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Abstract--Decentralized control systems have fewer tuning 
parameters, are easier to understand and retune, and are 
more easily made failure tolerant than general multivariable 
control systems. In this paper the decentralized control 
problem is formulated as a series of independent designs. 
Simple bounds on these individual designs are derived, which 
when satisfied, guarantee robust performance of the overall 
system. The results provide a generalization of the 
/,-interaction measure introduced by Grosdidier and Morari 
(Automatica, 22, 309-319 (1986)). 

1. Introduction 
Robust performance. The goal of any controller design is 

that the overall system is stable and satisfies some minimum 
performance requirements. These requirements should be 
satisfied at least when the controller is applied to the nominal 
plant (G), that is, we require nominal stability (NS) and 
nominal performance (NP). In addition, when a decentral- 
ized controller is used, it is desirable that the system be 
failure tolerant. This means that the system should remain 
stable as individual loops are opened or closed. 

In practice the real (or "perturbed") plant G v is not equal 
to the model G. The term "robust" is used to indicate that 
some property holds for a set II of possible plants Gp a s  

defined by the uncertainty description. In particular, by 
robust performance (RP) we mean that the performance 
requirements are satisfied for all Gp ¢II.  Mainly for 
mathematical convenience, we choose to define performance 
using the H®-norm. Define 

NP¢~ 6(Y.) -< I, Vto (la) 

RPC~6(Zp)<I, Vto, VGpen.  (lb) 

In most cases X is the weighted sensitivity operator 

X = W, SW2, S = (I + GC) -1 (2a) 

Xp = W, SpW2, Sp = (I + GpC)-'. (2b) 

The input weight W 2 is often equal to the disturbance model. 
The output weight W l is used to specify the frequency range 
over which the sensitivity function should be small and to 
weight each output according to its importance, and C is 
defined in the next section. 

The definition of Robust Performance is of no value 
without simple methods to test if conditions like (lb) are 
satisfied for all Gp in the set Fl of possible plants. Doyle et aL 
(1982) have derived a computationally useful condition for 
(lb) involving the Structured Singular Value/~ (/A is defined 
in the Appendix). To use /~ we must model the uncertainty 
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(the set II of possible plants Gp) as norm bounded 
perturbations (Ai) on the nominal system. Through weights 
each perturbation is normalized to be of size one: 

O(A,)<_ 1, Vo,. (3) 

The perturbations, which may occur at different locations in 
the system, are collected in the diagonal matrix Au (the 
subscript U denotes uncertainty) 

A U = diag (A I . . . . .  An} (4) 

and the system is rearranged to match the structure in Fig. I. 
The interconnection matrix M in Fig. I is determined by the 
nominal model (G), the size and nature of the uncertainty, 
the performance specifications and the controller. For Fig. I 
the robust performance condition (Ib) becomes (Doyle et 
al., 1982) 

RPc~/A(M) < 1, Vto (5) 

where/*(M) depends on both the elements in the matrix M 
and the structure of the perturbation matrix A =  
diag {A u, Ap}. Sometimes this is shown explicity by using 
the notation/,(M)--/*a(M). Ap is a full square matrix with 
dimension equal to the number of outputs (the subscript P 
denotes performance). In addition to satisfying (5), the 
system must be nominally stable (i.e. M is stable). Also note 
that within this framework, the issue of robust stability (RS) 
is simply a special ease of robust performance. 

Decentralized control. Decentralized control involves 
using a diagonal or block-diagonal controller (see Fig. 2) 

C = diag {ct}. 

Some reasons for using a decentralized controller are 
• tuning and retuning is simple 
• they are easy to understand 
• they are easy to make failure tolerant. 
The design of a decentralized control system involves two 
steps. 
(A) Choice of pairings (control structure). 
(B) Design of each SISO-controiler c i (or block). 
The best way to proceed for each of these steps is still an 
active area of research. The RGA (Bristol, 1966) has proven 
to be an efficient tool for eliminating undesirable pairings in 

li9 

A 

Fxo. 1. General structure for studying effect of uncertainty 
(Au) on stability or performance. M is a function of the 
plant model (G) and the controller, a~: external in- 
puts (disturbances, reference signals), 0: external outputs 

(weighted errors y - r), ~ = Xpd. 
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FiG. 2. Decentralized control structure. 

Step A. This paper deals with Step B. Two design methods 
which may be applied for this step are (1) sequential 
loop-closing and (2) independent design of each loop. 

(1) Sequential loop-closing. This design approach [e.g. 
Mayne (1973)] involves designing each element (or block) in 
C sequentially. Usually the controller corresponding to a fast 
loop is designed first. This loop is then closed before the 
design proceeds with the next controller. This means that the 
information about the "lower-level" controllers is directly 
used as more loops are closed. The final step in the design 
procedure is to test if the overall system satisfies the 
RP-condition (5). The main disadvantages of this design 
method are as follows. 
• Failure tolerance is not guaranteed when "lower-level" 

loops fail. 
• The method depends strongly on which loop is designed 

first and how this controller is designed. 
• There are no guidelines on how (and in which order) to 

design the controllers for each loop in order to guarantee 
robust performance of the overall system. Therefore the 
design proceeds by "trial-and-error". 

(2) Independent design of each loop. This is the design 
approach used in this paper. In this case each controller 
element (or block) is designed independently of the others. 
We present a procedure for these designs which guarantees 
robust performance of the overall system. The proposed 
method has the following advantage. 
• Failure tolerance: nominal stability (of the remaining 

system) is guaranteed if any loop fails. 
• Each controller is designed directly with no need for 

trial-and-error. 
The main limitation of the approach is the assumption of 
independent designs, which means that we do not exploit 
information about the controllers used in the other loops. 
Therefore the derived bounds are sufficient and not 
necessary for robust performance. 

Problem definition. This paper addresses the following 
problem: let G denote the diagonal (or block-diagonal) 
version of the plant corresponding to the chosen structure of 
C (i.e. G is found from G by deleting the off-diagonal 
elements). Assume that uncertainty and "interactions" are 
neglected when designing the controller C, that is, design 
each element (or block) of C independently based on the 
information contained in (~ only. What constraints have to 
be placed on individual designs in order to guarantee 
robust performance of the overall system (which can be any 
plant Gp from the set H)? 

The constraints on the individual designs are chosen to be 
in terms of bounds on Ih~l and Igll where h~ and sl are the 
closed-loop transfer functions for loop i: 

hi = glici(1 + giici ) 1, /~ = diag {/~} (6a) 

g~ = (1 +g,c~) -~, S = diag {gi}. (6b) 

[In general, if C is block-diagonal, f% g~ and g~, are matrices 
corresponding to the block-structure of C, and [hd and I.f d 
are replaced by O(/-I/) and 0(~).] 

We solve the decentralized problem as defined above, by 
deriving the tightest possible bounds on 

0(/4) = max I/~1 and O(S) = max Igal 

which guarantee robust performance: 

RP ~ 0(/'t) < EH or O(S) < Cs, Vco. (7) 

In addition to satisfying (7) the system has to be nominally 
stable. The #-interaction measure, introduced by Grosdidier 
and Morari (1986), gives a sufficient condition for nominal 
stability: 

NS,~-O(I:I)<-#c(En), Vco, E . = ( G - G ) ( ~  I (8) 

(# is computed with resp~_ct to the structure of C which is 
equal to the structure of G, /4 and S). This paper provides a 
generalization of the #-interaction measure from the case of 
nominal stability (NS) to the case of robust performance 
(RP). The results derived here also apply to robust stability 
(RS) or nominal performance (NP) if the #-condition (5) is an 
RS- or NP-condition rather than an RP-condition. 
Notation 

The most important notation is summarized below. 

G - model of the plant. 

= diag {g,) (corresponding to structure of C). 

Gp =f(G, Au), Au: uncertainty, Gp = G when A u = 0. 

= (I + (~C)- 1, /4 = I - 

S=(I+GC) 1, H = I - S  

Sp=(I+GpC)-', Hp=I-Sp.  

Stability of individual loops ¢:> /-) (and S) is stable. 
NSC::,H (and S) is stable (overall system stable with no 

uncertainty). 

RS ¢:~Hp (and Se) is stable (for all Gp e [I). 

NP ¢~ S satisfies the performance specification. 

satisfies the performance specification (for all 
RP ¢ ~ p  E H). 

2. Nominal stability (of H and S) 
To apply the general robust performance condition 

#(M) < 1 in equation (5) we must require that the system is 
nominally stable, that is, that the interconnection matrix M is 
stable. Nominal stability is satisfied if H (and S) is stable. 
However, note that nominal stability (i.e. stability of H and 
S) is not necessarily implied by the stability of the individual 
loops (i.e. stability of H and S). The "interactions" 
(difference between G and (~) may cause stability problems 
as discussed by Grosdidier and Morari (1986). If either one 
of the following conditions on 0(/-/) and O(S) is satisfied, 
then the stability of /~  (or S) implies nominal stability. 

Condition 1 for NS (Grosdidier and Morari, 1986). 
Assume/4 is stable (each loop is stable by itself), and that G 
and G have the same number of RHP (unstable) poles. Then 
H is stable (the system is stable when all loops are closed) if 

O(/'~) ~ #C I ( E . ) ,  Vo) (10) 

where 

E . = ( G - & ) ( ~  ~1. (11) 

#c(En) is the #-interaction measure and # is computed with 
respect to the structure of the decentralized controller C. 
Note that the condition that G and G have the same number 
of RHP poles, is generally satisfied only when G and (~ are 
stable. In order to allow integral action (/4(0)= I), we have 
to require that #(E~) < 1 at to = 0, that is, we need diagonal 
dominance at low frequencies. If this is not the case the 
following alternative condition may be used. 

Condition 2 for NS (Postlethwaite and Foo, 1985; 
Grosdidier, personal communication, 1985). Assume ~q is 
stable, and that G and (~ have the same number of RHP- 
zeros. Then S (and H) is stable if 

O(S) -< #cl(Es),  Vco (12) 

where 

Es = (G - (~)G 1. (13) 

Since we have to require S = I as co--> ~ for any real system, 
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we have to require / t (Es )<  1 as to---, Qo, in order to be able 
to satisfy (12), that is, we must have diagonal dominance at 
high frequencies. 

Conditions 1 and 2 are conditions for nominal stability (i.e. 
stability of H and S). These conditions cannot be combined over 
different frequency ranges as is sometimes possible for true 
uncertainties (Postlethwaiteand Foo, 1985). The reason is that 
our "uncertainties" H and S do not necessarily cover the same 
uncertainty set; for this to be the case we would at least have to 
allow O(S) -> 1 and O(H) > 1 in order toinclude the nominalcase 
with no "uncertainty" (i.e. H = 0 and S = 0). 

What to do when both conditions fail. In some cases it may be 
impossible to satisfy either (10) or (12). For example, in order to 
satisfy (10) and to have integral action (H(0)=  I) we must 
require at least 

p(En(O)) < 1 (14) 

(p is the spectral radius of En). (14) is derived from (10) by 
assuming H = h i  (all loops identical) which yields the least 
restrictive bound O(H) < p- t (En)  in (10). In general (14) is 
conservative. For example, it is easily shown (Skogestad and 
Morari, 1987b), that it is always possible to find a diagonal 
controller which yields NS if the less restrictive condition 

Re{A,(En(0)) ) > - 1 ,  Vi (15) 

[Ai is the ith eigenvalue] is satisfied. One example for which (15) 
is satisfied, but not (14) is the following 2 x 2 plant: 

A,(En(0)) = +i2, p(En(O)) = 2. 

For 2 x 2 plants, (15) is always satisfied when RGAl l  > 0 
[RGAlt is the 1,1-element of the RGA (Bristol, 1966)], 
while (14) is only satisfied when RGA H > 0.5. 

Similarly, condition (12) may be impossible to satisfy 
because (i) G and 0 do not have the same number of 
RHP-zeros, or (ii)/t(Es(pO)) >- 1. 

In cases when neither conditions (10) or (12) can be 
satisfied we may try to redefine the nominal model (G and O) 
such that either condition 1 or 2 is satisfied. 

However, since the set II of possible plants (Gp) still has to 
be the same, this generally means that we have to increase 
the magnitude of the model uncertainty. The three following 
"tricks" may be used (the last two of these are probably 
easiest to apply since uncertainty always dominates at high 
frequency). 
• To satisfy (10). The plant is made diagonal dominant at low 

frequencies [/t (En(0)) < 1], by reducing the magnitude of the 
nominal off-diagonal elements and replacing it by element 
uncertainty (at low frequency) [see Skogestad and Morari 
(1987a) on how to treat element uncertainty within the 
/t-framework]. 

• To satisfy (12). The plant is made diagonal dominant at 
high frequencies [/t(Es(jOo))< 1], by reducing the mag- 
nitude of the nominal off-diagonal elements and replacing 
it by element uncertainty (at high frequency). 

• To have the same number of RHP-zeros in G and (~: 
RHP-zeros (or time delays) are "removed" by treating 
them as uncertainty. 
One extreme is obviously to treat the off-diagonal 

elements entirely as additive element uncertainty. In this 
case / t (En)=0 at all frequencies, and nominal stability 
(stability of H) is obviously satisfied if each loop/~ is stable 
(since G = G and H = H in this case). This approach is 
generally more conservative, however, since the off-diagonal 
elements in G (which nominally are equal to gij) for the case 
of element uncertainty are allowed to be any transfer 
function of magnitude Ig~jl (in particular, both g# and -go are 
allowed). This additional uncertainty makes it more difficult 
to satisfy the robust stability and performance conditions. 

3. Robust performance 
Having derived conditions for nominal stability, we can 

now proceed to the case of robust performance. The 
objective of this section is to derive bounds on the individual 
designs (H and ~{), which when satisfied guarantee robust 

I . 

N2~ N22 

FIO. 3. M written as an LFT of H. N is independent of the 
controller. 

performance of the overall system (that is, #(M) < 1). This is 
accomplished in two steps. 

(1) Sufficient conditions for RP in terms of bounds on O(H) 
and O(S) are derived by writing M as a linear fractional 
transformation (LFT) of H and S. 

(2) These bounds are used to derive sufficient conditions 
for RP in terms of bounds on O(/~) and O(~{). 

3.1. Robust performance conditions in terms of H and S. 
The robust performance condition [equation (5)] 

RPC=~#A(M) <- 1, Vto 

may be used to derive sufficient conditions for RP in terms of 
bounds on O(H) and O(S) (Skogestad and Morari, 1988). To 
this end write M as an L F r  of H (Fig. 3) 

M = Nnlt + NnH(I  H - 1  tt --  N 2 2 H  ) N21.  (16) 

The matrix N n, which is independent of C, can be obtained 
from M by inspection in many cases. Otherwise, the 
procedure given by Skogestad and Morari (1988) can be 
used. They also point out that in general M is affine in H, 
that is, N2n2 = 0. Applying Theorem 1 of Skogestad and 
Morari (1988) (the theorem is reproduced in the Appendix) 
the following sufficient condition for (5) is derived. 

RP-condition in terms of H. Assume M is given as an LFT 
of H (Eq. 16). Then at any given frequency 

/tA(M) ~ 1 if O(H) <- cn (17a) 

where at this frequency c n solves 

~\cnNH cnN~2] = 1 (17b) 

and /t in (17b) is computed with respect to the structure 
,~ = diag {A, n ) .  

Note that H is generally a "full" matrix if the controller is 
diagonal. A similar bound in terms of S is derived by 
replacing H by S in equations (16) and (17). (17) applies on a 
frequency-by-frequency basis. This implies that / t(M)<-1 at 
a given frequency is guaranteed if either O(H)<e n or 
O(S) < c s at this frequency. Consequently, the bounds on 
O(H) and O(S) can be combined over different frequency 
ranges. In particular, the following holds 

R P ~ O ( H ) < - c  n or O(S)<-Cs, Vto. (18) 

Example. Robust performance with input uncertainty (Fig. 

Gp 

~=d ^ 
y , ~  e,, 

FIG. 4. Plant with input uncertainty (AI) of magnitude wi(s ). 
Robust performance is satisfied if O(wp(I + GpC) -1) <- 1, for 

all AI(O(AI) <- 1). 
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4). Let the set H of possible plants be given by 

Gp = G(I + wiAi) , b(Al) < 1, '¢09. (19) 

Here w I is the magnitude of the relative (multiplicative) 
uncertainty at the plant inputs. For robust performance we 
require that the magnitude of the sensitivity operator is 
bounded by Iwvl -~ 

RP ¢~ O(wpSp) 

= 0(Wp(I + GpC) -1) ~ 1, VoJ,  VGp E H. (20) 

This condition is most easily checked using/J [equation (5)]: 

RPC~/za(M)-< 1, Vro (21a) 

where the interconnection matrix M is (Skogestad et al., 
1988): 

( -- wICSG -wICS~ (21b) 
M = \ wvSG wvS ] 

and p(M) is computed with respect to the structure 
A = diag {Az, Ap}. Ap is always a "full" matrix of the same 
dimensions as S. A~ is often a diagonal matrix (if the inputs 
do not affect each other). Rewrite M in terms of S and H 
such that C does not appear 

( -  w,G-'HG - w,G-'H~ (22) 
M = \ wpSG wpS 1" 

By inspection M may be written as an LFT (16) of H (recall 
S = I - H )  

M = Nfi + N~HN~ 

-wvI / 

We derive from (23) and (17) 

RP if 0 ( H ) < c  n, Yto (24a) 

where at each frequency c/4 solves 

(0 0 _w:-l\w 
I~ wvG wpI - ] = 1. 

\ c n G  c/4I O vI 
(24b) 

/ 
Similarly, a bound on O(S) is derived by writing M as an LFT 
of S 

_- s s s _ ( -  w , I _  0 - w I G - l )  
M N n+NI2SN21 0 

+ (w~vG;I)S(G I) (25, 

equations (25) and (17) (with H replaced with S) yield 

RP if O(S)<-Cs, Vco (26a) 

where at each frequency c s solves 

- - W l I  - -  w,G-'  wig - t )  
/t 0 0 I = 1. (26b) 

csG CsI 

In both equations (24b) and (26b)/~ is computed with respect 
to the structure diag {Ai, Ap, H}. The bounds (24) and (26) 
may be combined over different frequency ranges, and RP is 
guaranteed if either one is satisfied at any frequency 
[equation (18)]. In practice, (24) is most easily satisfied at 
high frequencies and (26) at low frequencies. 

3.2. Robust performance condition in terms of  I51 and 
S. Sufficient conditions for robust performance in terms of 
0(H) and #(S) may now be derived using the identities 
(Grosdidier, personal communication, 1985) 

H = GG-~B(I + EnlTI) -~ (27) 

S = ~{(I - EsS)- 1GG- 1. (28) 

Note that (27) and (28) both are LFTs of H (and S) in terms 

o f / t  (and ~{). In Section 3.1 we pointed out that in general M 
can be written as an LFT of H with N n = 0: 

M =  n n H 
N I  l + N12HN21. (29) 

Substituting (27) into (29) yields 

M = N n + NnGG - ~/~(I + E, /~) -~N~ (30) 

which is an LFT of M in terms of /~. Using Theorem 1 
(Appendix) and (30) we derive the following. 

H /4 RP-condition in terms of fI. Let M = N ~  + Nt2HN2r 
Then at any frequency 

/UA(M)--< 1 if ~(/t)--< 6/4 (31a) 

where at this frequency ~?/4 solves 

N/4 N~GG-I~ 
~&(_ 1 ~  = 1 (31b) 

\c/4~v21 - ~HEH } 

and /* is computed with respect to the structure 
A = diag {A, C}. 

Note that the structure of C is block-diagonal and equal to 
that of/ft. An entirely equivalent condition may be derived 
in terms of O(S). 

s s RP-condition in terms of S. Let M = NSl + N12SN2r Then 
at any frequency 

Pa(m) -< 1 if 0(~{) -< Cs (32a) 

where ~s solves 

( NS NlS ~ = 1 (32b) . 11 

PA ffs~G-1NSl esEs/ 

and t~ is computed with respect to the structure 
A = diag {A, C). 

Again, the bounds (31) and (32) may be combined over 
different frequency ranges. 

Combined RP-condition. 

RP if O(/')) -< g/4 or O(S)<cs, Vto (33) 

Example. Robust performance with input uncertainty 
(continued). Consider the same example as above (Fig. 4). 
However, in this case we will derive bounds in terms of O(H) 
and 0(,{). An RP-condition in terms of ~(/t) = mlax I/~it is de- 
rived by combining (31) and (23): 

RP if ?r(H) _< 5/4, *¢o9 (34a) 

where at each frequency 6 n solves 

o o - w,&'  \ 
I~ A wpG w p l  - wpGG-lJ  = 1. (34b) 

\CH G CH I --CHEH ,] 

Similarly, the RP-condition in terms of O(S)= Igil derived 
from (32) and (25) is 

RP if O(S)-<Cs, Vco (35a) 

where at each frequency Cs solves 

- wlI - wiG -I wIG-I~ 
I~ A 0 0 wvI ~ = 1. (35b) 

esG esGO -1 esE s / 

In both (34b) and (35b) /~ is computed with respect to the 
structure A -~ diag (AI, Ap, C}. Conditions (34) and (35) can 
be combined as shown in (33). 

4. Design procedure 
The following design procedure for decentralized control 

systems based on the "independent designs"-assumption is 
proposed. Find a decentralized controller which yields 
individual loops (/-t and S) which are stable and in addition 
satisfy the following. 
(1) Nominal stability: satisfy O{ISl)<-p~l(En) (10) at all 

frequencies or satisfy ~(S)<-p - (Es) (12) at all 
frequencies. It is not allowed to combine (10) and (12). 
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(2) Robust performance: at  each frequency satisfy either 
#(H)-< cH (31) or O(S)<-Cs (32). Combining (31) and 
(32) over different frequency ranges is allowed. 

Consequently, two separate conditions must be satisfied by 
the individual designs: one for nominal stability and one for 
robust performance. 
Remarks 

(1) The nominal stability condition O(/~)-</~-I(EH) (10) 
is automatically satisfied at any frequency where the robust 
performance condition (31) is satisfied. This follows from the 
inequality 

{Nil NN::)>max(Itla,(N11),~A2(N22)} (36) 'Udiag(Al'A2} \N21 
applied to (31b). We find 6H ~ #-X(En) and therefore the 
the RP-condition puts a tighter bound on 0(H) than the 
NS-condition (10). A similar relationship exists between the 
RP-condition (32) on 0($) and the NS-condition (12). 

(2) This may seem to imply that NS is automatically 
guaranteed if RP is satisfied. This is not the case, however, 
since the NS-condition (10) [or (12)] must be satisfied at all 
frequencies. This is not necessarily implied by the combined 
RP-condition (33) since neither O(H) <- cn or O(S) <- c s have 
to be satisfied at all frequencies to satisfy (33). In the 
following two cases RP does imply NS. 

(3) If it happens that the RP-bound (31) on O(/t) is 
satisfied at all frequencies, and if/- t  is stable, then RP and 
NS are both guaranteed using a single condition. However, 
to be able to satisfy (31) at all frequencies we must require 
that there exists a cH>0  which solves (31b). This is 
equivalent to requiting /~(N~)-<I, which from (30) is 
equivalent to I~(M(H = 0))-< 1. Consequently, to be able to 
satisfy (31) we must require that at each frequency the 
performance requirements are such that/-) = 0 is a possible 
solution. This may be the case, for example, if we are 
interested in robust stability only. 

(4) If it happens that the RP-bound (32) on O(~q) is 
satisfied at all frequencies, and if S is stable, then RP and NS 
are both guaranteed. However, to be able to satisfy (32_) at 
all frequencies we must require that at each frequency S = 0 
is a possible solution. This may be the case if there is no 
uncertainty, that is, if we are interested in nominal 
performance only. 

5. Numerical example 
In this section we continue the previous example of RP 

with diagonal input uncertainty (Fig. 4). Consider the 
following plant (time is in minutes): 

-0.87g 1 - 0.2~ ] 
~ =___~1  1 +0.2s 0.014 

1 -0 .2 s  " (37) 
a+75~ L -1"°8211+0.2s°'2s 0.014i_Z_~ j 

Physically, this may correspond to a high-purity distillation 
column using distillate (D) and boilup (V) as manipulated 
inputs to control top and bottom composition (Skogestad et 
al., 1988). We want to design a decentralized (diagonal) 
controller for this plant such that robust performance is 
guaranteed when there is 10% uncertainty on each 
manipulated input. The uncertainty and performance weights 
are 

~'i(s) = 0.1 (38a) 

0 25 7s + 1 (38b) we(s) = " 7s " 

The robust performance condition is 

O(Sp) < 1/IwpI, VG t, e H (39) 

(38b) impfies that we require integral action (wp(0) = oo) and 
allow an amplification of disturbances at high frequencies of 
at most a factor of four (Wp(j~)=0.25). A particular 
sensitivity function which matches the performance bound 
(39) exactly at low frequencies and satisfies it easily at high 

28s 
frequency is S = ~ - - - ~  I. This corresponds to a first order 

response with time constant 28 min. 
Nominal stability (NS). The nominal model has RGAxl = 

0.45 and we find # ( E n ( 0 ) ) = l . l l .  Consequently, it is 
impossible to satisfy the NS-condition (10). 

The NS-condition (12) for O(S) cannot be satisfied either. 
Firstly, t~ has one RHP-zero, while the diagonal plant has 
two. Secondly, the plant is clearly not diagonal dominant at 
high frequencies, and #(Es(jto)) is larger than one for 
to > 4 rain -1. The simplest way to get around this problem is 
to treat the RHP-zeros as uncertainty. (This is actually not 
very conservative, since RHP-zeros limit the achievable 
performance anyway.) To this end define the following 
"new" nominal model: 

1 [-0.878 0.014] (40) 
G = ~  L-1.082 -0.014/  

and include the RHP-zeros in the input uncertainty by using 
the following new uncertainty weight: 

5s + 1 (41) w~(s) = 0,1 ~ .; 1 

Iwx(jto)l reaches a value of one at about to = 2 min -1. This 
includes the neglected RHP-zeros since the relative 

1 - 0 . 2 s  1 - 
u n c e r t a i n t y  introduced by replacing ~ by 1 is 

1 - 0. 2/to 
1 + 0.2jto ' which reaches a value of one at about to = 3 min- x. 

With the new mode l  (40) we still cannot satisfy the 
NS-condition (10) for O(H). However, the NS-condition (12) 
on O(S) is easily satisfied since G and ¢~ have the same 
number of RHP-zeros (none), and I~(Es)=0_743 at all 
frequencies. The only restriction this imposes on S is that the 
maximum peaks of I~d and 1~21 must be less than 
1/0.743= 1.35. This is easily satisfied since both gH = 
- 0.878 , - 0.014 

ano g22 = ~ are minimum phase, 

In the remainder of this section the model of the plant (G) 
is assumed to be given by (40) and the uncertainty weight 
(w~) by (41). 

Nominal performance (NP). The NP-requirement is 

NP¢:~O(S) -< Iwpl-', Vto. (42) 

How should the individual loops (S=diag{g,,g2}) be 
designed in order to satisfy this requirement? Intuitively, we 
might expect that we have to require at least that the 
individual loops satisfy (42), that is, O(S) <- IwP1-1. However, 
this is not necessarily the case, as illustrated by the example: 
(42) is equivalent to /~a(M)-< 1 with M = wpS and A = Ap 
(Ap is a full matrix). (32) then yields the following sufficient 
condition for NP in terms of S: 

N P ~  O(S) - cNp, Vto (43a) 

where cNp at each frequency solves 

laA(cNpOG-1\ G CNpEs/WpI ~=I (43b) 

and /~= diag {Ap, C). In our example Ap is a "full" 2 x 2 
matrix, and C is a diagonal 2 x 2 matrix. CNp is shown 
graphically in Fig. 5 and it is seen to be larger than IwpI -x at 
low frequency. Consequently, the performance of the overall 
system (S) may be better than that of the individual loops (gl 
and s2), that is, the interactions may improve the 
performance. 

Robust performance (RP). Bound on 0(/~). The bound 
~/  on O(H) is given by equation (34) and is shown 
graphically in Fig. 6. [/~ of the matrix in (34b) is computed 
with respect to the structure A = diag {AI, Ap, C}, where A~ 
is a diagonal 2 x 2 matrix, Ap is a full 2 x 2 matrix and C is a 
diagonal 2.>< 2 matrix.] It is clearly not possible to satisfy the 
bound O(H)< cn at all frequencies. In particular, we find 
~H -<0 for to<0.03min-  . The reason is that the 
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FIG. 5. NP is satisfied itI O(S)-< Iwpl-* which is satisfied if 
O(S) <- CNp. 
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FIG. 6. Bounds on O(/~).  
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performance weight Iwrl > 1 in this fre~luency range, which 
means that feedback is required (i.e. H =  0 is not possible, 
see Remark 3 in Section 4). 

Bound on O(S). The bound Cs on O(S) is given by 
equation (35) and is shown graphically in Fig. 7 (# is 
computed with respect to the same structure as above). 
Again it is not possible to satisfy this bound at all 
frequencies. In particular, we find g ' s~0  for m > 2 m i n  -~. 
The reason is that the uncertainty weight Iw d > 1 in this 
frequency range, which means that perfect control (,q = 0) is 
not allowed. 

Combining bounds on 0(171) and O(S). The bound on 0($) 
is easily satisfied at low frequencies, and the bound on O(H) 
is easily satisfied at high frequencies. The difficulty is to find 
an S = I - H which satisfies either one of the conditions in the 
frequency range from 0.1 to 1 rain -~. The following design is 

I°1 I lw~l_1 

. ' ( . . ) l  . . . . . . .  . . . . . . . . . .  
1. .."" 

..... i I 

10 -2 ] 
10 -3 10 -2 10 -1 101 

w (rain- 1) 

FIo. 7. Bounds on O(S). 

//,, ...... 
lO-2 I ..... ...... i 

10 -3 10-2 i0 -I 1 . i01 

(rain -1 ) 

FIG. 8. RP is guaranteed since Igil < c~s for  ~o < 0.3 min -1 and 
I/~il < cn for oJ > 0.23 min - l .  hi = 1/(1 + 7.5s). 

1 

o . e ~  ! " I 

/ z ( M )  
o. 6 i 3 

0 . 4 !  
? 

0.2 ~ - ! 

01 i . . . . . . . . . . . . . . . . . . . . . . . . . .  
10 -3 10 -2 10 -1 1. 101 

w ( ra in -  i ) 

FIG. 9. # ( M )  as a function of frequency. RP is guaranteed 
since #(M) < 1 at all frequencies. 

seen to do the job (Fig. 8): 

1 7.5s 
hi = / ~ 2 -  7.5s + 1' s1 =$2 (44) 7.5s+ 1 " 

The bound on Igal is satisfied for m < 0 . 3 m i n  -~, and the 
bound on I/*il is satisfied for m >0.23 min -1. Equation (44) 
corresponds to the following controller: 

C = k (1 + 75s) 0 
s - 1  , k=0.133.  (45) 

Because the bounds fin and gs are almost fiat in the 
cross-over region, the result is fairly insensitive to the 
particular choice of controller gain; it turns out that 
0 . 0 6 < k < 0 . 2 5  yields a design which satisfies at each 
frequency O(~{)< Cs or O(H)< cn and thus has RP. The 
controller (45) obviously yields an overall system which 
satisfies the robust performance condition, that is, #(M) is 
less than one. This is also seen from Fig. 9 which shows 
#(M) [M is given by (21b)] as a function of frequency. We 
find #m,=~o"P#(M)=0 .63<l  and RP is guaranteed. The 
fact that #Re is so much smaller than one, demonstrates 
some of the conservativeness of conditions (34) and (35) 
(which are only sufficient for RP). 

6. Conclusion 
This paper solves the problem of robust performance using 

independent designs as introduced in the Introduction. The 
example illustrates that this design approach may be useful 
for designing decentralized controllers. 

The main limitation of the approach stems from the initial 
assumption regarding independent designs. Since each loop 
ia designed separately, we cannot make use of information 
about the controllers used in the other loops. The 
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consequence is that the bounds on O(S) and 0(/4) are only 
sufficient for robust performance; there will exist decentral- 
ized controllers which violate the bounds on O(S) and 0(/4), 
but which satisfy the robust performance condition. 
However, the derived bounds on O(S) and O(H) are the 
tightest norm bounds possible, in the sense that in such cases 
there will exist another controller with the same values of 
0(/4) and O(S) which does not yield robust performance. 

The bounds on O(/t) and O(S) tend to be most 
conservative in the frequency range around crossover where 
O(H) and O(S) are both close to one. If, for a particular 
case, it is not possible to satisfy either O(H)<E H or 
O(S) <Cs in this frequency range, then try the following. 
Design a controller for which the frequency range where 
both bounds are violated is as small as possible. Since the 
bounds are only sufficient for RP, this may still yield an 
acceptable design with robust performance. This may be 
checked using the tight RP-condition # (M)<  1 in equation 
(5). 

Another potential source of conservativeness is the 
inherent assumption of similar or equal bandwidths in all 
loops which is made when the same bounds on I/~i[ and [si[ 
are used for all loops. This limitation may be ~artiall)~ 
eliminated by including matrix valued weights on h and S 
[see Grosdidier and Morari (1986)]. However, it is not 
obvious how these weights should be chosen a priori. 

Acknowledgements--Partial support from the National 
Science Foundation and Norsk Hydro is gratefully 
acknowledged. We are thankful to Professor John C. Doyle 
and Dr Pierre Grosdidier for numerous useful discussions 
and remarks. 

References 
Bristol, E. H. (1966). On a new measure of interaction for 

multivariable process control. IEEE Trans. Aut. Control, 
AC-11, 133-134. 

Doyle, J. C., J. E. Wall and G. Stein (1982). Performance 
and robustness analysis for structured uncertainty. Proc. 
IEEE Conf. on Decision and Control, Orlando, FL. 

Grosdidier, P. and M. Morari (1986). Interaction measures 
for systems under decentralized control. Automatica, 22, 
309-319. 

Mayne, D. Q. (1973). The design of linear multivariable 
systems. Automatica, 9, 201-227. 

Postlethwaite, J. and V. K. Foo (1985). Robustness with 
simultaneous pole and zero movement across the rio-axis. 
Automatica, 21, 433-443. 

Skogestad, S. and M. Morari (1987a). Effect of model 
uncertainty on dynamic resilience. Chem. Engng Sci., 42, 
1765-1780. 

Skogestad, S. and M. Morari (1987b). Letter to the Editor 
concerning paper by Mijares et al. A . I .Ch .E .J . ,  33, 
701-702. 

Skogestad, S. and M. Morari (1988). Some new properties of 
the structured singular value. IEEE Trans. Aut. Control, 
33(12), 1151-1154. 

Skogestad, S., M. Morari and J. C. Doyle (1988). Robust 
control of ill-conditioned plants: high purity distillation. 
IEEE Trans. Aut. Control, 33(12), 1092-1105. 

Appendix 
Definition of the structured singular value ft. Let M be a 

square complex matrix. /~(M) is defined such that ju-l(M) is 
equal to the smallest O(A) needed to make ( I + A M )  
singular, i.e. 

/~-l(M) = rn~n {6 I det (I + AM) = 0 for some A, O(A) < 6). 

(A1) 

(If M is a transfer matrix this definition applies 
frequency-by-frequency.) A is a block-diagonal perturbation 

matrix with a given structure 

[-] A " = . .  , O ( A i ) < 6 ,  Vi 
A, 

where A is allowed to be any complex matrix satisfying 
O(A) < 6. [It turns out that A may be restricted to being 
unitary without changing /~(M) (Doyle et al., 1982).] /~(M) 
depends on both the matrix M and the  structure of the 
perturbations A. This is sometimes shown explicitly by using 
the notation /~(M)=/~A(M). An equivalent statement of 
(A1) which is more useful for our purposes is the following: 

det (I + AM)#:0, VA(8(A) < 6) 

¢~p(AM)-< 1, VA(O(A) < 6) (A2) 

*~ ~ ( M )  -< 1/6. 

The reader is referred to Doyle et al. (1982) for further 
properties and computational aspects of p. 

Theorem 1. Let M be written as an LFT of T: 

M = Nil + N12T(I - N22T)-lN2, (A3) 

and let k be a given constant. Assume p~(Ni l )<k  and 
det (I - N22 T) ~ 0. Then 

/~A(M) --< k (A4) 

if 

where CT solves 

8(T) <- c r (A5) 

r NIl HI2 ] 
~l~,LkcrN2 ~ kerN22 j = k (A6) 

and ti = diag {A,  T}. 

Proof. The theorem follows directly from the definition of pi 
(A2)  after some algebra: assume that T is defined such that 
O(T) < c r. Then at each frequency the following holds 

aA(M) <- k(oJ), VT(O(T) < cr) 

¢:}det(I+AM)#:0,  VA(@(A)<I/k),  VT (A7) 

¢~det [I + ANti AN12 1 
-- TN21 I - TN22J ~0 ,  VA, VT (A8) 

( Ik0 A 0 I IINII ~ NI211 
¢:}det I +  1 T 

-: ,  LC: , c:=]l 
4:0, 'CA, 

¢~/IA kNll  kN12 -<1 

k crN21 crN22_J 

I- N11 NI2 ]~k(o.}). 
~ll~'LkcrN21 kcTN22J 

VT 

The step from (A7) to (A8) follows M fN11 +N12(I -  1 TN~)- TN21 and Schurs formula 

d e t ( A - B D - ' C ) = d e t [ c  B ] / d e t  D (A9) 

and the assumption det D = det (I - TN22 ) ~ O. 


