency shift. The discrete version
s(n) of the signal s(t) is obtained by sampling and quantising the
signal in ().

Insert Figure 1 here

As illustrated in Figure[T] the first step is the computation of the Short
Time Fourier Transform (STFT) to obtain information concerning the
variation in time of the frequency content of the signal. An example
of the STFT of the received echoes from a walking person is shown
in Figure Z}a. From such a time-frequency distribution, some details
of the micro-Doppler shift due to the arms and legs moving toward
the radar can be seen in the lower part of the figure, as pointed out by
the arrow, in the range 0 — 300 Hz. Another example of the micro-
Doppler shift can be seen in the STFT illustrated in Figure [2}b, for
a group of running people.

Insert Figure 2 here

From the STFT, the Mean Frequency Profile (MFP) is computed as
the mean along the time axis of the absolute value for each frequency
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Figure 2. STFT (logarithm scaled) of the radar return in Ku band (16.8
GHz) from (a) a walking person and (b) a group of running people in Ku
band (16.8 GHz).
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where M is the number of time instants (columns) of the STFT and L
is related to the number of DFT points. The MFP highlights important
aspects of the time-frequency representation of a target, that can be
exploited to distinguish between different targets. In this context there
are two main characteristics in the MFP. The first, is the location of
the frequency peak. The three targets’ cadence can be distinguished
from the peak location. For crawling movement, the peak frequency
is relatively low, while for running it is much higher. The walking
movement corresponds, therefore, to an intermediate frequency. The
second characteristic is based on the width to the frequency peak. In
order to discriminate among one person and a group of people, the
fact that a group of persons will exhibit different velocities for the
different moving parts of each subject can be exploited. This effect
results in the broadening of the instantaneous Doppler bandwidth, on
the MFP it will appear as a wider main peak.

The MFP extracts these two characteristics, assuming a relatively
constant cadence in the target’s movement over windows of time be-
tween 0.5 and 4 seconds. In that sense, partial frequency information
such as that related to the movement of different and specific parts
of the body (arms, legs) may be mostly lost in the MFP average, as
their contribution can be discarded.

Insert Figure 3 here

Examples of the MFPs from the STFTs illustrated in Figure P}a and
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Figure 3. Mean Frequency Profiles from the STFT analysis shown in Figure
P}a and Figure 2}b.

lb are shown in Figure 3] The discriminating characteristics of the
micro-Doppler signature of the different targets can be appreciated.

As the feature vector M F'P(v) contains a high number of compo-
nents, its direct application would increase the computational burden
of the classification stage. For this reason the number of components
needs to be reduced, while retaining the good discrimination property
of the features. A solution is found in the Principal Component
Analysis (PCA) [24], to extract a reduced set of components from
the feature vector. In addition, the PCA de-correlates the components
of the feature vector and so it increases the significance of each
component, while reducing redundancy. This means that the same
amount of information can be obtained with a smaller feature set.

However dealing with real data can imply the presence of unex-
pected observations within the data to be processed by the PCA, with
the estimation of the transformation matrix being influenced by these
outliers. This causes an incorrect projection of the data along the
principal components, which results in an incorrect de-correlation of
the different features.

To solve this problem the PCA is replaced with a Robust PCA
(RPCA) based on the Minimum Covariance Determinant (MCD)
estimator [[19], [20]. The first step to reduce the effect of outliers is to
identify and discard them, in the estimation of the covariance matrix
used by PCA to re-project the data. One way to identify possible
multivariate outliers is to calculate a distance of each point from the
“centre” of the data. An outlier would be a point with a distance
larger than some predetermined threshold. The Minimum Covariance
Determinant provides a highly robust estimate of multivariate location
and scatter that can eliminate up to 50% of the data as outliers [20].
In other words, it attempts to use only the reliable part of the sample
rejecting up to 50% the data as anomalies that would corrupt the
covariance matrix. The MCD estimator is therefore better than other
robust estimators, as it is more precise in evaluating robust distances
and then in detecting outliers.

As for conventional PCA, the Robust PCA also uses the eigenvalue
decomposition (EVD) [24] to diagonalise the robust covariance
matrix C of the data and obtain a transformation matrix as:

Cc=vDVT v eRr¥*? 3)

The transformation matrix V by which the M F'P(v) is reduced to
the effective feature vector F, is obtained offline from the training
samples only and then it is used for both the data reduction of the
training and testing samples. To illustrate the advantages of RPCA
over PCA, the scatter plots for components 2 and 10 of real micro-
Doppler data over 238 observations of real Ku-band data of different
classes are shown in Figure @}a and [@}b, using PCA and RPCA
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Figure 4. Scatter plots of 2 principal components for 238 observations of
real micro-Doppler radar data using the (a) PCA and (b) Robust PCA.

respectively.

Insert Figure 4 here

In Figure @b it is clear that the RPCA is able to project the data
on two orthogonal axes, while the PCA fails.

Therefore the M F'P(v) is reduced in dimension using the RPCA,
from L to a subset of ) components, finally obtaining the feature
vectors F as in @):

F = PCAQ(MFP(v)) FecR® “)

where PC' Ag() represents the operator that projects the data over
the first ) principal components.

Insert Figure 5 here

In Figure 5] an example of the obtained feature vector, relative one
person walking, is shown by applying the proposed technique to
the MFP illustrated in Figure [3] . Despite the reduced number of
components, the characteristic features are still visible, therefore
preserving the discrimination between different classes.

The last stage of the feature extraction method includes the
normalisation of the feature vectors F' by zero mean and unit variance
range in order to obtain scaled features F. This stage is required to
ensure the best performance of the SVM classifier. The normalisation
parameters (1, 0>) again are obtained from the training samples.
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The novel technique proposed here is not only much simpler than
those presented in literature [7]], [9]], [[14], but also achieves similar
accuracy in SVM classification of real radar data, with fewer require-
ments in memory usage for the extraction and classification in real
time, therefore being especially appropriate for embedded systems.

An important aspect is the choice of the training data, as they are
used not only for the training of the SVM, but also for the dataset
reduction transformation matrix and for the normalisation values. In
Section[MI|it is demonstrated through a Monte Carlo analysis [25] that
the proposed technique provides good results across a broad range
of training datasets.

B. Embedded implementation of SVM

In order to implement a real time classification system exploiting
the proposed extraction technique, the low-cost floating-point DSP
board TMS320C6713 DSK from Texas Instruments [23]] has been
used. The TMS320C6713 is a Digital Signal Processor with a two-
level cache-based architecture and it can execute multiple instructions
per cycle, to deliver up to 1350 million floating-point operations per
second. This DSP has a large set of peripherals, such as multichannel
audio and general-purpose input and output pins, and it implements
the Real Time Data eXchange (RTDX) protocol [26], [27] to transfer
data to and from external devices. Despite being a high-performance
DSP, the TMS320C6713 is low-cost and also exhibits low power
consumption, making it ideal for embedded applications in small
portable devices. In the context of the system described in this paper,
the RTDX protocol is used to send testing samples from a Matlab
environment running on the host computer to the DSP, to evaluate
the embedded classification system in real time. The DSP processor
is able to compute the output of the classification in less than one
second, displaying the result both on the host display and on the
on-board LEDs, or by saving it to file on the host computer.

The starting point for the implementation of the SVM classifier
is the SVMlight software package [28], adopting the so-called One
Against All (OAA) approach [29]. The algorithms from this library
have been implemented and tested on the DSK board using C#
language, leading to exactly the same results obtained on a computer
[30].

Once again it must be noticed that before feeding the test points to
the SVM classifier, all the samples are normalised by the parameters
obtained during the offline training process and therefore they only
depend on the training samples. This is an important difference in

relation to other works [9], [[13]] that seem to ignore this consideration;
whilst this assumption can lead to better results it is not realistic in
practice.

III. RESULTS

The proposed system has been tested with real Ku band radar
data [31]-[33]. Each sample has been selected from a different
record.Each acquisition has a duration of 4 seconds, for the different
classes a different number of acquisitions was performed. From each
acquisition, a maximum of 4 seconds could be used. In addition
the system has also been tested with shorter acquisition times of
2, 1 and 0.5 seconds respectively. The choice of different time
window lengths is important to evaluate the algorithm performance
for different durations of the acquisition process. In particular, it is
expected to have an inferior classification performance in the case
of shorter acquisitions. However, for some applications a trade-off
between acquisition time length and classification accuracy could be
required.

Attention has been focused on 5 different classes of data, including
in the same class the case of a target moving toward and away from
the radar location. A summary of the classes and acquisitions is
reported below for a total of 238 acquisitions:

o Class 1. Person running toward/away from the radar (240 s, 60

samples);

o Class 2. Person walking toward/away from the radar (240 s, 60

samples);

o Class 3. Person crawling (72 s, 18 samples);

o Class 4. Group of people running toward/away from the radar

(200 s, 50 samples);
¢ Class 5. Group of people walking toward/away from the radar
(200 s, 50 samples);
From all the available samples, 70% are used for training, while the
other 30% are used for testing. In order to characterise statistically
the classifier and its performance, a Monte Carlo approach has been
applied, using different selections of the training and test sets of
the data chosen randomly for each class . To obtain an estimation
of the statistics of the performance of the classifier, 50 different
experimental cases have been evaluated, reporting the mean, standard
deviation, maximum and minimum values.

The STFT is implemented with 256 points for the FFT, i.e.
N = 256, and a Hamming window of the same length (W = 256),
with 50% overlap. This small number for N leads to less com-
putational complexity. The choice of N is a parameter dependent
on the acquisition system (i.e. Pulse Repetition Frequency) and the
expected time dynamic of the targets (i.e. humans, animals rather
than helicopters). Once the mean frequency profiles are obtained, the
next step is to apply the RPCA in order to extract the main features
representing the profile. An important parameter in the RPCA based
on the MCD is the maximum percentage of data that are not assumed
to be outliers, this parameter is indicated as h. The value of h can be
selected between 0.5 and 1, where 0.5 is the worst case that can be
handled by the MCD, i.e. assuming as outliers half of the data. For
the reported tests the value of A = 0.6L has been used, assuming a
high number of outliers. This assumption is restrictive, but realistic
for a noisy scenario. Despite this assumption, the proposed approach
still provides good results. Increasing the value of h (for example
0.7) produces slightly better results; however, in order to present a
robust algorithm, it has been decided to assume the value of h which
is able to deal with a very noisy scenario.

For the analysis, 50 randomly selected sequences of training and
testing data from the different classes have been considered, being
evaluated for each of the 4 duration lengths (4, 2, 1, 0.5 s) and 5
choices of components (10, 20, 30, 40, 50).



A summary is reported in Table [[] and Table [l where the results
obtained for the classification of the micro-Doppler signatures are
presented for both the PCA and the RPCA approaches. In both cases
a high success rate is obtained, in the same order or better than that
obtained on the same dataset in other works [9], [13]. As expected,
the success rate increases with the acquisition length and with the
number of components. However the performance saturates with the
number of components, as it can be seen from the results using
more than 20 components does not introduce performance benefits.
This can be explained with the fact that the useful discriminating
information has been already included in the first 20 components
and no additional information is present in other signal components.
From the results it can be seen how the features extracted using the
RPCA produce results better or aligned with those obtained with
the PCA-based approach. In particular it can be seen how, with the
same number of components, the RPCA outperforms the PCA-based
approach. For example using 10 components only the RPCA always
obtains a higher success rate than the PCA. This implies that the
same performance can be obtained with fewer components and less
complexity. As described before, the use of the RPCA introduces a
higher computational cost only at the training stage, meaning that the
use of the RPCA instead of the PCA introduces a cost-free benefit
on the real time classifier.

Table IIT
CONFUSION MATRIX (%) FOR THE 4 SECONDS ACQUISITION OVER 50
TESTS USING THE ROBUST PCA WITH 60% OF VALID SAMPLES OF THE

MFP(v)s.
Class #

1 2 3 4 5
*® 1 9367 0.11 2.67  3.56 0
w 2 0 93.22 1.56 0 5.22
& 3 004 0 99.6 0 0
O 4 293 0 0.26 96.8 0
5 0 3.6 2 0 94.4

In Table [[T]] the average confusion matrix (relative) obtained using
the RPCA approach on the proposed features for the case of 4 s
of observation and 40 components is shown. The confusion matrix
shows that the classifier mis-classifies in particular between classes
2 and 5 (Person walking and Group of people walking); and between
the classes 1 and 4 (Person running and Group of people running).
The explanation for this error can be found in the normalisation of the
feature vector. This operation removes the relative amplitude due to
the presence of multiple targets. However this operation dramatically
increases the SVM performance in general. This aspect can be object
of future investigations.

Compared with the results on the same datasets obtained in [9] and
in [[17], the results reported above are in the same order of accuracy,
but the analysis presented in this paper is more comprehensive. In
addition the computational burden is reduced as in [9] the Singular
Value Decomposition is performed on the acquired data to obtain
the feature vector. In [17] an instantaneous frequency analysis com-
bined with a multiplicative multi-resolution descriptor approach is
proposed. In this paper the best classification results was 93% for
the 4 s samples. In this particular case the performances of the new
algorithm presented is on average over 94% reaching 100% in some
cases outperforming the results presented in [[17].

The second goal of the presented work is to obtain a classification
system that can produce accurate results in real time. This would
allow the exploitation of the classifier output for real time Automatic
Target Recognition (ATR) and to support decision making systems.
In order to show that a real time classification can be obtained, the

time required for the system to produce the classification output,
once the radar echo is acquired, has been estimated. Figure [f]
shows the average time taken by the entire algorithm to produce
the classification output. It can be seen that the computational time
grows linearly with the acquisition time (0.5, 1, 2 and 4 s) and
with the number of components used (10, 20, 30, 40 and 50). For
all the tested acquisition lengths and number of components the
classification output is obtained in less than 50 ms, with a minimum
in the order of 20 ms for the 10 component case; with this result
it can be claimed that the system presented in this paper is able
to provide real time classification of targets based on their micro-
Doppler signature.

Insert Figure 6 here
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Figure 6.  Average timing measurements over 50 tests for the 0.5, 1, 2, and
4 seconds acquisitions and 10, 20, 30, 40, 50 components.

IV. CONCLUSIONS

In this paper a novel approach for real time micro-Doppler clas-
sification has been proposed. The new feature extraction algorithm
presents more robust features with respect to the current state-of-the
art. The algorithm is simple to implement, robust with respect to the
presence of outliers in real data and suitable for implementation on
low-cost signal processing devices. The robustness of the algorithm is
increased by the use of the MCD estimator to obtain a Robust PCA
in order to reduce the dimension of the final feature vectors. This
aspect allows dimensionality reduction of the feature vectors whilst
preserving the discriminating information among the different classes
and maintaining the performance obtainable with a higher number of
features. The feature vectors have then been used to train and test a
SVM embedded on a Texas Instruments TMS320C6713 DSK. The
proposed algorithm has been tested on real data and the performance
of the classification have been characterised through Monte Carlo
analysis. The results show the effectiveness of the proposed approach
which produces high probability of correct classification. In addition
the DSP board allows real time classification of the received echoes.
This aspect is in accordance with the requirements of modern defence
systems which includes high accuracy, combined with reduction of
costs and power.
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Figure 1: Flow diagram of the proposed micro-Doppler classi-
fication algorithm.

Figure 2: STFT (logarithm scaled) of the radar return in Ku
band (16.8 GHz) from (a) a walking person and (b) a group of
running people in Ku band (16.8 GHz).

Figure 3: Mean Frequency Profiles from the STFT analysis
shown in Figure P}a and Figure [2}b.

Figure 4: Scatter plots of 2 principal components for 238
observations of real micro-Doppler radar data using the (a) PCA
and (b) Robust PCA.

Figure 5: Feature vector reduced in components.

Figure 6 :Average timing measurements over 50 tests for the
0.5, 1, 2, and 4 seconds acquisitions and 10, 20, 30, 40, 50
components.
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