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Abstract

Applied researchers often test for the difference of the variance of two investment strate-

gies; in particular, when the investment strategies under consideration aim to implement

the global minimum variance portfolio. A popular tool to this end is the F -test for the

equality of variances. Unfortunately, this test is not valid when the returns are correlated,

have tails heavier than the normal distribution, or are of time series nature. Instead, we

propose the use of robust inference methods. In particular, we suggest to construct a stu-

dentized time series bootstrap confidence interval for the ratio of the two variances and to

declare the two variances different if the value one is not contained in the obtained inter-

val. This approach has the advantage that one can simply resample from the observed data

as opposed to some null-restricted data. A simulation study demonstrates the improved

finite-sample performance compared to existing methods.
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1 Introduction

Many applications of financial performance analysis are concerned with the comparison of the

variance of two investment strategies (such as stocks, portfolios, mutual funds, hedge funds, or

technical trading rules). This is of particular interest when the investment strategies aim to

implement the global minimum variance (GMV) portfolio. The GMV portfolio has received

much renewed interest in the recent literature; for example, see Jagannathan and Ma (2003),

Kempf and Memmel (2006), Garlappi et al. (2007), Elton et al. (2008), DeMiguel et al. (2009a),

DeMiguel et al. (2009b), Candelou et al. (2010), and Güttler and Trübenbach (2010).

Since the true quantities are not observable, the variances have to be estimated from

historical return data and the comparison has to be based on statistical inference, such as

hypothesis tests or confidence intervals. The most popular test for equality of variances is

the classical F -test; for example, see Mood et al. (1974, Section IX.4.4). However, this test

requires the data to come from a bivariate normal distribution with correlation zero and to be

independent over time. This joint requirement is basically never met for financial returns.

In this paper, we discuss inference methods that are more generally valid. One possibility is

to compute a HAC standard error1 for the difference of the estimated variances by the methods

of Andrews (1991) and Andrews and Monahan (1992), say. Such an approach works asymp-

totically but does not always have satisfactory properties in finite samples. As an improved

alternative, we suggest a studentized time series bootstrap.

2 The Problem

We use the same notation as Jobson and Korkie (1981), Memmel (2003), and Ledoit and Wolf

(2008) who study the related problem of testing for equality of two Sharpe ratios. There are

two investment strategies i and n whose returns at time t are rti and rtn, respectively.2 A total

of T return pairs (r1i, r1n)′, . . . , (rT i, rTn)′ are observed. It is assumed that these observations

constitute a strictly stationary time series so that, in particular, the bivariate return distribu-

tion does not change over time. This distribution has mean vector µ and covariance matrix Σ

given by

µ =

(

µi

µn

)

and Σ =

(

σ2

i σin

σin σ2
n

)

.

The usual sample means and sample variances of the observed returns are denoted by µ̂i, µ̂n

and σ̂2

i , σ̂
2
n, respectively. The ratio of the two variances is given by

Θ =
σ2

i

σ2
n

1In this paper, a standard error of an estimator denotes an estimate of the true standard deviation of the

estimator.
2Strictly speaking, the previously mentioned works consider excess returns over a given benchmark. This

more general scenario also suits our set-up by choosing the benchmark to be zero.
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and its estimator is

Θ̂ =
σ̂i

σ̂n
.

The hypotheses of interest are

H0 : Θ = 1 vs. H1 : Θ 6= 1 . (1)

The classical F -test is based on the following test statistic

F =
σ̂2

i

σ̂2
n

.

Denote by Fλ,k1,k2
the λ quantile of Fk1,k2

, the F distribution with k1 and k2 degrees of freedom.

The F -test rejects H0 at significance level α if and only if (iff)

F < Fα/2,T−1,T−1 or F > F1−α/2,T−1,T−1 .

Crucially, this test requires that the data come from a bivariate normal distribution with

σin = 0 and be independent over time. If the data are correlated in the sense of σin 6= 0, have

tails heavier than the normal distribution, or are dependent over time, the test is not valid, not

even in an asymptotic sense. Since financial data exhibit generally at least one of these three

violations, one should not use the F -test when testing the equality of variances of investment

strategies.

3 Solutions

The exposition in this chapter follows closely Ledoit and Wolf (2008, Chapter 3).

We start by re-formulating the testing problem. Define

∆ = log(Θ) = log(σ2

i ) − log(σ2

n)

with sample counterpart

∆̂ = log(Θ̂) = log(σ̂2

i ) − log(σ̂2

n) .

Then the testing problem (1) is equivalent to the following one

H0 : ∆ = 0 vs. H1 : ∆ 6= 0 . (2)

The purpose of the log-transformation is to conduce better finite-sample properties of our pro-

posed inference methods by means of being a variance-stabilizing transformation; for example,

see Efron and Tibshirani (1993, Section 12.6).

Let γi = E(r2

1i) and γn = E(r2
1n). Their sample counterparts are denoted by γ̂i and γ̂n,

respectively. Furthermore, let v = (µi, µn, γi, γn)′ and v̂ = (µ̂i, µ̂n, γ̂i, γ̂n)′. This allows us to

write

∆ = f(v) and ∆̂ = f(v̂) (3)
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with

f(a, b, c, d) = log(c − a2) − log(d − b2) . (4)

We assume that √
T (v̂ − v)

d→ N(0;Ψ) , (5)

where Ψ is an unknown symmetric positive semi-definite matrix. This relation holds under mild

regularity conditions. For example, when the data are assumed i.i.d., it is sufficient to have

both E(r4

1i) and E(r4

1n) finite. In the time series case it is sufficient to have finite 4+δ moments,

where δ is some small positive constant, together with an appropriate mixing condition; for

example, see Andrews (1991). The delta method then implies

√
T (∆̂ − ∆)

d→ N
(

0;∇′f(v)Ψ∇f(v)
)

(6)

with

∇′f(a, b, c, d) =

(

− 2a

c − a2
,

2b

d − b2
,

1

c − a2
, − 1

d − b2

)

.

Now, if a consistent estimator Ψ̂ of Ψ is available, then a standard error for ∆̂ is given by

s(∆̂) =

√

∇′f(v̂)Ψ̂∇f(v̂)

T
. (7)

3.1 HAC Inference

As is well-known, Ψ can be consistently estimated by heteroskedasticity and autocorrelation

consistent (HAC) kernel methods. For details, the reader is referred to Ledoit and Wolf (2008,

Subsection 3.1). Given the kernel estimator Ψ̂, the standard error s(∆̂) is obtained as in (7)

and then combined with the asymptotic normality (6) to make HAC inference as follows.

A two-sided p-value for the null hypothesis H0: ∆ = 0 is given by

p̂ = 2Φ

(

− |∆̂|
s(∆̂)

)

,

where Φ(·) denotes the c.d.f. of the standard normal distribution. Alternatively, a 1 − α

confidence interval for ∆ is given by

∆̂ ± z1−α/2 s(∆̂) ,

where zλ denotes the λ quantile of the standard normal distribution.

It is, however, well established that such HAC inference is often liberal when samples sizes

are small to moderate. This means hypothesis tests tend to reject a true null hypothesis too

often compared to the nominal significance level and confidence intervals tend to undercover;

for example, see Andrews (1991), Andrews and Monahan (1992), Romano and Wolf (2006),

and Ledoit and Wolf (2008).

4



3.2 Bootstrap Inference

There is an extensive literature demonstrating the improved inference accuracy of the stu-

dentized bootstrap over ‘standard’ inference based on asymptotic normality; see Hall (1992)

for i.i.d. data and Lahiri (2003) for time series data. Very general results are available for

parameters of interests which are smooth functions of means. Our parameter of interest, ∆,

fits this bill; see (3) and (4). Taking into account our specific definitions of ∆, f(·), and ∇f(·),
the actual implementation of the bootstrap inference is identical to the one of Ledoit and Wolf

(2008, Section 3.2). So the reader is referred there for the details.

In particular, the test at significance level α is carried out by constructing a two-sided

symmetric bootstrap confidence interval for ∆ with confidence level 1 − α and rejecting H0

iff ∆0 = 0 is not contained in the interval. The advantage of this ‘indirect’ test by inverting

a confidence interval is that one can simply resample from the observed data. A ‘direct’ test,

on the other hand, would require one to bootstrap from a null distribution where the two

variances are indeed equal.

This approach is equivalent to constructing a two-sided bootstrap confidence interval for Θ

and rejecting H0 iff Θ0 = 1 is not contained in the interval. Here, the bootstrap confidence in-

terval for Θ is obtained by simply applying the exponential transformation to the two endpoints

of the bootstrap confidence interval for ∆; see Efron and Tibshirani (1993, Section 12.6).3

In addition to carrying out a test at fixed significance level α, it is also very easy to

compute bootstrap p-values, an approach which some researchers might find more informative;

see Remark 3.2 of Ledoit and Wolf (2008).

4 Simulation Study

The purpose of this section is to shed some light on the finite sample performance of the

various methods via some (necessarily limited) simulations. We compute empirical rejection

probabilities under the null, based on 5,000 simulations per scenario. The nominal levels

considered are α = 0.01, 0.5, 0.1. All bootstrap p-values are computed employing M = 499

resamples. The sample size is T = 120 always.4

4.1 Competing Methods

The following methods are included in the study:

• (F) The classical F -test.

• (HAC) The HAC test of Subsection 3.1 based on the QS kernel with automatic band-

width selection of Andrews (1991).

3The resulting bootstrap confidence interval for Θ will also be two-sided but, generally, no longer symmetric.
4Many empirical applications use ten years of monthly data.
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• (HACPW ) The HAC test of Subsection 3.1 based on the prewhitened QS kernel with

automatic bandwidth selection of Andrews and Monahan (1992).

• (Boot-IID) The bootstrap method of Subsection 3.2.1 of Ledoit and Wolf (2008).

• (Boot-TS) The bootstrap method of Subsection 3.2.2 of Ledoit and Wolf (2008). We

use their Algorithm 3.1 to pick a data-dependent block size from the input block sizes

b ∈ {1, 2, 4, 6, 8, 10}. The semi-parametric model used is a VAR(1) model in conjunction

with bootstrapping the residuals. For the latter we employ the stationary bootstrap of

Politis and Romano (1994) with an average block size of 5.

4.2 Data Generating Processes

In all scenarios, we want the null hypothesis of equal variances to be true. This is easiest

achieved if the two marginal return processes are identical.

We start with i.i.d. bivariate normal with equal variance one and within-pair correlation

chosen as ρ = 0.5. The assumptions of normality and independence over time are gradually

relaxed. In total, we consider the same six data generating processes (DGPs) as Ledoit and

Wolf (2008, Section 4).

4.3 Results

The results are presented in Table 1 and summarized as follows:

• Not surprisingly, the F -test does not work for any DGP, as its joint requirement of

zero-correlation bivariate normal data which are independent over time is never met.

Depending on the DGP, the inference can be conservative or liberal, sometimes by a

large amount.

• HAC inference, while asymptotically consistent, is generally liberal in finite samples.

This finding is consistent with many previous studies; e.g., see Romano and Wolf (2006),

Ledoit and Wolf (2008), and the references therein.

• Boot-IID works well for i.i.d. and GARCH data, but is liberal for VAR data.

• Boot-TS works well for all DGPs.

Remark 4.1 We also included HAC and HACPW based on the (prewhitened) Parzen kernel

instead of the (prewhitened) QS kernel. The results were virtually identical and are therefore

not reported. Since the Parzen kernel has a finite support while the QS kernel does not, it is

somewhat more convenient to implement; for example, see Andrews (1991).
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5 Conclusion

Testing for the equality of the variances of two investment strategies is an important tool for

performance analysis; it is of particular relevance when the two strategies aim to implement

the global minimum variance portfolio. A common tool is the classical F -test. Unfortunately,

this test is not robust against tails heavier than the normal distribution, non-zero correlation

of strategies’ returns during common return periods, and time series characteristics. Since all

three effects are quite common with financial returns, the F -test should not be used.

We have discussed alternative inference methods which are robust. HAC inference uses

kernel estimators to come up with consistent standard errors. The resulting inference works well

with large samples but is often liberal for small to moderate sample sizes. In such applications,

it is preferable to use a studentized time series bootstrap. Arguably, this procedure is quite

complex to implement, but corresponding programming code will be made freely available at

http://www.iew.uzh.ch/home/wolf.
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Table 1: Empirical rejection probabilities (in percent) for various data generating processes

(DGPs) and inference methods; see Section 4 for a description. For each DGP, the null

hypothesis of equal variances is true and so the empirical rejection probabilities should be

compared to the nominal level of the test, given by α. We consider three values of α, namely

α = 1%, 5% and 10%. All empirical rejection probabilities are computed from 5,000 repetitions

of the underlying DGP, and the same set of repetitions is shared by all inference methods.

DGP F HAC HACPW Boot-IID Boot-TS

Nominal level α = 1%

Normal-IID 0.2 1.2 1.4 0.9 0.9

t6-IID 4.2 1.5 1.7 0.8 0.8

Normal-GARCH 0.4 1.4 1.3 1.0 0.9

t6-GARCH 0.3 1.5 1.5 1.0 1.0

Normal-VAR 0.5 2.1 2.0 1.6 0.9

t6-VAR 3.8 2.1 2.0 1.1 1.0

Nominal level α = 5%

Normal-IID 2.4 6.1 6.1 5.1 4.9

t6-IID 11.5 6.8 7.0 4.9 4.7

Normal-GARCH 2.1 5.4 5.5 5.0 4.8

t6-GARCH 2.4 5.7 5.9 5.1 5.0

Normal-VAR 3.1 7.2 6.7 6.4 4.8

t6-VAR 10.9 6.9 6.5 5.3 4.9

Nominal level α = 10%

Normal-IID 5.9 11.3 11.1 10.2 9.8

t6-IID 18.3 11.4 10.4 10.1 9.7

Normal-GARCH 5.6 10.8 11.0 10.2 10.1

t6-GARCH 6.0 10.9 11.2 10.1 9.8

Normal-VAR 7.3 12.4 11.7 12.0 9.9

t6-VAR 17.8 12.4 12.0 10.2 10.0
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