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Figure 1: Interactive locomotion control over varied terrain. Gait, footsteps, and transitions are automatically generated, based on user-
specified goals, such as direction, step length, and step duration. In the above example, a user steers the biped across uneven terrain with
gaps, steps, and inclines.

Abstract

This paper presents a physics-based locomotion controller based on
online planning. At each time-step, a planner optimizes locomotion
over multiple phases of gait. Stance dynamics are modeled using
a simplified Spring-Load Inverted (SLIP) model, while flight dy-
namics are modeled using projectile motion equations. Full-body
control at each instant is optimized to match the instantaneous plan
values, while also maintaining balance. Different types of gaits, in-
cluding walking, running, and jumping, emerge automatically, as
do transitions between different gaits. The controllers can traverse
challenging terrain and withstand large external disturbances, while
following high-level user commands at interactive rates.
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1 Introduction

Generating robust locomotion control of physically-simulated char-
acters is very challenging. At every instant, control must select
forces that affect not only immediate state, but also future motion
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completion. This is especially important when moving across ir-
regular terrain with little margin for error. In these situations, foot
step locations and modes of travel must be jointly selected to set
up the next step. For example, a character walking on flat ground
may need to switch to a different gait, such as running or jumping,
when traversing stepping stones or chasms. Planning these types of
motions remains an open problem. Performing a full spacetime op-
timization of the motion would be extremely expensive, and would
not be able to handle unforeseen disturbances, changes to the envi-
ronment, or new user-specified goals. As an alternative, simplified
dynamics models that enable online planning can be used. How-
ever, existing models are gait specific and do not plan control over
multiple foot-steps.

This paper introduces a locomotion controller for full-body 3D
physics-based characters that plans joint torques by optimizing a
low-dimensional physical model. At each instant, the controller op-
timizes a plan over multiple phases of locomotion. To generate the
plan, full-body dynamics are approximated by a set of closed-form
equations-of-motion (EOM), allowing replanning to occur at every
time step. The controller then chooses optimal full-body torques
according to the current plan, while maintaining balance. Depend-
ing on the task goals and terrain, different gaits, including walking,
running, and jumping, and gait transitions, emerge naturally. When
navigating over terrain with a limited number of footholds, our
method automatically determines optimal paths. In the accompa-
nying video, we show several examples of navigation over uneven
terrain, including gaps, inclines, stairs, large drops, and stepping
stones. We also demonstrate robustness to external disturbances
and projectile avoidance capabilities. Our method requires no pre-
processing and no motion capture data; a small set of user-level
parameters allows control over the final motion.

2 Related Work

A great deal of work in physics-based animation has used joint-
level PD control with finite-state machines to obtain a variety of
walking, running, and athletic motions [Faloutsos et al. 2001; Hod-



gins et al. 1995; Laszlo et al. 1996; Raibert and Hodgins 1991;
Yin et al. 2007]. These approaches require extensive iteration, new
parameter settings for each type of motion, and have limited capa-
bilities on uneven terrain.

Much recent work has focused on tracking motion capture refer-
ence data [Abe et al. 2007; da Silva et al. 2008a; da Silva et al.
2008b; Macchietto et al. 2009; Muico et al. 2009; Sok et al. 2007;
Tsai et al. 2010; Yamane and Hodgins 2009]. Using example mo-
tions makes it much easier to specify motion style and can produce
very high-quality results. However, such methods are only appro-
priate near example motions (or transformations of them), and thus
require trajectories for every desired type and style of motion.

In biomechanics and robotics, simplified low-dimensional mechan-
ical models have long been used to understand the essential dy-
namic properties of human motion [Alexander 1980; Collins et al.
2005; McGeer 1990; Srinivasan and Ruina 2006]. Hence, such
models are attractive as a basis for designing controllers. However,
doing so presents a number of challenges. The Inverted Pendulum
Model (IPM), which models center-of-mass (COM) motion during
single stance, has been used to control walking [Kajita et al. 2001;
Kajita et al. 2003; Pratt et al. 2006; Rebula et al. 2007; Tsai et al.
2010]. The IPM is limited by a constant leg-length, is constrained to
have exactly one foot on the ground at all times, and does not model
swing leg behavior. Hence, it cannot model double-stance or bal-
listic motion. The Spring-Loaded Inverted Pendulum (SLIP) [Full
and Koditschek 1999; Schwind and Koditschek 2000] generalizes
the IPM by replacing the fixed length leg with a spring, thereby
capturing energy storage and release during running. Since exact
SLIP EOM are non-integrable, they are costly to evaluate. To date,
analysis of SLIP and IPM models has been limited to understanding
steady-state cyclic behavior [Schwind and Koditschek 2000] or for
devising simple control rules and metrics [Pratt and Tedrake 2005;
Pratt et al. 2006; Rebula et al. 2007]. We propose a closed-form
SLIP-based model that captures motion across multiple phases, se-
lects footholds producing good subsequent steps, and generates a
continuum of behaviors including walking, running, and jumping.

Using low-dimensional models for control requires a method to
map the low-dimensional control outputs to all the joints in the
full character. To do this, most methods formulate a weighted
Quadratic Program (QP), that trades-off between mocap and con-
trol target tracking [Abe et al. 2007; da Silva et al. 2008a; da Silva
et al. 2008b; Macchietto et al. 2009]. Tsai et al. [2010] pro-
pose a velocity-based LCP formulation. Ramamoorthy and Kuipers
[2008] use offline manifold learning to perform this mapping. All
these methods require motion capture data to disambiguate redun-
dancy. Our method does not rely in any way on motion capture data.
Our system employs a full-body control optimization designed to
maintain balance while following the low-dimensional plan. The
low-dimensional plan is used only to guide the full-body controller,
not to define it. Because plans are inexpensive to evaluate, any de-
viations between the motion of the full character and the simplified
planning model are corrected in subsequent planner solutions.

Many previous methods use planning to help bipeds traverse un-
even or constrained terrain. Though kinematic planning suffices for
highly stable actions (e.g., [Kuffner et al. 2003]), more dynamic
motions require kinodynamic planning. Chestnutt [2007] describes
planners for robotic locomotion across terrains with dynamic ob-
stacles and Coros et al. [2009] demonstrate robust controllers that
can perform a variety of level-ground tasks. These methods assume
the existence of predefined walking controllers capable of perform-
ing footstep actions; a high-level planner or policy then chooses
sequences of controllers by a discrete search. Our approach is sig-
nificantly different. We define a single controller that determines
accelerations at every instant by performing trajectory optimization.
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Figure 2: System Overview. At each time step, character state
q, q̇ is mapped to a lower-dimensional preview model state, s0.
Next, a preview optimization generates an optimal plan S⋆ that
meets user-specified goals. Lastly, the full-body controller opti-
mization calculates joint torques τ , based on the instantaneous ac-
celerations from S⋆. Torques are applied to the simulation, result-
ing in a new character state.

Many different types of gaits and terrain-navigation abilities arise
automatically from this controller, without needing to be created
separately in advance. We do not attempt long-term planning.

3 Overview

We describe a locomotion controller that calculates joint torques τ

for a physics-based character (Fig. 2). At each instant of the simu-
lation, a plan S⋆ is computed by nonlinear optimization of the mo-
tion over the subsequent two footsteps. Since trajectory optimiza-
tion [Witkin and Kass 1988] for full-body locomotion remains very
computationally expensive [Liu et al. 2005; Wampler and Popović
2009], we optimize the trajectory of a low-dimensional preview
model instead. Full-body torques are then chosen such that the full-
character’s COM follows instantaneous plan accelerations.

The preview model is based on the Spring-Loaded Inverted Pen-
dulum (SLIP) [Full and Koditschek 1999] (Sec. 4). A fixed pre-
view schedule divides the next two footsteps into 6 phases: double
stance, left single-stance, flight, double stance, right single-stance,
and flight. The optimization includes objectives to achieve a target
goal (e.g., desired step length and heading) and objectives to com-
pensate for simplifications (e.g., foot position relative to hip). The
optimization produces different gaits by omitting certain phases:
omitting double-stance leads to jogging, while omitting flight leads
to walking. The plan is computed by optimizing control parameters
U, for the SLIP motion S during these 6 phases. We make simpli-
fying approximations to derive closed-form simulation of the SLIP
dynamics. The optimization yields an optimal plan S⋆.

Using the optimal plan S⋆, joint torques τ are determined by a
second optimization (Sec. 6). This optimization attempts to have

the full character match the instantaneous accelerations of S̈⋆, while
also maintaining balance. Given torques τ , a simulator computes
joint accelerations q̈ and contact forces fc, and updates the full-
character state (q, q̇) by integration. This process of replanning
and torque optimization is repeated at every time-step. Instead of
replanning every simulation timestep, somewhat faster performance
can also be obtained by replanning less frequently.



Figure 3: Low-dimensional planning. At each instant, a low-
dimensional plan S⋆ is computed, specifying COM (c), and COP,
(p0 / pT ) motion, as well as the next foot plant (yswing). Motion
is divided into stance and flight phases. A running motion schedule
is shown above, with footplants ΩR/L.

4 Preview Simulation

This section describes the low-dimensional model used to simulate
dynamics over multiple phases of motion. Stance phases are repre-
sented with a modified SLIP model, with simplifications that allow
closed-form integration. The resulting motion over multiple phases
is piecewise polynomial, allowing analytic integration of objective
function terms (Sec. 5). Ballistic phases are represented by COM
motion only. Initial conditions for the preview simulation come
from the current full-body character state, which provides initial
COM position c0 and velocity ċ0, initial heading α0 and angular
velocity α̇0, and right/left foot contact polygons ΩR/L. α0 is set to
the orientation of the pelvis about the vertical axis.

4.1 Stance Model

When the character has one or more feet on the ground, a Spring
Loaded Inverted Pendulum (SLIP) model [Full and Koditschek
1999] is used to describe character motion. We modify the SLIP in
several ways. First, we add an explicit representation of the support
polygon. Second, since exact SLIP equations must be numerically
integrated, we use an approximate model that decouples COM mo-
tion in directions parallel and perpendicular to the ground plane.
This allows our equations of motion and objective functions to be
computed in closed-form. Lastly, rather than assuming a fixed COP
position, we allow it to move within the support polygon.

The SLIP model is parameterized by a COM position c and a head-
ing α, representing orientation of the pelvis about the vertical axis.
At any given instant, the complete DOFs of the model are:

s(t) =
ˆ

cT (t) ċT (t) α(t) α̇(t) ΩR ΩL

˜T
(1)

where ΩR/L are the support regions for the right/left foot respec-
tively. The support regions are constant throughout a given phase.
When a foot is in the air, its support region is empty (Ω = ∅).
Otherwise, its support region is modeled as a quadrilateral.

The complete set of single and double stance control parameters
used by our model, are summarized by an 8-dimensional vector:

us =
ˆ

T pT
0 pT

T r0 rT α̈
˜T

. (2)

The duration of the phase is set by the parameter T . The SLIP
model is controlled by a spring that connects the COM, c, to COP,

p, on the ground. The spring has rest length r(t) and a fixed stiff-
ness k. Rather than fixing the COP as is typically done (e.g., [Kajita
et al. 2001]), we allow a time-varying COP. Walking with a fixed
COP corresponds to walking on pin-like feet and does not take ad-
vantage of the foot’s whole support region. In humans, foot rolling
is an important factor in the production of smooth, energy-efficient
walking [Adamczyk et al. 2006]. Both the rest length and COP are
controlled linearly:

p(t) =
t

T
(pT − p0) + p0 (3)

r(t) =
t

T
(rT − r0) + r0 (4)

where p0/T are the start/end COP locations, and r0/T are the
start/end rest lengths. Angular motion is controlled by setting a
constant angular acceleration α̈.

4.2 Stance Dynamics and Simulation

We now describe SLIP EOM used to obtain s(t) (Eq. 1), given ini-
tial conditions s0 and control u. Horizontal, vertical, and rotational
motion are decoupled to obtain closed-form solutions. Components
are combined:

c(t) =
ˆ

x(t) y(t) z(t)
˜T

. (5)

All derivations assume flat ground with axes x/y and z being par-
allel and perpendicular to the ground plane respectively. Equations
are represented in world coordinates and converted to polynomial
form using fifth-order Taylor approximation.

Our approximate SLIP model results from decoupling and lineariz-
ing the inverted pendulum model of Kajita et al. [2001]. In the
vertical direction, we also add a spring with constant stiffness. This
produces a model with a straightforward interpretation: horizontal
motion is governed by inverted pendulum dynamics, while vertical
motion is described by spring-mass dynamics.

Horizontal Motion. We first derive EOM along the horizontal x-
axis. EOM in the y direction are identical. Assuming an inverted
pendulum of mass m, a height h above the ground, and an angle
θ from the vertical axis, gravitational forces act in the horizontal
direction as mg tan θ. Using tan θ = (x − px)/h, we have:

mẍ = mg(x − px)/h. (6)

Because COP motion is linear (Eq. 3), the solution is given by:

x(t) = β1e
αt + β2e

−αt + px(t) (7)

where β1 = (x0 −p0,x)/2+(ẋ0T − (pT,x −p0,x))/(2αT ), β2 =

(x0 − p0,x)/2 − (ẋ0T − (pT,x − p0,x))/(2αT ). α =
p

g/h,
x0/ẋ0 are the horizontal COM position/velocity at the beginning of
the stance phase, and h is the COM height at the beginning of the
stance phase.

Vertical motion. Vertical motion is modeled using a spring mass
system, subject to gravitational and spring forces:

mz̈ = k(r − z) − mg. (8)

Because the rest length varies linearly (Eq. 4), the motion is given
by:

z(t) = d1 cos(ωt) + d2 sin(ωt) + r(t) − g/ω2
(9)

where d1 = z0 − r0 + g/ω2, d2 = ż0/ω − (rT − r0)/(Tω), ω =
p

k/m, and z0/ż0 are the COM position/velocity at the beginning
of the stance motion in the vertical direction. In all our examples
we use g = 9.81 m/s2 and k = 1.
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Figure 4: Preview optimization schedule. Depending on the opti-
mization results, different phases are excluded: Walking alternates
between double-stance (DS) and single-stance (SS). Running al-
ternates between SS and Flight (F). Standing only uses a single
DS phase. Exchange of support (EOS) occurs between subsequent
stance phases.

Heading. To compute the character’s heading α(t), we assume
the pelvis orientation is independent of linear COM motion. Be-
cause the controlled angular acceleration α̈ is constant, we have:

α(t) = α0 + α̇0t +
1

2
α̈t2. (10)

4.3 Flight Dynamics and Simulation

The complete state vector during flight is:

s(t) =
ˆ

c(t)T ċ(t)T α(t) α̇(t) ∅ ∅
˜T

(11)

When the character is in flight, projectile motion equations are used
to describe COM motion. Since joint forces have no effect on the
COM trajectory or heading, the only control parameter for the flight
phase is the duration T :

uf =
ˆ

T
˜

(12)

The equations of motion are then:

c(t) = c0 + ċ0t −
1

2
c̈t2 (13)

α(t) = α0 + α̇0t (14)

and c̈ =
ˆ

0 g 0
˜T

is the acceleration due to gravity.

4.4 Multi-step simulation

Simulation over multiple steps requires concatenating multiple
stance and flight phases. Walking emerges as a sequence of alter-
nating double and single-stance phases, whereas running alternates
between single-stance and flight (Fig. 4). In all cases, single-stance
phases alternate between left-foot and right-foot stance. We capture
multiple types of locomotion with a single, fixed preview schedule
of 6 phases (Fig. 4): double-stance, single-stance, flight, double-
stance, single-stance, and flight. Optimizing a preview schedule
entails optimizing six sets of control parameters:

U =
ˆ

u1 u2 u3 u4 u5 u6

˜

. (15)

In every schedule, only a subset of the phases will occur. Phases as-
signed a zero duration by the optimization (Ti = 0), will be omitted
from the final plan. The initial phase must match the initial state of
the fully-body character, e.g., if the current character state is single-
stance, then the first double-stance phase is skipped. Because it is
not possible to transition from flight directly to double-stance (i.e.,
one foot will always land slightly before the other), at least one of
phases 3 and 4 will always be skipped.

When the character is not standing in place, exchange-of-support
between left and right stance feet will occur after phases 2 or 3.
This requires a new footplant to be selected. We use an additional
2D control parameter:

ufoot = yswing (16)

to specify where the swing foot should be planted. Given yswing

and the character’s heading α at the beginning of the corresponding
phase, the shape of the character’s foot is projected onto the envi-
ronment to determine the corresponding Ω for rest of the schedule.

Given initial conditions, s0 and control parameters, U, a preview
simulation is then performed by applying EOM for each phase se-
quentially. Concatenating the individual trajectories gives the low-
dimensional motion over the entire preview schedule:

S(t) =
ˆ

s1 s2 s3 s4 s5 s6

˜

(17)

Since each phase is polynomial, the complete sequence is piecewise
polynomial. The total duration of the schedule is the sum of the
individual durations, Tsched =

P

i Ti.

To avoid impulsive changes in motion, we enforce continuity in
control parameters across consecutive stance phases. Specifically,
pT for phase i must equal p0 for phase i+1; likewise rT for phase
i must equal r0 for phase i + 1. As a result, the preview control
parameters U consists of 23 free parameters.

5 Preview Optimization

Given initial conditions s0, the preview optimization selects opti-
mal control parameters, U⋆ for the preview schedule, relative to a
set of user-specified energy terms gi(S):

U
⋆ = arg min

U

X

i

wigi(S) (18)

Because the landscape of our objective has many local minima, we
solve the optimization using Covariance Matrix Adaptation (CMA)
[Hansen 2006]. To speed up the optimization, we reuse the solution
from the previous timestep as the initial guess for the current solu-
tion. In our implementation, we run CMA with a maximum of 5000
objective function evaluations and a population size of 15. The pro-
jectile avoidance examples, discussed in Section 7, uses up to 10000
evaluations. Two types of terms are included in the preview opti-
mization objective: goal objectives and modeling objectives. The
optimal control parameters U⋆ yield an optimal simulation S⋆.

Our system uses the simulator described in [de Lasa et al. 2010],
which uses an inelastic (ǫrest = 0) LCP-based contact model with
Coulomb friction (µ = 1). Our human model has 37 degrees of
freedom (Fig. 3). All limbs are assumed to have constant density.
Table 1 lists typical parameters used in our system to achieve dif-
ferent types of motion.

5.1 Goal Objectives

Using goal objectives, users can specify desired properties of mo-
tion. Our system uses four types of goal objectives: i) step duration,
ii) step length, iii) pelvis heading, and iv) COM height. Throughout
this section, we denote the first and second foot step of the schedule
using A and B respectively. See Table 1 for typical settings used in
our examples.

We seek solutions with steps of user-specified duration Tstep. De-
viations are penalized using:

gsteptime = (TA − Tstep)2 + (TB − Tstep)2 (19)



where the total duration of each step, TA and TB , are the sums of
their respective double and single-stance durations.

To encourage steps of a particular length, dstep, and in the desired
direction of travel, d, we use:

gstepdist = (dA − dstep)2 + (dB − dstep)2 (20)

where dA = (cA−c0)
T d and dB = (cB−cA)T d are the length of

the first and second step, projected in the desired direction of travel,
and ci is the Cartesian location of the COM at different points in
the preview.

Since heading changes cannot be achieved instantaneously, we de-
termine error in orientation at the end of the preview using:

gheading = (αB − αd)2 (21)

where αd is the desired character heading. This term allows a user
to steer the character.

Transitions between walking and jumping arise based on foothold
selection and user constraints. To encourage motions with pro-
nounced ballistic phases, we include an objective:

gcom = (hǫ − hd)2 (22)

hǫ = max (hapex − hstart, hapex − hend) . (23)

hstart, hend, and hapex are the COM heights at the start, end, and
apex of the first flight phase, respectively. hd is expressed relative
to the COM standing height.

5.2 Modeling Objectives

Modeling objectives play an important role in compensating for
simplifications made by the decoupled preview dynamics model.
We use three modeling objectives: i) COM acceleration, ii) leg
length, and iii) foot position relative to hips. Although model-
ing objectives use error integrals over the preview window, these
quantities can be calculated in closed-form, due to the piecewise-
polynomial COM preview motion (Sec. 4.2).

Because we optimize a simplified passive model, with no explicit
force inputs, it does not make sense to measure stride power. In-
stead, we seek smooth motions with small COM accelerations:

gaccel =

Z

c̈(t) dt. (24)

A key simplification made by our stance model is that COM height
is constant during stance. Though this simplifies the mathematical
preview model description, it can produce unnatural “flat walking”
motions. Natural walking is characterized by an arc-like motion of
the stance leg about the COP. To encourage this type of motion, we
penalize motions with large variations from the target leg length:

gleg =
X

i∈{R,L}

Z

(L2

i − L2

r)
2 dt (25)

where Li = ||yi
hip − yi

ankle || is the length of leg i, measured be-
tween the hip and the ankle (Fig. 3) and Lr is the character’s leg
length when standing. The positions yhip and yankle are defined
by fixed horizontal offsets from c and yswing , respectively. This
term also helps avoid drift, keeping the leg length “centered” near
its nominal value. Weights for this objective term are kept small,
since motions such as running and jumping require substantial leg
compression.

Table 1: Controller Parameter Values. Nominal values are based
on observed human motion. Typical preview optimization weights
are: wsteptime = 10, wstepdist = 10, wheading = 1, wcom = 0,
waccel = 0.05, wleg = 10, whip = 10.

Action dstep [m] Tstep [s] wcom hd [m]

Walk 0.75 0.6 0 0

Run/Jump 1.05 0.4 > 0 0 − 0.5

In our preview model, we assume pelvis orientation in the axial
plane is completely decoupled from forward motion. Even for char-
acters with small hips, changes to pelvis orientation will require
leg-length changes. To compensate for this simplification and to
generate motions with the feet roughly pointed in the same direc-
tion as the pelvis, we use an objective:

ghip =
X

i∈{R,L}

Z

||y′
hip − y

′
ankle ||

2 dt (26)

where y′
hip and y′

ankle are the 2D projections of the hip and ankle
position onto the ground plane. This term encourages the hip to
stay over the ankle.

5.3 Constraints

To ensure solutions calculated for the simplified model are valid
when mapped to the full character, several geometric constraints,
based on target character skeletal properties, are enforced. With
the exception of leg length, all of the constraints are expressed in
CMA as variable bounds constraints. Leg length constraints are
represented using a sigmoidal soft-constraint [Liu et al. 2005].

The COP locations p0/T must lie within the base-of-support during
each stance phase. The locations p0/T are represented by bilinear
coordinates within the contact quadrilateral. During double-stance,
a quadrilateral is fit to ΩL ∪ ΩR.

We limit the model’s telescoping leg length:

Li ∈ [ Lmin, Lmax ] (27)

to ensure leg length limits imposed by the full character are not
violated. Lmax is the maximal hip to ankle distance of the full
character when the legs are fully extended and Lmin is the same
distance when the legs are fully contracted.

The footstep location is constrained to lie near the COM:

||c‖ − yswing||1 <
1

2
Lr (28)

where c‖ are the COM coordinates projected on the ground plane
and Lr is the character’s leg length when standing. The L1 norm is
used to enable this to be expressed as bounds constraints.

Each phase must have a non-negative duration T ≥ 0.

6 Full-Body Controller

Once S⋆ has been selected, a second optimization computes full-
body joint torques τ for the current time instant. The only quanti-
ties used from S⋆ are the instantaneous second derivatives (c̈d, α̈)
at the start time t = 0, and the target footplant yswing .

Given the optimal preview motion S⋆, we calculate:

x =
ˆ

τ
T q̈T

λ
T

˜T
(29)



where τ are the full-body control torques, q̈ is the generalized ac-
celerations of the body, and λ are linearized friction-cone basis
weights, used to estimate contact forces. We formulate control syn-
thesis as a quadratic program (QP) subject to dynamics constraints:

x
∗ = arg min

x

X

i

wiEi(x)

subject to C(x) = 0,Dx + f ≥ 0 (30)

where Ei(x) are quadratic energy terms and constraints enforcing
physical realism. At each time instant, the optimal x is recalcu-
lated; the resulting accelerations q̈ are then integrated. The dynam-
ics constraints, character model, and integration are implemented
as in [de Lasa et al. 2010]. We do not use prioritized optimization
[de Lasa et al. 2010], although we suspect that it could be used to
provide better stylistic control and robustness.

The optimization uses several objectives. The first two objectives
aim to have the COM and pelvis move in the direction suggested
by the plan. To do this, we use objectives Ecom = ||c̈r − c̈||2 and
Eheading = (α̈r − α̈)2, where c̈r and α̈r are computed by analytic
differentiation of the current polynomial plan representation. Feet
are moved to the target footholds, yswing , using our target objective
Eswing [de Lasa et al. 2010]. Unlike in that work, it is not necessary
to hand-design gait-specific COM trajectories or foot targets.

Another objective, Ehip, implemented as a setpoint objective
[de Lasa et al. 2010], favours motions with similar hip-to-COM
distance as the simplified model. Nominal hip-to-COM distance is
calculated at the beginning of the simulation, when the character is
in its reference standing posture, and assumed to remain constant.
This helps us come up with a better measure of the leg length com-
manded by the SLIP. This quantity is expressed in the heading ref-
erence frame, to encourage the legs and feet to point in the desired
direction of travel.

Additional objective and stabilization terms are taken from [de Lasa
et al. 2010]: angular momentum regulation (EAM ), rest pose
(Erest), head stabilization (Ehead), and foot contact during stance
(Econtact). We do not include stylistic terms, such as arm torque
minimization, as we found that these can cause problems during
sharp turns. Angular momentum (AM) regulation performs two
roles in this optimization. First, as in [de Lasa et al. 2010], AM
regulation is useful for balance and stability. Additionally, because
our simplified model does not represent rotational motion outside
the axial plane, it cannot accurately preview motion with signifi-
cant AM. Hence, keeping AM small for the full-body movement
helps prevent deviations between the models.

It is also possible to compute the optimal preview less frequently,
since, in the absence of unexpected events, the preview optimiza-
tion is normally consistent across a large number of frames. This
gives some improvement in performance. In addition to planning
at integer multiples of the integration timestep, we find it useful to
allow replanning at contact events (e.g., change of support).

7 Results

Using the described formulation, we generate a diverse set of ro-
bust locomotion behaviors. Generating distinct behaviors, such as
walking, running, and standing, as well as transitions between these
behaviors, is achieved by specifying only a high-level set of task
goals. No state machines, special treatment of transitions, or mo-
tion capture data are required to generate these motions. Resulting
motions are shown in the accompanying video.

Performance. When updating dynamics and control at 250Hz,
our unoptimized implementation runs at approximately 15% real-
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Figure 6: Performance vs. Update Frequency. Mean COM track-
ing error and runtime speed, as a function of replanning frequency,
for level-ground walking. Standard deviations are shown for track-
ing error. COM error is the mean cumulative COM tracking error
over each replanning window. Planning was performed at specified
multiples of the integration timestep (blue). To improve stability, we
also allowed replanning at contact transitions (red). Replanning
only at contacts yields speedups with only minimal tracking error.

time on a Intel i7 920 2.67 GHz processor. Planning less frequently
significantly improves performance. To quantify impact of plan-
ning frequency on level-ground walking, we test two algorithm
variants (cf. Fig. 6). First, we restrict preview computation to oc-
cur every 1, 5, 10, 25, 50, 75, and 100 integration steps. At each
step, a COM setpoint objective [de Lasa et al. 2010] is used with
reference acceleration c̈r computed by differentiating the plan, and
with gain kcom

p = 1000. All other aspects of the control remain un-
changed. Second, we repeat the first experiment, but also allow re-
planning at all contact events. Less-frequent planning significantly
improves performance, but also decreased robustness. Without al-
lowing replanning at contact events, we were not able to plan less
frequently than every 100 steps. When limiting replanning to only
occur at contact events, the average speed is 55% realtime; remain-
ing computation is for our simulator and the full-body controller.
Replanning only at contacts yields significant speedups with mini-
mal motion changes. In this case, replanning constitutes a negligi-
ble portion of computation time. To further improve performance,
our method might also benefit from more sophisticated optimiza-
tion methods, such as Basin-CMA [Wampler and Popović 2009],
which could leverage the analytically-differentiable objective pro-
vided by our method. Planning frequency could also be dynami-
cally adjusted based on detected disturbances or preview deviations.

Standing. To have the character stand in place, we set the de-
sired step-size dstep = 0 and deactivate the step-duration objective
wsteptime = 0). This results in a preview consisting of a single
arbitrarily long double-stance phase. If the desired heading, αd, is
changed during standing, the character will take the necessary steps
to avoid errors from ghip, while also satisfying gheading . Small
changes in desired orientation are handled by the torso, whilst large
turns coordinate leg joints. In addition to smoothing locomotion
gaits, using a linear COP model (Eq. (4)) enhances standing by
allowing perturbations to be handled using in-place weight shifts,
rather than requiring many small compensatory steps.

Walking, Running, and Jumping. Walking and running are per-
formed by adjusting step parameters (Table 1). Transitions between
these two locomotion modes occurs automatically as parameters are
changed. To force motion with marked ballistic periods, the COM
height objective (Eq. (23)) is activated and hd is set to a nonzero
value. Alternatively, the weighting of gaccel can be decreased. This
will allow larger deviations in c̈.



Figure 5: Uneven Terrain Capabilities. In addition to walking, running, and turning, low-dimensional planning allows traversal of a variety
of terrains including large drops (1 m), steps (0.5 m), stepping stones, gaps (0.25-0.9 m), and inclines (±15o).

Uneven Terrain Navigation. Because our preview model plans
into the future, control developed for flat ground can also be used
for uneven terrain without changes. The controller can successfully
traverse many types of uneven and constrained terrain, including
gaps, inclines, stairs, large drops, and stepping stones (Figure 5).
A demonstration of the character traversing an obstacle course with
many of these elements is shown in Figure 1. Terrain is represented
as a height field, which is provided to the preview optimization to
select good footplants yswing . For large gaps, we have found it use-
ful to provide the optimization with a signed distance field describ-
ing favored foot plant locations on the terrain. Specifically, when
possible we prefer the character step in the middle of a platform,
away from edges. Currently our system handles inclines of ±15o.
Larger inclines violate modeling assumptions of our approximate
SLIP model, which assumes flat ground.

External Disturbances and Projectile Avoidance. Previous
work has quantified controller robustness through external pertur-
bation tests, e.g., throwing projectiles at the character [Abe et al.
2007; Coros et al. 2009]. In the accompanying video we demon-
strate controller robustness, by testing external forces ranging from
100-500 N applied for 0.1-0.2 sec. to the character’s head, at ran-
dom/cyclic intervals. In addition to applying forces when the char-
acter is in stance, we also test the challenging case of in-air distur-
bances. In both cases, the planner generates steps to avoid failure.

Our controller can also be robust to projectiles by dodging them.
We add a projectile avoidance constraint to the planner that con-
strains the plan to keep the COM above a minimum distance D
from the path of the projectile:

min
t

||p(t) − c(t)||2 > D2
(31)

where t indexes the duration of the plan, and p(t) is the future
path of the projectile. This constraint is enforced by a sigmoidal
soft constraint, and the minimum is computed over a set of discrete
sample times t. As a result, plans are generated that take neces-
sary evasive manoeuvres to step away from projectiles. When the
heading objective is deactivated, the character can changes whole-
body orientation to more quickly avoid projectiles. When heading
is active, avoidance strategies generally involve taking larger steps.

8 Discussion

Attempting to directly apply nonlinear optimization methods to
plan full-body dynamics motion is currently intractable. We show

that effective online motion planning of highly-dynamic behavior
can be performed using a low-dimensional model. Careful choice
of objectives allows us to optimize essential features of the high-
dimensional character’s gait. These choices generate a wide range
of motions over varied terrain. The controller is memoryless: no
persistent state (e.g., index into a state machine or reference trajec-
tory) is stored by the controller, with the exception of remembering
the last stance foot during flight.

Our controllers cannot consistently handle certain types of motion.
For example, we are unable to reliably generate 180◦turns when the
character is running quickly. This arises since the preview model
assumes the body is a point mass and neglects rotational effects.
The fixed, two foot-step horizon we currently use is also too short
for certain terrain types. For example, the character has difficulty
finding good footholds across gaps larger than 1 m and making an-
ticipatory movements to walk on narrow beams. Toe-stubbing can
occur when climbing up stairs larger than 0.5 m, since the current
swing foot objective does not account for terrain collisions. Since
we do not monitor inter-limb collisions, limb interpenetration can
occur.

The focus of this work has been on robustness in challenging tasks
and there is room for improvement in the style of motion. There are
two main factors limiting the style. First, the SLIP model does
not have knees, arms, and other elements that may affect style.
Second, all of our examples err on the side of being overly stiff
at all times. Although steady walking can be accomplished with
fairly loose control, and strategies in [de Lasa et al. 2010] were de-
signed with that in mind, the types of aggressive motions shown
in this work require stiffer response. For example, if the arms are
too loose, they can swing wildly during sharp turns. Varying full-
body controller stiffness based on dynamic state or preview model
predictions, is an interesting direction for future work. Using prior-
itized optimization may also decrease sensitivity of stylistic terms,
as described in [de Lasa et al. 2010].

Our method opens up a number of interesting possibilities and di-
rections for future research. By considering more sophisticated
preview models, it should be possible to generate a broader range
of motions. We currently use a fixed schedule for all generated
motions, with fixed left/right-foot alternation. Hopping on one leg
could be achieved by enforcing left-foot-only contacts; more gen-
eral contact sequences could be optimized, as in [Wampler and
Popović 2009]. Employing a low-dimensional model with angular
momentum regulation would allow motion requiring inertia shap-
ing, such as flips and cartwheels. Additional interactions between



characters and the environment or each other could be handled with
additional representations of end-effectors.

Acknowledgments

The authors are indebted to Simon Breslav for his assistance with
video production and to Jack Wang for inspiring technical discus-
sions. We thank Nikolaus Hansen for his publicly available CMA
implementation. This research is supported in part by NSERC, CFI,
and the Ontario MRI. This work was done while AH was on a sab-
batical visit at Pixar Animation Studios.

References

ABE, Y., DA SILVA, M., AND POPOVIĆ, J. 2007. Multiobjective
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of Human Motion Data using Short-Horizon Model-Predictive
Control. Proc. Eurographics 27, 2.

DE LASA, M., MORDATCH, I., AND HERTZMANN, A. 2010.
Feature-Based Locomotion Controllers. ACM Trans. Graphics
29, 3.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D.
2001. Composable controllers for physics-based character ani-
mation. In Proc. SIGGRAPH, 251–260.

FULL, R. J., AND KODITSCHEK, D. E. 1999. Templates and
anchors: Neuromechanical hypotheses of legged locomotion on
land. J. Exp. Biology 202, 3325–3332.

HANSEN, N. 2006. The CMA Evolution Strategy: A Compar-
ing Review. In Towards a New Evolutionary Computation: Ad-
vances on Estimation of Distribution Algorithms. 75–102.

HODGINS, J. K., WOOTEN, W. L., BROGAN, D. C., AND

O’BRIEN, J. F. 1995. Animating human athletics. In Proc. SIG-
GRAPH, 71–78.

KAJITA, S., MATSUMOTO, O., AND SAIGO, M. 2001. Real-time
3D walking pattern generation for a biped robot with telescopic
legs. In Proc. ICRA, 2299–2306.

KAJITA, S., KANEHIRO, F., KANEKO, K., FUJIWARA, K.,
HARADA, K., YOKOI, K., AND HIRUKAWA, H. 2003. Biped
Walking Pattern Generation by using Preview Control of Zero-
Moment Point. In Proc. ICRA, 1620–1626.

KUFFNER, J., NISHIKAWA, K., KAGAMI, S., INABA, M., AND

INOUE, H. 2003. Motion Planning for Humanoid Robots. In
Proc. ISRR, 365–374.

LASZLO, J., VAN DE PANNE, M., AND FIUME, E. 1996. Limit
cycle control and its application to the animation of balancing
and walking. In Proc. SIGGRAPH, 155–162.

LIU, C. K., HERTZMANN, A., AND POPOVIĆ, Z. 2005. Learning
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