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Abstract. We present a new approach to robustly solve photometric
stereo problems. We cast the problem of recovering surface normals from
multiple lighting conditions as a problem of recovering a low-rank matrix
with both missing entries and corrupted entries, which model all types of
non-Lambertian effects such as shadows and specularities. Unlike previ-
ous approaches that use Least-Squares or heuristic robust techniques, our
method uses advanced convex optimization techniques that are guaranteed
to find the correct low-rank matrix by simultaneously fixing its missing
and erroneous entries. Extensive experimental results demonstrate that
our method achieves unprecedentedly accurate estimates of surface nor-
mals in the presence of significant amount of shadows and specularities.
The new technique can be used to improve virtually any photometric stereo
method including uncalibrated photometric stereo.

1 Introduction

Photometric stereo [1,2] estimates surface orientations from photographs taken
from a fixed viewpoint under different lighting conditions. Since photometric stereo
can produce a dense normal field at the level of detail that cannot be achieved
by any other triangulation-based approaches, it has generated a lot of interest for
accurate shape reconstruction.

It is well understood that when a Lambertian surface is illuminated by at least
three known lighting directions, the surface orientation at each visible point can be
uniquely determined from its intensities. From different perspectives, it has long
been shown that if there are no shadows, the appearance of a convex Lamber-
tian scene illuminated from different lighting directions span a three-dimensional
subspace [3] or an illumination cone [4]. Basri and Jacobs [5] and Georghiades et
al. [6] have further shown that the images of a convex-shaped object with cast
shadows can also be well-approximated by a low-dimensional linear subspace. The
aforementioned works indicate that there exists a degenerate structure in the ap-
pearance of Lambertian surfaces under variation in illumination. This is the key
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property that all photometric stereo methods harness to determine the surface
normals.

Previously, photometric stereo algorithms for Lambertian surfaces generally
find surface normals as the Least Squares solution to a set of linear equations
that relate the observations and known lighting directions, or equivalently, try
to identify the low-dimensional subspace using conventional Principal Component
Analysis (PCA) [7]. Such a solution is known to be optimal if the measurements
are corrupted by only i.i.d. Gaussian noise of small magnitude. Unfortunately,
in reality, photometric measurements rarely obey such a simplistic noisy linear
model: the intensity values at some pixels can be severely affected by specular
reflections (deviation from the basic Lambertian assumption), sensor saturations,
or shadowing effects. As a result, the Least Squares solution normally ends up
with incorrect estimates of surface orientations in practice.

To overcome this problem, researchers have explored various approaches to
eliminate such deviations by treating the corrupted measurements as outliers,
e.g., using a RANSAC scheme [8, 9], or a median-based approach [10]. To identify
the different types of corruptions in images more carefully, Mukaiegawa et al. [11]
have proposed a method for classifying diffuse, specular, attached, and cast shadow
pixels based on RANSAC and outlier elimination.

Contributions: In this paper, we propose a simple but principled solution to pho-
tometric stereo that can deal with any kind of deviation from the basic Lambertian
assumption in a unified framework. We cast the photometric stereo problem as a
problem of recovering and completing a low-rank matrix subject to sparse, gross
errors like corrupted and missing pixels. Unlike previous heuristic methods, un-
der fairly broad conditions, the new method is guaranteed to correctly recover
the low-rank Lambertian diffuse component from the highly corrupted and in-
complete observations. Based on advanced convex optimization tools for nuclear
norm and ¢;-norm minimization, the new method can efficiently obtain highly
accurate estimates of surface orientations. Our method can be used to improve
virtually any existing photometric stereo method, including uncalibrated photo-
metric stereo [12], where traditionally, corruption in the data (e.g., by specularity)
is either neglected or ineffectively dealt with conventional heuristic robust estima-
tion methods.

In contrast to previous robust approaches, our method is computationally more
efficient and provides theoretical guarantees for robustness to large errors. More
importantly, our method is able to use all the available information simultaneously
for obtaining the optimal result, instead of discarding informative measurements,
e.g., by either selecting the best set of illumination directions [9] or using the
median estimator [10].

2 Photometric Stereo as Low-Rank Matrix Recovery with
Sparse Errors

In this section, we formulate the problem of estimating the normal map as a
rank minimization problem. We first review the basic Lambertian image forma-
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tion model, and then discuss how to model large deviations like shadows and
specularities. In the following discussion, we make a few assumptions:

— The relative position of the camera and object is fixed across all images.
— The object is illuminated by a point light source at infinity.
— The sensor response is linear.

Lambertian Image Formation Model. The appearance I of a Lambertian scene
observed under a lighting direction 1 € R? is described as the inner product:

I=pn-1 (1)

where p is the diffuse albedo, and n € R? is the surface normal. Suppose that we
are given n images I1,...,I, of a scene under different lighting conditions. Let
the region of interest be composed of m pixels in each image.! We order the pixel
locations with a single index k, and let I;(k) denote the observed intensity at pixel
location k in image I;. With this notation, we have the following relation about

the observation I;(k):
8 1(k) = prmg -, @)

where py, is the albedo of the scene at pixel location k, n; € R? is the (unit)
surface normal of the scene at pixel location k, and 1; € R3 represents the nor-
malized lighting direction vector corresponding to image I;.2 We assume that the
light intensity is constant across images to simplify the discussion, although the
proposed method is not limited to such a condition.

Low-rank Matrixz Structure. Consider the matrix D € R™*" constructed by stack-
ing all the vectorized images vec(I) as

D = [vec(l1) | - | vec(I,,)] (3)
where vec(I;) = [I;(1),...,I;(m)]T for j = 1,...,n. It follows from Eq. (2) that
D can be factorized as follows: D=NL (4)
where N = [ping | -+ | ppn]T € R™X3 and L =[1; | --- | 1,] € R**™. Suppose

that the number of images n > 3. Clearly, irrespective of the number of pixels m
and the number of images n, the rank of the matrix D is at most 3.

Modeling Corruptions as Sparse Errors. The low-rank structure of the observation
matrix D described above is seldom observed with real images. This is due to the
presence of shadows and specularities in real images.

— Shadows arise in real images in two possible ways. Some pixels are not visible
in the image because they face away from the light source. Such dark pixels are
referred to as attached shadows [13]. In deriving Eq. (4) from Eq. (2), we have

! Typically, m is much larger than the number of images n.
2 The convention here is that the lighting direction vectors point from the surface of the
object to the light source.
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implicitly assumed that all pixels of the object are illuminated by the light
source in each image. However, if the pixel faces away from the light source,
then the relation no longer holds. Mathematically, this implies that Eq. (2)
must be rewritten as follows:

Ij(k) = max {px ny, - 1;,0} (5)

Shadows can also occur in images when the shape of the object’s surface is not
convex: parts of the surface can be occluded from the light source by other
parts. Even though the normal vectors at such occluded pixels may form a
sharp angle with the lighting direction, these pixels appear entirely dark. We
refer to such dark pixels as cast shadows. Irrespective of the type, all shadows
occur in images as dark pixels with very small, if not zero, intensity values.

— Specularities. Specular reflection arises when the object of interest is not
perfectly diffusive, i.e., when the surface luminance is not purely isotropic.
Thus, the intensity of reflected light depends on the viewing angle, and light is
reflected in a mirror-like fashion accompanied by a specular lobe when viewed
from certain angles. This gives rise to some bright spots or shiny patches
on the surface of the object that significantly deviate from the Lambertian
assumption.

Suppose we represent all these deviations from the ideal low-rank diffusive
model Eq. (4) by an error matrix £ € R™*". Thus, instead of Eq. (4), the image
measurements should be modeled as

D=NL+E (6)

where the matrix E accounts for corruption by shadows or specularities. Now
suppose that only a small fraction of the pixels in each image exhibit strong
specular reflectance and that a large majority of the pixels are illuminated by the
light source. Then, most pixels in the input images obey the low-rank diffusive
model given by Eq. (4), and hence, most entries in the error matrix E will be zero,
i.e., F is a sparse matrix. If the matrix L of lighting directions is known, then we
can compute the surface normals, provided that we can decompose D as the sum
of a low-rank matrix and a sparse error matrix. Thus, the problem can be stated
more formally as follows:

Let Iy,...,I, be n images of an object under different illumination con-
ditions. If D € R™*™ is defined as given in Eq. (3), then find a sparse
matriz E such that the matric A = D — E has the lowest possible rank.

Using a Lagrangian formulation, we can write the above problem as the fol-
lowing optimization problem:

rﬁlig rank(4) +v||Ellp st. D=A+FE (7)

where || - ||o denotes the fy-norm (number of non-zero entries in the matrix), and
v > 0 is a parameter that trades off the rank of the solution A versus the sparsity of
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the error E. Let (A, E) be the optimal solution to Eq. (7). If the lighting directions
L are given, we can easily recover the matrix N of surface normals from A as:

N = ALt (8)

where LT denotes the Moore-Penrose pseudo-inverse of L. The surface normals
ni,...,n, can be estimated by normalizing each row of N to have unit norm.

While Eq. (7) follows from our formulation, it is not tractable since both rank
and fg-norm are non-convex and discontinuous functions. Solving this optimization
problem efficiently will be the topic of discussion in the next section.

3 Efficient Solution via Convex Programming

As discussed above, the optimization problem given in Eq. (7) is extremely difficult
(NP-hard in general) to solve. In this section, we propose to solve it efficiently
based on recent advances in algorithms for matrix rank minimization [14-16].

3.1 Convex relaxation and modification

Recently, Wright et al. [14] and Chandrasekaran et al. [15] have proposed that the
problem in Eq. (7) can be solved by replacing the cost function with its convex
surrogate, provided that the rank of the matrix A is not too high and the number of
non-zero entries in the matrix F is not too large. This convex relaxation, dubbed
Principal Component Pursuit (PCP) in [14], replaces rank(-) with the nuclear
norm (sum of the singular values of the matrix) and the £y-norm with the matrix
{1-norm (sum of the absolute values of all entries of the matrix). Under quite
general conditions, it has been proved in [14,15] that the following optimization
problem has the same optimal solution as Eq. (7):

min Al +A|E st D=A+E 9)

where || - ||« and || - ||1 represent the nuclear norm and ¢;-norm, respectively, and
A > 0 is a weighting parameter. Theoretical considerations in [14] suggest that
A must be of the form C/\/max{m,n}, where C is a constant, typically set to
unity. It is interesting to note that the equivalence between Eq. (7) and Eq. (9) is
not affected by the magnitude of the singular values of the solution A or by the
magnitude of the non-zero entries of the error matrix F.

In the framework of PCP, the locations of the non-zero entries in the sparse
matrix F are assumed to be unknown a priori. But if the locations of some of
the corrupted entries are known, then we can incorporate that information into
the recovery procedure and hence, make the problem somewhat easier to solve.
This is similar in spirit to the matrix completion problem [17-19]. Notice that
although both shadows and specularities corrupt the low-rank matrix, they have
different characteristics. While the locations of the specular pixels are hard to
detect, especially that of pixels in specular lobes, it is relatively easy to detect the
location of shadows in an image (e.g., by a simple thresholding of the pixel values).
Thus, we have more information about the shadows than specularities, and such
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information can greatly help finding the correct solution. So mathematically, we
have a problem of recovering a low-rank matrix with both missing entries (the
shadows) and unknown corrupted entries (the specularities).

We denote by (2 the locations of missing entries in the observed matrix D,
defined in Eq. (3), that correspond to shadows in the input images. By a slight
abuse of notation, we also denote by {2 the linear subspace of m x n matrices with
support in (2. Let 7, represent the orthogonal projection operator corresponding
to the subspace {2. Thus, we modify the PCP problem in Eq. (9) to the following
one which does both matrix completion and error correction:

min Al + A By st 7oe(D) = moe(A + B) (10)

where (2¢ denotes the linear subspace complementary to {2, and mgne is the as-
sociated projection operator. The above problem is almost identical to the PCP
problem (Eq. (9)), except that the linear equality constraint is now applied only
on the set £2¢ of pixels that are not affected by the detected shadows.

3.2 Fast Algorithm using Augmented Lagrange Multiplier

The optimization problem in Eq. (10) can be re-cast as a semidefinite program
and solved using interior-point methods. Although interior-point methods have
excellent convergence properties, they are not very scalable for large problems.
Fortunately, there has been a flurry of work recently on developing scalable algo-
rithms for high-dimensional nuclear-norm minimization [16, 20, 21]. In this section,
we show how one such algorithm, the Augmented Lagrange Multiplier (ALM)
method [16, 22], can be adapted to efficiently solve Eq. (10).

The basic idea of the ALM method is to minimize the augmented Lagrangian
function instead of directly solving the original constrained optimization problem.
For our problem Eq. (10), the augmented Lagrangian is given by

Lu(AEY) = Al + A Bl +(Y, 7m0 (D - A= E)) +%Ilmc (D-A-EB)|% (11)

where Y € R™*" is a Lagrange multiplier matrix, u is a positive constant, (-,-)
denotes the matrix inner product,® and || - || denotes the Frobenius norm. For
appropriate choice of the Lagrange multiplier matrix Y and sufficiently large con-
stant p, it can be shown that the augmented Lagrangian function has the same
minimizer as the original constrained optimization problem [22]. The ALM algo-
rithm iteratively estimates both the Lagrange multiplier and the optimal solution.
The basic ALM iteration is given by

(Ags1, Ere1) = argming g L, (A, E,Yy)
Yeirir =Y+ puemoe(D — Apyr — Exq) (12)
HE+1 =P Pk

where {u;} is a monotonically increasing positive sequence (p > 1).

S (X,Y) = trace(XTY).



Robust Photometric Stereo via Low-Rank Matrix Completion and Recovery 7

We now focus our attention on solving the non-trivial first step of the above
iteration. Since it is difficult to minimize £,, (-) with respect to both A and E
simultaneously, we adopt an alternating minimization strategy as follows:

Ej1 = argming A|Elly — (Yi, mo¢ (E)) + 55 [mo: (D — A; — B) || (13)

Ajyr = argming [|A[ls — (Yi, moe(A)) + 5 [m0e (D — A= Ej)[|3
Without loss of generality, we assume that the Y}3’s and the Ej’s (and hence,
Y and E, respectively) have their support in §2°. Then, the above minimization
problems in Eq. (13) can be solved as described below.

We first define the shrinkage (or soft-thresholding) operator for scalars as fol-
lows:
ows shrink(z, a)) = sign(z) - max{|z| — a, 0} (14)
where o > 0. When applied to vectors or matrices, the shrinkage operator acts
element-wise. Then, the first step in Eq. (13) has a closed-form solution given by

1 A
E;4q = shrink <7T_QC(D) + —Y, — mo-(4,), ) (15)
Mk Mk
Since it is not possible to express the solution to the second step in Eq. (13) in
closed-form, we adopt an iterative strategy based on the Accelerated Proximal
Gradient (APG) algorithm [23,21, 20] to solve it. The iterative procedure is given
as:
(Ui, 2, Vi) = svd (Vi + 70-(D) = Eji1 + 7a(Z))
Agyy = U shrink (21-, ,le) VT (16)
Zig1 = Aip1 + %(Ai-;-l —A;)
where svd(-) denotes the singular value decomposition operator, and {¢;} is a
positive sequence satisfying ¢t = 1 and ;41 = 0.5 (1 + /1 +4t?). The entire

algorithm to solve Eq. (10) has been summarized as Algorithm 1.

4 Experiments

In this section, we verify the effectiveness of the proposed method using both
synthetic and real-world images. We compare our results with a simple Least
Squares (LS) approach, which assumes the ideal diffusive model given by Eq. (4).
However, we do not use those pixels that were classified as shadows (the set (2).
Thus, the LS method can be summarized by the following optimization problem:

n}\i}n |moe(D — N L)||F (17)

We first test our algorithm using synthetic images whose ground-truth normal
maps are known [24]. In these experiments, we quantitatively verify the correctness
of our algorithm by computing the angular errors between the estimated normal
map and the ground-truth. We then test our algorithm on more challenging real
images. Throughout this section, we denote by m the number of pixels in the
region of interest in each image, and by n the number of input images (typically,
m>>n).
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Algorithm 1 (Matrix Completion and Recovery via ALM).
INPUT: D e R™*" 2 cC{l,....,m} x{1,...,n}, A > 0.
Initialize A1 < 0, F1 < 0, Y1 «+ 0.
while not converged (k =1,2,...) do
A1 = Ak, Epa = Ey;
while not converged (j =1,2,...) do
Ek‘,jJrl = shrink (TI'_QC (D) —|— Yk — mTne (Ak J), l‘k).
ti=1;, 71 = Ak,j; Ak7j71 = Ak,j7
while not converged (i = 1,2,...) do
(Ui, X, Vi) = svd (LYk + me(D) — Ekj+1 + WQ(Zz‘))§

Ay ji+1 = U; shrink (E“ 17) VT, tiy1 =05 (1 +4/1+ 4t12>;
Zivr = Ap it + 5 Ak it — Akgii)y Akgr1 = Ak it
end while

t+1

Apy1 = A jy1; Ery1 = Eg jy1;
end while
Yir1 =Ye + pe moe (D — Apy1 — Ery1), fer1 = p - pik;
end while
OUTPUT: (A, E) = (Ay, E).

4.1 Quantitative evaluation with synthetic images

In this section, we use synthetic images of three different objects (see Fig. 1(a)-
(c)) under different scenarios to evaluate the performance of our algorithm. Since
these images are free of any noise, we use a pixel threshold value of zero to detect
shadows in the images. Unless otherwise stated, we set A = 1/y/m in Eq. (10).

€|

(a) Sphere (b) Caesar (c) Elephant (d) Caesar
(with texture)

Fig. 1. Synthetic images used for experiments.

a. Specular scene. In this experiment, we generate images of an object under 40
different lighting conditions, where the lighting directions are chosen at random
from a hemisphere with the object placed at the center. The images are generated
with some specular reflection. For all our experiments, we use the Cook-Torrance
reflectance model [25] to generate images with specularities. Thus, there are two
sources of corruption in the images — attached shadows and specularities.

A quantitative evaluation of our method and the Least Squares approach is
presented in Table 1. The estimated normal maps are shown in Fig. 2(b),(c). We
use the RGB channel to encode the 3 spatial components (XYZ) of the normal
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(a) Ground truth (b) Our method (c) Least Squares (d) Error map () Error map (LS)
(our method)

Fig. 2. Specular scene. 40 different images of Caesar were generated using the Cook-
Torrance model for specularities. (a) Ground truth normal map with reference sphere.
(b) and (c) show the surface normals recovered by our method and LS, respectively. (d)
and (e) show the pixel-wise angular error w.r.t. the ground truth.

Mean error (in degrees)|Max. error (in degrees)|Avg. % of corrupted pixels

Object LS Our method LS Our method Shadow Specularity

Sphere [0.99 51 x 103 8.1 0.20 18.4 16.1

Caesar [0.96 1.4x10 2 8.0 0.22 20.7 13.6
Elephant|0.96 8.7x1073 8.0 0.29 18.1 16.5

Table 1. Specular scene. Statistics of angle error in the normals for different objects.
In each case, 40 images were used. In the rightmost column, we indicate the average
percentage of pixels corrupted by attached shadows and specularities in each image.

map for display purposes. The error is measured in terms of the angular difference
between the ground truth normal and the estimated normal at each pixel location.
The pixel-wise error maps are shown in Fig. 2(d),(e). From the mean and the
maximum angular error (in degrees) in Table 1, we see that our method is much
more accurate than the LS approach. This is because specularities introduce large
magnitude errors to a small fraction of pixels in each image whose locations are
unknown. The LS algorithm is not robust to such corruptions while our method
can correct these errors and recover the underlying rank-3 structure of the matrix.
The column on the extreme right of Table 1 indicates the average percentage of
pixels in each image (averaged over all images) that were corrupted by shadows and
specularities, respectively. We note that even when more than 30% of the pixels
are corrupted by shadows and specularities, our method can efficiently retrieve
the surface normals.

b. Textured scene. We also test our method using a textured scene. Like the
traditional photometric stereo approach, our method does not have a dependency
on the albedo distribution and works well on such scenes.

We use 40 images of Caesar for this experiment with each image generated
under a different lighting condition (see Fig. 1(d) for example input image). The
estimated normal maps as well as the pixel-wise error maps are shown in Fig. 3.
We provide a quantitative comparison in Table 2 with respect to the ground-truth
normal map. From the mean and maximum angular errors, it is evident that our
method performs much better than the LS approach in this scenario.
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) ¥ L
(a) Ground truth (b) Our method (c) Least Squares (d) Error map () Error map (LS)
(our method)

Fig. 3. Textured scene with specularity. 40 different images of Caesar were generated
with texture, using the Cook-Torrance model for specularities. (a) Ground truth normal
map with reference sphere. (b) and (c) show the surface normals recovered by our method
and LS, respectively. (d) and (e) show the pixel-wise angular error w.r.t. the ground truth.

Obiect Mean error (in degrees)|Max error (in degrees)
J*U LS Our method  [LS| Our method
Caesar|2.4 0.016 32.2 0.24

Table 2. Textured scene with specularity: Statistics of angle errors. We use 40
images under different illuminations.

c. Effect of the number of input images. In the above experiments, we have
used images of the object under 40 different illuminations. In this experiment, we
study the effect of the number of illuminations used. In particular, we would like
to find out empirically the minimum number of images required for our method
to be effective. For this experiment, we generate images of Caesar using the Cook-
Torrance reflectance model, where the lighting directions are generated at random.
The mean percentage of specular pixels in the input images is maintained approx-
imately constant at 10%. The angular difference between the estimated normal
map and the ground truth is used as a measure of accuracy of the estimate.

Num of images 5 10 15 20 25 30 35 40
Mean error LS 4.5 [0.52] 0.51 | 0.53 | 0.62 | 0.59 | 0.59 | 0.57
(in degrees)|Our method| 15.1 {0.23]0.036/0.026(0.015]0.019(0.017/0.013
Max. error LS 88.2134.5{13.7| 90 | 84 | 76 | 76 | 7.0
(in degrees)|Our method|127.9/56.6| 25.6 | 5.8 [ 0.42 | 0.48 | 0.37 | 0.37

Table 3. Effect of number of input images. We use synthetic images of Caesar under
different lighting conditions. The number of illuminations is varied from 5 to 40. The angle
error is measured with respect to the ground truth normal map. The illuminations are
chosen at random, and the error has been averaged over 20 different sets of illumination.

We present the experimental results in Table 3. We observe that with 5 input
illuminations, estimates of both algorithms are very inaccurate but our method
is worse than LS. However, when the number of illuminations is larger than 10,
we observe that the mean error in the LS estimate becomes higher than that
our method. Upon increasing the number of images further, the proposed method
consistently outperforms the LS approach. If the number of input images is less
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| LS Our method |
2 u 10
$ u /"' $
5} 3}
>1.5 i I >
) )
o g ©
£ 1 £ 5
5 5
LUO‘S 5

2
2

10 20 30 40 10 20 30 40
% of specularities % of specularities
(a) Mean error (b) Maximum error

Fig. 4. Effect of increasing size of specular lobes. We use synthetic images of Caesar
under 40 randomly chosen lighting conditions. (a) Mean angular error, (b) Maximum
angular error w.r.t. the ground truth. The illuminations are chosen at random, and the
error has been averaged over 10 different sets of illumination. (a) contains illustrations
of increasing size of specular lobe.

than 20, then the maximum error in the LS estimate is smaller than that of our
method. However, our method performs much better when at least 25 different
illuminations are available. Thus, the proposed technique performs significantly
better as the number of input images increases.

d. Varying amount of specularity. From the above experiments, it is clear
that the proposed technique is quite robust to specularities in the input images
when compared to the LS method. In this experiment, we empirically determine
the maximum amount of specularity that can be handled by our method. We
use the Caesar scene under 40 randomly chosen illumination conditions for this
experiment. On an average, about 20% of the pixels in each image is corrupted
by attached shadows. We vary the size of the specular lobe in the input images
(as illustrated in Fig. 4(a)), thereby varying the number of corrupted pixels. We
compare the accuracy of our method against the LS technique using the angular
error of the estimates with respect to the ground-truth.

The experimental results are illustrated in Fig. 4. We observe that our method
is very robust when up to 16% of all pixels in the input images are corrupted
by specularities. The LS method, on the other hand, is extremely sensitive to
even small amounts of specularities in the input images. The angular error in the
estimates of both methods rises as the size of the specular lobe increases.

e. Enhancing performance by better choice of A. We recall that A is a
weighting parameter in our formulation given by Eq. (10). In all the above ex-
periments, we have fixed the value of the parameter A = 1/4/m, as suggested by
[14]. While this choice promises a certain degree of error correction, it may be
possible to correct larger amounts of corruption by choosing A appropriately, as
demonstrated in [26] for instance. Unfortunately, the best choice of A depends on
the input images, and cannot be determined analytically.

We demonstrate the effect of the weighting parameter A on a set of 40 images of
Caesar used in the previous experiments. In this set of images, approximately 20%
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of the pixels are corrupted by attached shadows and about 28% by specularities.
We choose A = C/+/m, and vary the value of C. We evaluate the results using
angular error with respect to the ground-truth normal map. We observe from
Table 4 that the choice of C influences the accuracy of the estimated normal map.
For real-world applications, where the data is typically noisy, the choice of A could
play an important role in the efficacy of our method.

C 1.0/0.8(0.6| 0.4
Mean error (in degrees)|1.42(0.78]0.19(0.029
Max. error (in degrees)[8.78(8.15/1.86 0.91

Table 4. Handling more specularities by appropriately choosing A. We use 40
images of Caesar under different lighting conditions with about 28% specularities and
20% shadows, and set A = C'//m.

f. Computation. The core computation of our method is solving a convex pro-
gram Eq. (10). For the specular Caesar data (Fig. 1(b)) with 40 images of 450 x 350
resolution, a single-core MATLAB implementation of our method takes about 7
minutes on a Macbook Pro with a 2.8 GHz Core 2 Duo processor and 4 GB mem-
ory, as against 42 seconds taken by the LS approach. While our method is slower
than the LS approach, it is much more accurate in a wide variety of scenarios and
is more efficient than other existing methods (e.g. [10]).

4.2 Qualitative evaluation with real images

We now test our algorithm on real images. We use a set of 40 images of a toy
Doraemon and Two-face taken under different lighting conditions (see Fig. 5(a),
(d)). A glossy sphere was placed in the scene for light source calibration when cap-
turing the data. We used a Canon 5D camera with the RAW image mode without
Gamma correction. These images present new challenges to our algorithm. In ad-
dition to shadows and specularities, there is potentially additional noise inherent
to the acquisition process as well as possible deviations from the idealistic Lam-
bertian model illuminated by distant lights. In this experiment, we use a threshold
of 0.01 to detect shadows in images.* We also found experimentally that setting
A = 0.3/y/m works well for these datasets.

Since the ground truth normal map is not available for these scenes, we com-
pare our method and the LS approach by visual inspection of the output normal
maps shown in Fig. 5(b),(c),(e),(f). We observe that the normal map estimated
by our method appears smoother and hence, more realistic. This can be observed
particularly around the necklace area in Doraemon and nose area in Two-face (see
Fig. 5) where the LS estimate exhibits some discontinuity in the normal map.

5 Discussion and Future Work

In this paper, we have presented a new computational framework to aid in pho-
tometric stereo. We have formulated the basic photometric stereo problem as a
convex optimization problem that can be solved efficiently. The efficacy of our
method is demonstrated using synthetic and real images. The biggest advantage

4 All pixels are normalized to have intensity between 0 and 1.
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(a) Doraemon (b) Our method Close-up view

Color map

(d) Two-face (e) Our method (f) Least Squares

Fig. 5. Qualitative comparison on real data. We use images of Doraemon and Two-
face taken under 40 different lighting conditions to qualitatively evaluate the performance
of our algorithm against the LS approach. (a),(d) Sample input images. (b),(e) Normal
map estimated by our method. (c),(f) Normal map estimated by Least Squares. Close-up
views of the dotted rectangular areas (top-right) where the normal map estimate of our
method is much more smoother and realistic than that of Least Squares.

of the proposed technique is its ability to handle shadows, specularities, and other
kinds of large-magnitude, non-Gaussian errors in the data.

The new framework also opens up several avenues for future research. Cur-
rently, we assume that all the images are noise-free and perfectly aligned with
each other at the pixel level. However, in real world scenarios, small noise and
misalignment are commonplace in any data acquisition process. By exploring the
low-rank structure described in this work, we believe that the proposed technique
can be extended to simultaneously handle small noise and misalignment in the
input images.
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