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Abstract

The dehazing algorithm aims to remove haze from an image and has been widely

used as a pre-processing step in several computer vision applications. The performance

of the computer vision algorithm, however, is significantly affected by weather condi-

tions. Hence, conventional algorithms do not work well when weather conditions vary

severely over time. This paper proposes an effective haze removal algorithm based on

a single image, which is robust to the varying weather conditions. Unlike conventional

methods, which estimate "global" atmospheric light, we find the "local" atmospheric

light by assuming that it is absorbed and emitted differently at each atmospheric par-

ticle. We divide the image into two components, namely, illumination and reflection,

according to the retinex theory, and obtain the pixel-wise atmospheric light from the il-

lumination. To estimate an accurate transmission, we initialize it by using a combination

of haze-relevant features that have been proven experimentally to be highly correlated

with haze. The aforementioned processes interact with each other in producing accurate

dehazing results. We solve the dehazing problem via convex optimization and obtain the

optimal solution. The experimental results demonstrate that the proposed algorithm out-

performs state-of-the-art methods, using the benchmark dataset with regard to contrast,

detail, and visibility. Quantitatively, our method produces better dehazing results than

other conventional methods.

1 Introduction

In order for computer vision systems (e.g. object recognition, detection, and tracking sys-

tems) to perform as well as possible, the input image should be clear. An image captured

outdoors, however, can be easily contaminated by several factors such as light scattering,

absorbing, haze, smoke etc. The contaminated image has low contrast and faded color,

which reduces overall visibility and degrades the computer vision algorithm. Hence, for

the algorithms utilizing images captured outdoors, the haze removal process is a necessary

pre-processing step.

Conventional haze removal algorithms [18, 23, 27] typically utilize multiple information

such as depth, 3D model, multiple images, and sensors. Recently, the algorithms utilizing

just a single image have shown considerable success with dehazing problems [8, 15]. Most

single image-based algorithms [21, 33, 35] handle the ill-posed dehazing problem with dark

channel prior, while others [2] solve the problem by using multiple images generated from
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Figure 1: Overall procedure of the proposed algorithm.

a single image. Variant algorithms [7, 10] improve the contrast and image field-of-view of

without estimating atmospheric light and transmission. Dehazing algorithms typically as-

sume that the input image is captured during daytime. Studies [3, 20, 25] mitigated this

assumption and considered the dehazing problem during nighttime. A nighttime haze im-

age includes multiple light sources, as well as atmospheric light; therefore, it is difficult to

obtain an accurate haze removal image. The method [20] overcomes the above problem by

accurately describing additional light sources in the image. Recently deep convolutional neu-

ral network based methods [5, 26] have emerged and have produced promising results. The

aforementioned methods, however, have a common problem, which is caused by considering

atmospheric light as global.

In this paper, we argue that the haze images under real-world environments can not be

described by the "global" atmospheric light, and we propose a new dehazing algorithm.

Given an input image, we first adjust brightness using a negative correction. In order to

estimate pixel-wise atmospheric light from the adjusted image, we obtain the illumination

from the image and use it to extract haze-relevant features. The accurate initial transmission

is then estimated. After regularization, the final transmission is generated and we can obtain

the haze removed image. Fig. 1 shows the overall procedure of our algorithm. Our proposed

method makes four contributions; First, it utilizes the local atmospheric light during haze

removal. To the best of our knowledge, there is no other algorithm that uses pixel-wise

atmospheric light estimation. Second, it estimates the initial transmission by using haze-

relevant features. With theses features, an accurate transmission is obtained. Third, we

propose a dehazing algorithm, which can be used both during day and nighttime. Existing

algorithms developed for addressing the daytime haze removal problem cannot be used in

addressing the nighttime problem. The proposed method, however, can be used in both cases.

Fourth, we demonstrate that our method outperforms state-of-the-art algorithms with regard

to daytime haze removal. Additionally, our method is competitive with algorithms used for

nighttime haze removal. By using the proposed method, we obtain the optimal solution to

the dehazing problem via convex optimization and improve the contrast and details in haze

removal images. The remainder of this paper is organized as follows: Section 2 introduces

related work; Section 3 explains the proposed algorithm; in Section 4, the performance of

the proposed method is evaluated based on the benchmark dataset and comparison is made

to state-of-the-art methods; Section 5 concludes the paper with a summary of our study.

2 Related Work

To obtain good haze-free images, the methods in [18, 23, 27] used multiple images captured

from different views to extract the scene depth information. The 3D geographic model was
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then constructed and used as an initial transmission during the dehazing process. He et al.

[15] observed the statistical characteristics of haze-free images and proposed dark channel

prior. They found that at least one of R, G, B channel had a low brightness value in 5,000

images, in which the sky region was manually removed. Hence, if some regions had high

brightness values, the region could be considered a haze region. Tang et al. [31] constructed

a regression model, based on random forest, using several haze-relevant features. Tarel et al.

[32] proposed the "Median of Median Along Lines" algorithm, which preserved both edges

and corners in the haze-free image by suppressing the halo effect during the veil estima-

tion process. Schaul et al. [27] used the infrared image to make a better, haze-free image.

Tan et al. [30] removed haze from an image using the additional depth data. Meng et al.

[22] presented a boundary constraint and contextual regularization to accurately estimate the

transmission. Yeh et al. [35] estimated the atmospheric light accurately by using pixel-based

dark and bright channels. Kim et al. [16] employed a quad-tree method to estimate the at-

mospheric light; then, they estimated the transmission to improve contrast. Gao et al. [11]

suppressed the halo effect with a maximum value filter and performed a negative correction

to solve the over-saturation problem in the haze-free image. Recently Choi et al. [6] provided

a dehazing evaluation method and a real-world dataset.

To efficiently detect the haze, Ancuti et al. [1] proposed the "Semi-Inverse" method.

Fattal et al. [9] assumed that pixel values of haze regions are on the same line in the RGB

space. Berman et al. [4] proposed a non-local algorithm based on the observation that a

haze-free image is represented by clusters containing hundreds of distinct colors. To find

optimal solutions to the dehazing problem, He et al. [14] proposed a fast convex optimization

algorithm by applying the discrete haar wavelet transform. Nishino et al. [24] presented a

stochastic model based on a factorial Markov random field. This method estimated the scene

albedo and depth and derived latent statistical structures in the image.

Owing to the fact that the algorithms described above assume a global atmospheric light

they have difficulty describing white objects or other light sources in the image. Inaccu-

rate transmission, along with the erroneous atmospheric light, causes saturation and over-

enhancement. In this paper, we propose a solution to the aforementioned problem, which

consists of estimating the atmospheric light in a pixel-wise manner and by initializing the

transmission using a new haze-relevant feature.

3 Proposed Method

The objective of dehazing problems is to improve the details and visibility of a haze image

with accurate atmospheric light and transmission estimation. To achieve this goal, we use an

algorithmic approach based on convex optimization [14]. We use the haze model proposed

by Koschmieder et al. [19]. The haze image I is generated by combining the haze-free image

J and the global atmospheric light A with the weight t.

I(X) = J(X)t(X)+A(1− t(X)) , (1)

where t is the transmission, which is the amount of light transmitted from the camera. The

value of t is typically dependent on the distance from the camera. In (1), the first and second

terms represent direct attenuation and air light, respectively. The estimation of A and t is

described in Section 3.1 and Section 3.2, respectively. Convex optimization is explained in

Section 3.3, which produces a haze-free image J.
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(a) (b) (c)

Figure 2: A atmospheric light estimation. (a) He’s method [15]. (b) Quad-tree searching

method [16]. (c) Proposed pixel-wise atmospheric light method.

As the first step of our dehazing algorithm, we apply the negative correction technique

[11] to the image to prevent it from becoming dark during the dehazing process. The negative

correction of the two-dimensional coordinate X = (x,y) of the image is formulated by

I(X) = 1−F
(

Î(X)
)

, (2)

where Î(X) denotes the inverted value of the coordinate (x,y), which is normalized to lie

between 0 and 1. In (2), F(Î(X)) indicates a linear transformation function, which calculates

brightness correction in the inverted image. The result of F(Î(X)) is inverted back into I(X).
With the use of negative correction, we can prevent the image from falsely having high

brightness areas during the dehazing process. The negative correction result is used as the

input for subsequent processing.

3.1 Pixel-wise Atmospheric Light Estimation

The estimation of atmospheric light A is a challenging problem. Depending on the A value,

color can be distorted or saturated. Various estimating methods have been proposed to get an

accurate A value. He’s method [15], which estimates the highest value in the dark channel is

commonly used; however, it is problematic when selecting a white object or a light source,

as shown in Fig. 2 (a). The quad-tree searching method [16], which divides the image and

finds a point with a high average brightness, has been proposed as a method for solving the

aforementioned problem; however, the area found by this method frequently converges into

a white object, as shown in Fig. 2 (b).

Most existing dehazing algorithms estimate the atmospheric light as global and use it as

one fixed value. In real-world environments, however, all the particles in the atmosphere

absorb and emit light independently; therefore, each one of them acts as a light source.

Based on this fact, we estimate the atmospheric light in a pixel-wise manner, assuming that

the illumination of each pixel can be used as the atmospheric light. According to the retinex

theory, the image I(X) can be decomposed into illumination L(X) and reflectance R(X) for

each channel.

Ic(X) = Lc(X)×Rc(X) ∀ c = 1,2,3, (3)

In (3), L(X)c can be obtained by the following cost function [28]:

Lc(X) =
∫

(

‖∇Lc(X)‖2 +α‖Lc(X)− Ic(X)‖2
)

dx, (4)

where ∇ denotes the first-order differential operator, ‖ · ‖ returns the absolute value, and

α is a weighting parameter. The first term in (4) imposes the smoothness constraint of the
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(a) (b) (c)

Figure 3: Estimation of the initial transmission. (a) Inversion Colour Attenuation. (b) White

- Dark channel. (c) Proposed initial transmission.

illumination and the second term forces the illumination to have an intensity similar to I(X)c.

Then Lc(X) in (4) is obtained through a gradient-descent algorithm [28]. Based on Shen’s

method [28], we apply this process to all the colour channels, R, G, and B. We make the

illumination smoother over the pixels by performing relative total variation filtering (RTV)

[34]. The estimated illumination is then used as a pixel-wise atmospheric light. Fig. 2(c)

shows our atmospheric light results.

3.2 Robust Initial Transmission Estimation

The transmission t plays a very important role in the dehazing algorithm along with the

atmospheric light. An erroneous estimation of t can result in a reconstructed image with

numerous haze regions remaining. Therefore, it is necessary to estimate a more accurate

initial transmission to obtain a better haze-free image. In this paper, we utilizes haze-relevant

features, which are highly correlated with haze. We obtain the haze-relevant feature by using

modified colour attenuation [5] and dark channel [15], in which colour attenuation can be

expressed as follows:

C(X) = I∗(X)−
maxc∈r,g,bIc(X)−minc∈r,g,bIc(X)

maxc∈r,g,bIc(X)
, (5)

where I∗(X) denotes the maximum value of each channel per pixel.

The haze-free image typically has vivid colors. On the other hand, the haze image is

faded from its original colors, resulting in saturation into high colors. Therefore, features

based on the saturation information are appropriate for detecting haze. In (5), we assess

whether a region in the image is saturated by using the second term, which has a small value

when the region is highly saturated. Hence, colour attenuation C(X) has a large value in haze

regions. It has to be noted that the first term is a bias term.

To obtain a more robust haze-relevant feature, we also define the white channel and

compute the difference between the white and dark channel:

WD(X) =W (X)−D(X), (6)

where W (X) and D(X) are the white channel and dark channel, respectively. In (6), WD(X)
is equal to the difference between the minimum and maximum values of a region. Hence
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Algorithm 1 The proposed dehazing method

Input: Haze image

Output: Haze-free image

Pre-processing:

• Negative Correction using (2)

Pixel-wise Atmospheric Light Estimation:

• Illumination separation at each channel using (3)

• Relative total variation filtering using (4)

Initial Transmission Estimation:

• Colour attenuation and white-dark channel estimation using (5) and (6), respectively

• Initial transmission estimation using (7)

while ‖tk − tk−1 > ε‖ do

Convex optimization using (10)

end while

• Relative total variation filtering.

• Scene recovering using top and bottom 0.5% histogram rescaling

WD(X) has a small value in the haze-contaminated regions. The proposed initial transmis-

sion is then defined as follows:

t(X) = 1−C(X)+WD(X). (7)

Please note that the initial transmission t(X) is estimated in a pixel-wise manner and thus

preserves details of the image, as shown in Fig.3, while the dark channel feature [15] is

obtained in a block-wise manner.

3.3 Convex Optimization

The Contrast(X) is modeled by

Contrast(X) = E[(J(X)−µJ)
2]≈

1

t2
E[(I(X)−µI)

2], (8)

where µJ and µI denote the mean of J(·) and I(·), respectively. In (8), we can make an

approximation because J(X) ≈ I(X)
t

. (8) shows that contrast is inversely proportional to

transmission t. The haze image typically has low contrast values compared to the haze-free

image. Based on this observation, we minimize t to construct the haze-free image. Hence,

the cost function is defined by

arg min
t

λ1‖t‖2
2 +λ2‖t‖TV +λ3‖Q‖2

2, (9)

where the total variation norm is added, because t has an exponential property [17]. In (9),

Q = Jt is also introduced, which makes the cost function a convex one.

Then, we transform the dehazing problem into a convex optimization problem. The

convex optimization formula is as follows:

arg min
Q,t

‖I − (Q+A(1− t))‖2
2 +λ1‖t‖2

2 +λ2‖t‖TV +λ3‖Q‖2
2,

s.t.0 < t ≤ 1,0 < Q
(10)
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(a) (b)

Figure 4: Performance of pixel-wise A. (a) Input image. (b) 1st row: ATM [29] using global

A, 2nd row: proposed method using pixel-wise A, 1st column: atmospheric light, 2nd column:

dehazing results, 3rd column: transmission.

(a) (b) (c)
Figure 5: Performance of haze-relevant features. (a) Haze-free image. (b) Initial transmis-

sions. (c) Dehazing results.

where the first term forces the reconstructed image (Q+A(1− t)) based on the haze model

in (1) into being similar to the original image I. This proposed method adopts Split Bregman

[12] to solve the convex optimization. Please refer to [14] for more details. Algorithm 1

describes the overall procedure of the proposed method.

4 Experiments

Our algorithm was compared with the state-of-the-art methods: color-line [9], haze-line [4],

and MSCNN [26]. For the comparison, we used 35 test images provided by Fattal [9]. In

the house image, the haze-line method set the atmospheric light to 1 and other methods set

the light to ATM [29]. For the negative correction, with the linear transformation function in

(2), our method takes 70% of the inverted intensity for each pixel.

4.1 Component-wise Analysis for Proposed Method

Our method consists of several components. It is worth determining which component con-

tributes most to the success of the whole process. Hence, we conducted two experiments.

Fig.4 shows the experimental results of A using ATM [29] and proposed pixel-wise A. In the

ATM, the transmission did not describe the depth accurately. Generally, it had a lower value

than that of the haze-opaque region. When the proposed pixel-wise A was used, however,

the depth of the transmission was accurately estimated and the visibility was improved.
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MSCNN [26] Color-line [9] Haze-line [4] Proposed

e σ r e σ r e σ r e σ r

House 0.02 2.85 1.56 0.07 2.53 2.01 0.08 0.21 1.97 0.09 0.01 1.80

Buildings 0.06 0.89 1.14 -0.08 7.12 2.93 0.00 10.5 1.78 0.03 0.34 2.39

Ny12 0.06 0.01 1.13 -0.16 0.43 1.82 -0.08 1.39 1.80 0.01 0.15 1.87

Urbino -0.16 25.2 0.92 0.15 3.02 1.49 0.00 2.14 1.23 0.18 0.35 1.75

Table 1: Results for dehazing method. e: newldy visible edge after dehazing, σ : saturation

pixel ratio, r: quality of contrast restoration [13].

Figure 6: Day-time dehazing results. Left to Right, Input image, MSCNN [26], Color-line

[9], Haze-line [4] and Proposed method.

In Fig.5, we conducted an experiment with regard to haze-relevant features. With the

proposed haze-relevant features, our method improved the initial transmission compared

to the method in which only Colour Attenuation was used, as shown in Fig.5 (b). The

proposed haze-relevant features also enhanced dehazing results, as demonstrated in Fig.5

(c). Combining haze-relevant features with white channel features resulted in less over-

enhancement of the haze-free area.

4.2 Comparison with Other Methods

We used the VLD [13] as quantitative evaluation metrics, which quantified edge, saturation,

and contrast. Table 1 demonstrates that the proposed method outperforms other state-of-the-

art methods; most images were significantly improved. In our method, saturation did not

occur and the original pixel value was less than 1% such that σ exceeded the 0 ∼ 1 range of
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Figure 7: Night-time dehazing results. Left to Right, Input image, Haze-line [4], Li’s method

[20], Proposed method.

dehazing. In addition, r values in Table 1 show that the contrast of our haze-free images was

improved.

As shown in the first row of Fig.6, the MSCNN and Color-line methods lost the details of

the wood parts. The haze-line method was responsible for the halo effect at the edge. In the

second row, the MSCNN and color-line method created an unnatural dark area as highlighted

by the yellow rectangle. The third and fourth rows show the results of ny12 and Urbino

images, which had very bright regions near the sky. In color-line and haze-line methods,

saturation occurred in these regions, as highlighted by the red rectangles. On the other hand,

in the proposed method, no saturation problems occurred. Our algorithm preserved details

of the image and produces better quality haze-free images. Fig.7 shows experimental results

for the nighttime haze images. The existing algorithms were developed either for daytime

or nighttime images. In the first row of Fig.7, Li’s method [20] produced a good haze-free

image, but failed to reflect the mood of the original night image. Additionally, artifacts

occurred around street lamps due to the inaccurate global estimation. In the second row, the

haze-line method produced several artifacts around the pillars. Since the haze-line method

is originally the daytime algorithm, the haze removal results for nighttime were not good.

Although the proposed method completely outperformed the existing night-time algorithms,

experimental results show that our method reduced several artifacts and noise and produced

better results than day-time algorithms. Please note that our method is applicable to both

daytime and nighttime images because it uses the pixel-wise A.

5 Conclusion

This paper proposed a robust dehazing algorithm. We divided the image into two compo-

nents, namely, illumination and reflectance, according to the retinex theory and obtained the

pixel-wise atmospheric light from the illumination. In addition, the haze-relevant features,

which were highly correlated with haze, were combined to estimate the initial transmission
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accurately. These processes were employed in the convex optimization framework to effec-

tively deal with saturation and over-enhancement of the dark and bright areas of dehazing.

The experimental results showed that the proposed algorithm was able to produce better

qualitative and quantitative results. Future work should focus on finding a solution to the

colour restoration problem and on reducing computational complexity.
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