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ABSTRACT 

Modeling 3D objects and scenes is an important part of computer 
graphics. One approach to modeling is projecting binary patterns 
onto the scene in order to obtain correspondences and reconstruct 
a densely sampled 3D model. In such structured light systems, 
determining whether a pixel is directly illuminated by the 
projector is essential to decoding the patterns. In this paper, we 
introduce a robust, efficient, and easy to implement pixel 
classification algorithm for this purpose. Our method correctly 
establishes the lower and upper bounds of the possible intensity 
values of an illuminated pixel and of a non-illuminated pixel. 
Based on the two intervals, our method classifies a pixel by 
determining whether its intensity is within one interval and not in 
the other. Experiments show that our method improves both the 
quantity of decoded pixels and the quality of the final 
reconstruction producing a dense set of 3D points, inclusively for 
complex scenes with indirect lighting effects. Furthermore, our 
method does not require newly designed patterns; therefore, it can 
be easily applied to previously captured data. 
 
CR Categories: I.3 [Computer Graphics], I.3.7 [Three-
Dimensional Graphics and Realism], I.4 [Image Processing and 
Computer Vision], I.4.1 [Digitization and Image Capture]. 
 
Keywords: structured light, direct and global separation, 3D 
reconstruction. 

1 INTRODUCTION 

Modeling real-world scenes plays an important role in computer 
graphics, virtual reality, historical site preservation, and other 
commercial applications. One option is to use structured light 
systems that make use of lighting devices (e.g., digital projector) 
to encode scene points by projecting illumination patterns and 
taking images of the scene under each pattern. Pixels with the 
same codeword are corresponded and triangulated to obtain dense 
3D scene samples allowing for point-based modeling, rendering, 
and other graphics applications [2]. One commonly used 
illumination pattern is the binary pattern, which is an image of 
interleaving black and white stripes. Each illumination pattern sets 
one bit of the codeword of a pixel according to whether the 
corresponding scene point is directly illuminated or not. 

Determining whether a pixel is on or off under an illumination 
pattern is an important and challenging problem in structured light 
systems. Ideally, applying a threshold to a captured image yields a 
simple binary image for pixel classification. However in practice, 
the unknown and potentially complex surface and illumination 
properties of the scene make such a simple method prone to many 
classification errors. This leads to incorrect correspondences and 
thus either to a bad reconstruction or to many samples being lost. 
To achieve more accurate classification and greater number of 

samples, previous methods attempt to adaptively compute a pixel 
threshold value, to project pattern images and their inverses, to 
use several camera exposure times, to project multiple patterns 
with different intensities, or to use post-processing to clean-up 
classification (e.g., [5][6][8]).  

Most of these methods assume that a scene point is brighter 
when it is illuminated. However, this assumption only holds when 
a scene point has a weak indirect light component. Consider the 
following counter-intuitive examples. (1) If a scene point is in 
shadow, it should have zero intensity under any illumination 
pattern. However, due to inter-reflection from other surface 
patches, the point might have large illumination intensity and thus 
be classified incorrectly. (2) A scene point may appear dark 
despite being directly illuminated if the part of the scene from 
which it would normally receive a significant amount of indirect 
light is currently not lit. Yet, projecting a slightly different pattern 
might illuminate the source of the indirect light and make the 
same point appear very bright even if it is now not directly 
illuminated. While the total direct and total indirect illumination 
components of a fully lit scene can be separated without 
knowledge of scene geometry (e.g., [3]), the indirect illumination 
component for arbitrary projected patterns depends both on the 
pattern and on the scene geometry. This produces the chicken-
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and-egg problem of needing to know scene geometry before 
identifying scene illumination properties and needing to know 
scene illumination properties in order to perform robust 
structured-light scene acquisition.  

Our key observation is that for each pixel, we can estimate tight 
intensity value bounds for when the pixel is on and for when it is 
off. Knowing these intervals, we can accurately classify a pixel 
when its intensity value falls into one interval but not in the other. 
Our method bounds the two intervals of a pixel based on the 
following facts: a pixel is on only if its intensity includes the 
direct component; and, the indirect component of a pixel under a 
black-and-white stripe pattern is smaller than the total indirect 
component of the same pixel. This last assumption is easily true 
since only some of the projector’s pixels are on during any of the 
binary patterns. Our algorithm produces a significantly more 
robust and accurate classification. 

In this paper, we present a pixel classification algorithm for 
structured light systems using binary patterns (Figure 1). First, the 
higher frequency binary patterns are used to separate the direct 
and indirect components of each pixel, as well as to encode the 
pixel codeword. Then, our algorithm computes each pixel’s 
illuminated interval and the non-illuminated interval. A pixel is 
classified according to the two intervals. Pixels that cannot be 
classified are labeled as uncertain (Figure 1b). The classification 
results are fed to a reconstruction engine to demonstrate the 
quality of the classification (Figure 1d). We have captured and 
applied our algorithm to several real-world scenes. Moreover, 
since our method only uses the same binary patterns as in a 
standard structured light system, it can be easily applied to 
previously captured data. Results show that, as compared to naïve 
methods, our algorithm has two significant benefits: it increases 
the total number of decoded pixels and it improves the quality of 
the reconstruction. On average, our algorithm reconstructs 2-7 
times more points for a variety of objects and surface types.   

Our major contributions are 
• a method to determine the intensity intervals of a pixel 

when it is illuminated or non-illuminated during 
structured-light acquisition, and 

• a pixel classification algorithm which allows structured 
light systems to work better in complex scenes undergoing 
significant indirect lighting effects. 

2 RELATED WORK 

Our research improves structured light systems using binary 
patterns with insight provided by direct and indirect illumination 
component separation. As related work, we present a summary of 
work in coded structured light reconstruction with focus on binary 
patterns and in separating direct and global illumination.  

2.1 Coded Structured Light Systems  

Coded structured light systems project illumination patterns onto 
the scene in order to obtain a corresponded set of pixels. The 
correspondence may be performed between the projector and a 
camera or between two or more cameras. The coding strategies 
used by such systems can be classified as temporal coding, spatial 
coding, and direct coding [4]. From among these, temporal time-
multiplexing coding is widely used. In such systems, a set of 
patterns are projected onto the scene while the cameras are taking 
images successively. Binary patterns (e.g., black and white) [1] 
use only the values 0 and 1 as the basis of the codeword; 
therefore, it is easy to decode but requires more pattern images as 
compared to other methods.  

Accurately classifying pixels located within the black-and-
white stripes is a crucial step. Even though the process is 
conceptually simple, it is difficult to achieve robust classification 
in real-world scenes containing complex surface-light interactions 

including strong indirect lighting effects. Trobina [8] presented a 
way to threshold the images by using a single threshold for every 
pixel. The per-pixel threshold is computed by taking images under 
all-white and all-black patterns and averaging the two. The author 
demonstrated that using a pattern and its inverse yields more 
accurate results. The same strategy is also used by Scharstein and 
Szeliki [5]. Each pixel is classified based on whether the pixel or 
its inverse is brighter. These standard methods will not work well 
when the scene has strong indirect lighting effects. On the other 
hand, our method produces better classification in such scenarios 
and also recognizes when a pixel cannot be robustly classified. 

To achieve higher accuracy, previous methods also utilize 
different exposure times [5], multiple intensity illumination 
images [6] and post-processing to clean up classification results 
[5]. In this paper, our focus is on improving the pixel 
classification and structured-light acquisition early in the capture 
process. This way, we produce better samples sooner and more 
robustly. Nevertheless, our algorithm also works with more 
sophisticated methods such as multiple exposures, multiple 
intensities images, and optional post-processing steps. 

2.2 Direct and Indirect Illumination Components 

The intensity of a pixel in a photograph can be decomposed into 
the direct component and indirect (or global) component. The 
direct component is due to light bouncing off the surface in a 
single reflection. The indirect component is due to multiple 
reflections (e.g., inter-reflections, subsurface scattering, etc.). 
Seitz et al. proposed an inverse light transport theory [7] to 
estimate the inter-reflection component for Lambertian surfaces. 
This method requires a large number of images to compute 
matrices used in an inter-reflection cancellation process. 

Nayar et al. presented a fast method to separate the direct and 
global components of a scene lit by a single light source using 
high frequency illumination patterns [3]. In theory, a high 
frequency pattern and its inverse are enough to do the separation. 
In practice, more pattern images, such as a shifting chess board 
patterns, are used to compensate for the low resolution of the 
projector. As pointed out by the authors, the higher frequency 
images of the structured light patterns can also be used to do the 
separation. Therefore, our method precludes the need for 
additional capturing and thus can be applied to previously 
acquired datasets. Furthermore, instead of explicitly seeking to 
remove the indirect component from arbitrarily illuminated 
photographs, our method directly attempts to establish bounds of 
the indirect component and direct component during structured-
light acquisition and uses the bounds during classification. 

3 ROBUST PIXEL CLASSIFICATION ALGORITHM 

A pixel classification algorithm in binary-pattern structured-light 
acquisition uses a set of rules to decide whether a pixel is 
capturing an illuminated or non-illuminated surface point. Pixels 
corresponding to surface points visible from the camera but not 
from the projector should be labeled as uncertain. In the 
following, we describe our pixel intensity intervals and 
classification rules for using one or two binary patterns per bit of 
the codeword. 

3.1 Pixel Intensity Intervals 

To help with classification, we define a pixel’s potential intensity 
interval. For example, for an 8-bit per channel camera, its value 
can span at most 0 to 255. This interval can be further subdivided 
into Pon for when the pixel is directly illuminated and Poff for 
when the pixel is not directly illuminated. Pixel classification 
methods generally establish the lower and upper bounds of the 
two intervals (either explicitly or implicitly). Then, if intensity p is 



 

within one interval but not in the other, the pixel belongs to that 
category. Otherwise, the pixel is labeled as uncertain.  

Consider the following two examples. A simple threshold 
method assumes Poff belongs to [0, t-] and Pon belongs to [t+, 255], 
where t- and t+ are two user-defined threshold values which may 
or may not be the same. Pixels can be classified by comparing 
their intensities against the thresholds as shown in Figure 2a. A 
more accurate method uses the albedo of a pixel as the 
classification threshold t. Each pixel has a different threshold t 
and thus yields a different Pon and Poff per pixel as illustrated in 
Figure 2b [8]. The albedo can be computed by taking two images 
under all-white and all-black illuminations and averaging the two. 
Methods that project a pattern and its inverse assume the two 
intervals are non-overlapping, i.e. the lower bound of Pon is larger 
than the upper bound of Poff [5]. In this case, a single comparison 
between the pixel and its inverse decides which interval the pixel 
falls into without explicitly computing t (Figure 2c). 

All these methods assume that the two intervals are non-
overlapping. However, this is not necessarily true if the scene 
point is undergoing strong indirect illumination. Our method 
overcomes the problem by correctly establishing the lower bounds 
and upper bounds for Pon and Poff. With these intervals, our 
algorithm classifies pixels as on/off accurately.  

Furthermore, our algorithm can robustly reject pixels that are 
not visible from the projector or problematic due to excessively 
strong indirect lighting. This is important because incorrect 
classification leads to inaccurate decoding and then to bad 
reconstruction. 

3.2 Single Pattern Classification Rules 

We first derive the decision rules for classification using a single 

pattern per bit of the codeword. The classification rules involve a 

sequence of comparisons. For a directly illuminated pixel, its 

intensity p can be decomposed into two components: direct 

component d and indirect component ion. The direct component is 

the response to the direct light from the projector; therefore, d is 

invariant under different illumination patterns. On the other hand, 

the indirect component ion depends on the bidirectional reflection 

distribution function (BRDF) at the scene point, the radiance of 

every surface patch in the direction of the scene point, the relative 

geometric configurations between the point and other surface 

patches, and set of the surface patches that are lit. Without 

detailed scene information, this global component is difficult to 

compute. For an indirectly illuminated pixel, its intensity p only 

contains the indirect component ioff . In summary,  
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Since the direct component d of an illuminated pixel is invariant 

to the illumination pattern used, we can compute d for each pixel 
using the separation method introduced by Nayar et al. [3]. Their 
algorithm estimates the per-pixel direct component d, and total 
indirect component itotal for a scene lit by all projector pixels. Note 
that indirect component ion and ioff depend on the illumination 
pattern and the scene geometry; thus, they are different from itotal. 
    After d is computed, determining the intervals Pon and Poff 

becomes a problem of finding the lower bounds and upper bounds 

for ion and ioff. Both ion and ioff are indirect components of the pixel 

when about half of the projector pixels are on. Therefore, they are 

smaller than or equal to the total indirect component itotal because 

a scene point receives more indirect light when all projector pixels 

are on. As intensity values, they are also larger than or equal to 

zero. Thus, 
  
                                         ]0[ , totalon ii ∈                                   (2) 
                                         ]0[ , totaloff ii ∈                                  (3) 
 

From (1), (2), and (3), we establish the lower and upper bounds 

for interval Pon and Poff : 
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As shown in Figure 3a, when d > itotal, i.e. the scene point has a 

stronger direct component, the two intervals are completely 
separated. In this case, the decision rules are as follows: 

 
Rule 1:       p < itotal → pixel is off 
                   p > d → pixel is on 
                   otherwise → pixel is uncertain                   (d > itotal) 
 
The two intervals are very similar to each other when d is close 

to zero (as in Figure 3b). This situation can happen when the 
surface point is not visible from the projector, i.e., it is in shadow. 
Thus, the pixel should be discarded from reconstruction. This 
situation can also occur for a visible pixel with a very small direct 
illumination component. In this case, the indirect light from other 
parts of the scene has a huge impact on its observed intensity. We 
do not have sufficient information to robustly know why the pixel 
is brighter and hence the pixel should be discarded. Our algorithm 
detects these situations and classifies the pixel as uncertain when 
d is smaller than a predefined minimum threshold m. 
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Rule 2:       d < m → pixel is uncertain                              (d ≈ 0) 
 
When d ≤ itotal, the pixel has a relatively stronger indirect 

component and the two intervals overlap near the middle range. 
This is shown in Figure 3c. The pixel can be labeled as on/off 
only if its intensity p is smaller than the lower bound of Pon or 
larger than the upper bound of Poff. Closer values of d and itotal 
produce larger classifiable intervals. Therefore, we have the 
following decision rules: 
 

Rule 3:       p < d → pixel is off 
                   p > itotal → pixel is on 
                   otherwise → pixel is uncertain                   (d ≤ itotal) 

 
Combining the rules for the three different cases together, we 

derive the following single pattern classification rules: 

Table 1. Single pattern classification rules. 

d < m → pixel is uncertain 

p < min(d, itotal) → pixel is off 

p > max(d, itotal) → pixel is on 

otherwise → pixel is uncertain 

3.3 Dual Pattern Classification Rules 

Projecting the code pattern and its inverse yields two values for 
each pixel which can be used to improve robustness. Both pixel 
values, p and p , obey the same single pattern classification rules. 
The single pattern rules can be combined and extended to form 
dual pattern classification rules (see Table 2). In this way, our 
algorithm performs an on/off classification only when a pixel and 
its inverse exhibit consistent behaviors.  

Table 2. Dual pattern classification rules. 

d < m → pixel is uncertain 

d > itotal ^ p > p  → pixel is on 

d > itotal ^ p < p  → pixel is off 

p < d ^ p > itotal → pixel is off 

p > itotal ^ p < d → pixel is on 

otherwise → pixel is uncertain 

  
It is worth noting that when d > itotal, the two intervals are 

completely separated. Hence, the mapping from a pixel and its 

inverse to the two intervals is one-to-one. The classification rules 
can be simplified as the brighter one among the two must be 
directly illuminated. In other words, d > itotal is a sufficient 
condition for a brighter pixel among a pixel and its inverse to be 
directly illuminated, and is the assumption used in some previous 
methods (e.g., [5]). 

3.4 Overlapping Pixel Intervals 

In order to improve the classifiable regions for the ambiguous 
case when d ≤ itotal, we need to decrease the overlap between the 
intervals. This could be accomplished by either increasing the 
lower bound of Pon or decreasing the upper bound of Poff. 
However, given our limitation of not knowing the scene geometry 
a priori, these bounds are already tight, and thus we are limited to 
classifying pixels in that range as uncertain. 
   Consider the following two scenarios regarding an observed 
point (including its corresponding image pixel) and a surface 
patch elsewhere in the scene. The scene is such that the point 
receives indirect light only from the surface patch. The patch itself 
does not receive any indirect light. With an illumination pattern, it 
might be the case that the point is “on” and the surface patch is 
“off”. In this case, the patch does not provide any indirect light for 
the point. The intensity of the point’s corresponding image pixel 
only contains its direct component d. This is a minimum condition 
for when the intensity of an illuminated pixel reaches the lower 
bound d of interval Pon. 

Next, consider the case of when a different illumination pattern 
makes the point “off” and the patch “on”. The point’s only source 
of illumination is the indirect light from the single patch. This 
implies the point’s itotal is only a function of the light from the 
patch. Since the patch does not receive any indirect light, its 
irradiance is a result of the direct light it receives and thus is 
constant when lit. Therefore, the light the patch gives to the point 
is also constant and does not change as long as the patch is lit. 
This is precisely the definition of itotal and hence the intensity of 
point’s corresponding pixel equals to itotal. This is the condition 
when the intensity of a non-illuminated pixel reaches the upper 
bound itotal of interval Poff. Without knowing the geometry, our 
lower bound of Pon and upper bound of Poff is already tight. 

4 RECONSTRUCTION AND RENDERING 

To show the classification results of our algorithm, we 
implemented a reconstruction and rendering engine, which uses 
two mutually calibrated cameras, a digital uncalibrated projector, 
and a standard graphics card. For each camera pixel, we 



 

concatenate the bits from all our binary classification images, 
ignoring any pixel with uncertain bits, and then correspond, 
reconstruct, and render the scene. 

Establishing correspondences implies identifying surface points 
observed by both cameras. Pixel classification produces a set of 
candidate camera pixels for each projector pixel illuminating the 
scene. In practice, digital cameras are often higher resolution than 
projectors and thus several nearby camera pixels decode the same 
projector pixel codeword. We group the pixels and use the center 
as the overall position. To ignore gross misclassifications, a 
simple image-space culling method removes same-code pixel 
clusters that span too much image area.  

Corresponded pixels are triangulated to obtain the 3D location 
of a scene point. Triangulation accuracy depends on the baseline 
and calibration accuracy of the two cameras. In our system, we 
use high-resolution and carefully calibrated cameras to obtain 
good triangulation results. Nevertheless, correspondence and 
calibration errors may cause erroneously reconstructed scene 
points that are excessively distant from their neighboring scene 
points – these points are trivially culled from the solution set. 

Finally, color renderings are produced by splatting each point 
with the corresponding color value from the reference image. 
Each splat consists of an object-space quadrilateral whose size 
and orientation is determined by triangulating the nearby scene 
points in image space. In a first visibility pass, the visible surfaces 
are found by rendering larger than necessary splats to the z-buffer. 
In a second pass, the smallest splats that still cover the object 
surfaces are rendered and blended with the color buffer [2][9]. 

5 IMPLEMENTATION DETAILS 

We use two Canon Digital XTi SLR cameras, each capturing 
images at a resolution of 3888 by 2592, and an Optoma DLP 
projector of resolution 1400 by 1050. During a capturing session, 
20 binary Gray code [1] patterns and their inverses are projected 
onto the scene. Of these patterns, 10 are horizontal stripe patterns 
and the remaining 10 are vertical stripe patterns. The higher 
frequency structured light patterns and their inverses (level 8 and 
level 9 in this paper) are used to separate the direct and indirect 
components for each pixel. All software is implemented on a Dell 
PC with 3.0GHz CPU and 2GB memory. Separation using the 4 
patterns on a scene takes about 20 seconds for each camera. 
Classifying all images from each camera takes about 70 seconds.  

The lower bounds and upper bounds derived in Section 3 are 
for ideal scenarios. In practice, due to the light coming out from 
the deactivated projector pixels and “fogging” inside the projector 
that adds light to the patterns, it is not exact. To compensate this, 
we use a small ε to conservatively reject pixels that are close to 
the interval boundary. The same ε is also used for standard 
methods to achieve reliability as used in [5]. In our experiment, 
we found that a value of 5 (out of 255 gray levels) works well. 

6 RESULTS AND DISCUSSION 

We have tested our algorithm on three different scenes, each of 
different complexity and each with several objects of diverse 
materials. To compare the quality of our pixel classification 
algorithm, we also implemented two standard pixel classification 
methods for structured light systems. Standard method 1 uses the 
average of the two images captured with all white and all black 
patterns as the threshold to classify each pixel. Standard method 2 
determines whether a pixel is directly illuminated according to 
whether the pixel or its inverse is brighter.  

Figure 4 shows the classification results for a corner scene. 
White, black, and gray pixels in the classification images 
represent on, off, and uncertain, respectively. Figure 4a is the 
input image of the scene with two zoomed-in areas. Figure 4b and 
4c show the classification results using standard methods 1 and 2 
on these areas. Figure 4d shows the improved classification using 
our method and using the same structured light patterns for 
separating total direct and indirect illumination. Our method not 
only correctly classifies pixels in the shadow as uncertain 
(rectangle 1), but also reduces misclassifications on the table top 
due to strong inter-reflection (rectangle 2).  

Our results also show that, in practice, the additional separation 
quality obtained by using more images does not produce a 
significant difference for classification. For example, Figure 4e 
shows further improved separation results that can be obtained but 
at the expense of many additional captured images. The images 
used for total direct/indirect illumination separation in Figure 4e 
are projected chess board patterns with 4 by 4 black and white 
blocks shifted one pixel each time and 49 times along both X and 
Y directions. Using the structured light patterns for separation 
generates slightly more reconstructed points because accurate 
separation will result in more conservative classification, and then 
less reconstructed points. Although using additional patterns lead 



 

to more accurate reconstruction, we use the higher frequency 
structured light patterns for separation, which requires 
significantly less effort and still achieve roughly the same quality. 

As compared to other methods, our algorithm may yield 
relatively more uncertain pixels in one pattern image but over all 
produces more decoded pixels due to robust classification. 
Decoded pixels are those that can be fully classified as either on 
or off in all the images. The quantity improvement is 
demonstrated in Figure 5 using the same corner scene. It shows 
binary images with decoded pixels in white and uncertain pixels 
in black. Therefore, an image with more decoded pixels will 
appear to be brighter. Our methods (Figure 5c and 5d) clearly 
produce denser decoded pixels than standard methods (Figure 5a 
and 5b). Graphs in Figure 6 plot the total numbers of decoded 
pixels for our three scenes using all four methods. Our 
improvement is about 20% to 60% depending on the scene. 

Besides the number of decoded pixels, our method also 
improves the reconstruction quality. Figure 7 shows the number of 
reconstructed points after culling away outliers using the same 

thresholds for all methods. Each group shows the results of one 
scene. It is worth noting that although the improvement of the 
total number of decoded pixels is at most 60%; our algorithm 
reconstructs 1.8 to 2.5 times the number of points as compared to 
the better standard method. This implies that the decoding in our 
method is more accurate because pixels are less likely to be culled 
away by simple outlier removal.  

Figures 1, 8, 9, 10 show the quality of the reconstructed 3D 
point clouds both for our method and for standard method 2. The 
black and white images among these figures simply show the 
reconstructed points as white dots. A higher point cloud density 
leads to a brighter image. The color images are generated using 
our point-based rendering implementation.  Figures 8 and 9 
clearly show the higher number of samples we are able to robustly 
decode and reconstruct for the corner room and objects scene. 
Moreover, a point-based rendering scheme has the advantage of 
precluding us from having to worry about difficult 3D 
triangulations. The denser samples produced by our approach 
yield better quality imagery than simply increasing the splat size 

 

Figure 5. Binary Images for Decoded Pixels. White means a pixel can be decoded without any uncertainty. Images are 

generated using: a) standard method 1, b) standard method 2, c) our method using structured light pattern images for 

separation, and d) our method using additional pattern images for separation. More decoded pixels lead to a brighter image.

(a) (b) (c) (d)

 

Figure 6. Decoded Pixels. Number of decoded pixels in 
three different scenes using two standard methods and our 
method with structured light pattern separation and  with 
additional pattern image separation: 1) a corner scene, 2) a 
table top scene with wooden objects, and 3) a table top 
scene with two shiny objects. The improvement is about 
20%-60%. 
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Figure 7. Reconstructed Points. Number of points for three 
different scenes using two standard methods and our method 
with structured light pattern separation and with additional 
pattern image separation. The improvement is about 1.8 to 2.5 
times. Please note that the numbers of reconstructed points are 
much smaller than the numbers of decoded pixels due to the 
limited resolution of the projector. 



 

Figure 8. Point Clouds. In (a-d), pictures in the first row are generated using standard method 2. Pictures in second row are generated 

using our algorithm: a)  a close up view of the vase, b) point-based rendering of the vase, c) a close up view of the bust, and d) a close up 

view of the giraffe. e) The point-based rendering of the entire scene using standard method 2. f) The point-based rendering of the entire 

scene using our method.

(a) (b) (c) (d)

(e) (f)

Figure 9. Objects Scene Point Clouds. a) Point-based rendering of the scene.  b-d) Several views of the reconstructed point clouds. 

The first row are the results using standard method 2 and the second row are the results using our method.

(a) (b) (c) (d)

Figure 10. Shiny Objects Scene Point Clouds. a) Point-based rendering of the scene using our method. b) A close up view on the head 

using standard method 2. c) A close up view on the head using our method.

(a) (b) (c)



 

to compensate for the missing points (see Figure 10).  
Figure 11 shows the percentage of outliers under progressively 

stricter culling criteria. As can be seen, the outlier percentage of 
standard method 2 is always higher than that of our method. 
Moreover, it increases much faster than that of our algorithm: 
only about 68% of the original points remain using the standard 
method; while 96% remain using our method. 

Finally, our algorithm also works when the scene has 
environment ambient light. This requires us take an image of the 
scene with environment light only. Then the ambient component 
is subtracted from each of the input pattern images. The results are 
shown in Figure 12. 

7 CONCLUSIONS AND FUTURE WORK 

We have presented an efficient, robust and easy to implement 
algorithm for classifying a pixel to be on/off/uncertain in 
structured light systems using binary patterns. Our method 
correctly classifies pixels and rejects ambiguous pixels based on 
their intensities. Our experiments show that as compared to naïve 
methods, our algorithm improves both the quantity and quality of 
the reconstructed points. This produces dense datasets suitable, for 
instance, for point-based modeling. Furthermore, since some of 
the structured light patterns can be used to obtain direct and 
indirect separation, our method can be applied to previously 
captured data. 

One limitation of our algorithm is being conservative. As long 
as the pixel intensities are in the ambiguous range, our method 
classifies the pixel as uncertain. For an object with strong sub-
surface scattering, its indirect component can be much larger than 
its direct component. Therefore, our algorithm will classify many 
pixels as uncertain due to a small direct component. As shown in 
Figure 13, the teddy bear has a small direct component and a very 
large indirect component. Our algorithm produces very few 
decoded pixels while a naïve method can produce at least a very 
coarse reconstruction. As a matter of fact, if the classification 
threshold ε is set to zero, a naïve method will decode every pixel 
by allowing many misclassifications. Our method always makes 
conservative but accurate decisions due to the tight bounds of the 
intervals. 

In the future, we would like to extend our idea to structured 
light systems using n-ary code patterns (e.g. multi-level gray). 
This involves establishing bounds for each gray level of the 
pattern instead of only two. We would also like to find better 
intensity bounds for a scene. This could be done by taking more 
images of the scene under structured light patterns using different 
camera/projector parameters. 
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Figure 11 . Outlier Percentage. We cull the corner scene 
outliers using a threshold for both world space culling (in mm) 
and image space (in pixels). The horizontal axis is the culling 
threshold. Our method results in much fewer outliers than 
standard method. 

Figure 12. Ambient Lighting. For a scene under significant 

ambient lighting, our method still performs well: a) a picture of 

the scene taken under ambient light and b) a reconstructed 

point cloud using our method.

(a) (b)

Figure 13. Limitations. Our algorithm fails when the indirect 

illumination is excessively strong: a) a picture of a teddy bear, 

b) its direct component in grayscale, and c) its indirect 

component in grayscale.
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