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Abstract—This paper presents a new formulation for the investigates including robustness to the uncertainty in the
UAV task assignment problem with uncertainty in the envi-  environment in the task assignment process to ensure that

ronment. The problem is posed as a weapons task assignment,ye ohtain designs that are less sensitive to the errors in our
with uncertainty in the cost data, and we apply a modified . .
situational awareness.

robustness technique that allows the operator to tune the : . )
level of robustness in the optimization. This robust formu- Environmental uncertainty also creates an inherent cou-

lation is then used to solve the assignment problem for a pling between the missions of the heterogeneous vehicles
heterogeneous fleet of vehicles operating in an environment in the team. Future UAV mission packages will include
with target identities and locations that are uncertain. The both strike and reconnaissance vehicles (possibly mixed),

key aspect of this formulation is that it directly addresses the ith ht f vehicl idi . bilities t
coupling inherent in deciding how to assign vehicles to perform with each type or vehicle providing unique capabilities 1o

reconnaissance tasks that provide the most benefit to the strike the mission. For example, strike vehicles will have the
part of the missions. We demonstrate that the robust solution critical firepower to eliminate a target, but may have to rely
to this coupled problem can be solved as single mixed-integer on reconnaissance vehicle capabilities in order to obtain
linear problem. The paper presents simulations and discusses y5aple target information. Including this coupling will
hardware testbeds that will be used for future experiments. " . . -

be critical in truly understanding the cooperative nature of
missions with heterogeneous vehicles.

This paper investigates the impact of uncertain target

Future UAV missions will require more autonomousidentity by formulating aveapon taskassignment problem
high-level planning capabilities onboard the vehicles usingiith uncertain data. We assume that sensing errors cause
information acquired through sensing or communicatingncertainty in the classification of a target. In the presence
with other UAVs in the group. This information will include of this uncertainty, we robustly assign a set of vehicles to
battlefield parameters such as target identities/locations, latsubset of these targets in order to maximize a perfor-
will be inherently uncertain due to real-world disturbancesnance criterion. We then extend this robustness formulation
such as noisy sensors or even deceptive adversarial strate-solve a mission with heterogeneous vehicles (namely,
gies. This paper presents a new approach to the high-leveconnaissance and strike) with coupled actions operating
planning (i.e., task assignment) that accounts for uncertainity an uncertain environment.
in the situational awareness of the environment.

Except for a few recent results [1], [8], [10], the controls
community has largely treated the UAV task assignment Consider a weapon-target assignment problem — given a
problem as a deterministic optimization problem with perset of N targets and a set aVy vehicles, we seek to
fectly known parameters. However, the Operations Researahsign the vehicles to the targets to maximize the score
and finance communities have made significant progress af the mission. We assume that each target has a score
incorporating this uncertainty in the high-level planning angssociated with it based on the current classification, and
have generated techniques that make the optimizatiouist  that the vehicle accrues that score if it is assigned to that
to the uncertainty [2], [3], [9], [11]. While these results havearget. If a vehicle is not assigned to a target, it receives a
mainly been made available for Linear Programs (LPs) [2kcore of 0. The mission score is the sum of the individual
robust optimization for Integer Programs (IPs) has onlgcores accrued by the vehicles; in order for the vehicles to
recently been provided with elegant and computationallyisit the “best” targets, we assume th&y, < Np. Due
tractable results [4], [9]. The latter formulation allows theto sensing errors, deceptive adversarial strategies, or even
operator to tune the level of robustness included by selectimpgor intelligence, these scores will be uncertain, and we
how many parameters in the optimization are allowed toeed to incorporate this lack of perfect information in our
achieve their worst case values. The result is a robust desiglanning. We extend the stochastic and robust formulations
that reflects the level of risk-aversion (or acceptance) of thbat have been introduced in OR literature to deal with this
operator. This is by no means a unique method to tune thumcertainty.
robustness, as the operator could want to restrict the worstThe basic stochastic programming formulation of this
case deviation of the parameters in the optimization, insteguloblem replaces the deterministic target scores with ex-
of allowing only a few to go to their worst case. This papepected target scores [5], and mathematically, the goal is to

I. INTRODUCTION

Il. ROBUSTFORMULATION



maximize the following objective function at tinfe solves the following problem
Nr Nt
max J, = Z Ch,iThi (1) max Jr = Z(Elm — Ok,i)Thi
’ i=1 =1
subject to: reX 3)

Nt
subject to: Z;x’” =Ny, z; €{0,1} This formulation assigns vehicles to the targets that exhibit
1=

the highest “worst-case” score. Note that the use of expected
(We henceforth summarize the constraintszas X.) The scores and standard deviations is not restrictive; quite the
binary variablez, ; is 1 if a vehicle is assigned to target Opposite, they are rather general, providing sufficient statis-
and zero if it is not, and, ; represent the expected scoretics for the unknown true target scores. In general, solving
of the i*" target at timek. We assume that any vehicle the Soyster formulation results in an extremely conservative
can be assigned to any target and (for now) all the vehicl@slicy, since it is unlikely that each target will indeed
are homogeneous. This formulation however only incorpgchieve its worst case score; furthermore, it is unlikely that
rates first moment information, which could be misleadingéach target will achieve this scoed the same timeWe

for example, two targets with equal expected scores bitherefore introduce a straightforward modification to the
different variances in these scores would appear identicalpst function allowing the operator to accept or reject the
attractive to a strike vehicle with this formulation. In realityuncertainty, by introducing a parametgr) (that can vary
however, we would certainly prefer to assign a strike vehicléhe degree of uncertainty introduced in the problem. The
to the target that has the lower variance, and thus wwodified robust formulation then takes the form

require a formulation that incorporates this higher moment Nr
information. max J, = Z(E’W — 4O Tk
Robust formulations have been developed to account for * i=1
uncertainty in the data by incorporating uncertainty sets subject to: reX 4)

for the data [2]. These uncertainty sets can be modeled in ricts th deviation that th ission desi
various ways. One way is to generate a set of realizatiod "€S!'CtS the€po deviation ihat In€ mission designer

(or scenarios) based on statistical information of the datg’xgects and fs;a]rvesl as a ,'ilunlng parameter to agJUSt the
and using them explicitly in the optimization; another0PUSIness of the solution. Note that= 0 corresponds to

way is by using the values of the moments (mean an[@e basic stochastic formulation (which relies on expected

standard deviation) directly. Using either method, riblgust scores, and ignores second moment information), while

formulation of the weapon task assignment is posed as * ~ 1 recovers the Soyster formulation. Higher valueg.of
may be used if we desire to be robust to larger variations of

Np the data. Furthermore, we need not restridb a positive
maxmin J, = Z CkiTh.i scalar;u could actually be a vector with elementswhich
e i=1 penalize each target score differently. This would certainly
subject to: reX (2) be useful if the operator desires to accept more uncertainty
Cri € C in one target than another.

The optimization becomes to obtain the “best’ worst-case 1. SIMULATION RESULTS

score when eachy, ; is assumed to lie in the uncertainty set \We now demonstrate numerical results of this robust
C. Characterization of this uncertainty set depends on amptimization for the case of an assignment with uncertain
a priori knowledge we have of the uncertainty. The choicglata, and compare them to the stochastic programming
of this uncertainty set will generally result in different robustformulation (where we replace the target scores with the ex-
formulations that are either computationally intensive (mangected target scores). We took the case of 10 targets having
are N P-hard [7]) or extremely conservative. random scorey, ; and standard deviatios;, and evaluated

One formulation that falls in the latter case is the Soystedhe assignments generated from tiobust and stochastic
formulation [11]. The appeal of the Soyster formulatiorformulation, when the scores were allowed to vary in the
however is its simplicity, as we will subsequently showintervalcy ; — o, ¢k ; +0;]. We then compared the expected
Here we investigate a modification of the Soyster formumission score, standard deviation, minimum, and maximum
lation applied to integer programs. It allows a designescores attained in 1000 numerical simulations, and the
to solve a robust formulation in the same manner as aesults may be seen in Taljle I. The simulations confirm the
integer program while allowing a designer to tune the levadxpectation that the robust optimization results in a lower
of robustness desired in the solution. Here, the expectédit more certainmission score; while the robust mission
target scoresg, ;, are assumed to lie in the intenfal, ; —  score is 2.8% lower than the stochastic programming score,
Ok.i» Ck,i + 0% i), Whereoy, ; indicates the standard deviationthere is a 65% reduction in the standard deviation of this
of target: at time k. In this case the Soyster formulationresulting score.
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oer series of experiments, where we had to assigstrike
07 vehicles andl0 targets. CVaR is a modified version of the
i VaR optimization, which allows the operator to choose the
Wl level of “protection” in a probabilistic sense, based on given
' number of scenariosN,..,) of the data. These scenarios
o4r are generated from realizations of the data in the range of
oaf [ek,i — 03, cki + ;). This optimization can be expressed as
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This results in less variability in the resulting mission P
scores, seen by considering2a range for the mission zr,i € {0,1}
scores: for the stochastic formulation this [%65, 26.93] ’
while for the robust one this i$10.15,18.59]. Although Here z is the assignment vector, = [z1, 22, ..., 2N, ]7,

the expected mission score is indeed lower, there is mueh, is the m‘" realization of the target score vector, and
more of a guarantee for this score. Furthermore, we nofg]™ = max(g,0). In our simulations we chose a value
that the robust optimization has a higher minimum score inf 3 = 0.01, allowing for a 1% probability of exceeding
the simulations ofl 1.43 compared td.30 of the stochastic our “loss function”. The target scores were varied in same
optimization, indicating that with the given bounds on thenterval as beforelc;, ; — 0, ci.,; +0;]. We compared this to
cost data, the robust optimization has a better guaranttfee modified Soystet{obust entry in the table) formulation
of “worst-case” performance. This can also be seen in thésing a value ofx = 3. The numerical results can be seen
probability density functions shown in Figufé 1 (and then Table[ll.
associated probability distribution functions in Figlife 2). Note that the CVaR approach depends crucially on the
We can see that as the numerical results indicate, tmeimber of scenarios; for lower number of scenarios, the
stochastic formulation results in larger spread in the missiaiwbust assignment generated by CVaR results in higher
scores than the robust formulation, which restricts the rangexpected mission score, but also higher standard deviation.
of possible missions scores. Thus, while the maximurith 50 scenarios, the CVaR approach results in a higher
achievable mission score is lower in the robust formulatiomission score than the robust formulation, but also has a
than that obtained by the stochastic one, the missions scotegher standard deviation. As the number of scenarios is
in the range of the mean occur with much higher probabilityncreased to 100, the CVaR approach results match with
We also compared this robust formulation to the Condithe modified Soyster results; note that at 200 scenarios, a
tional Value at Risk (CVaR) formulation in [8] in another different assignment is generated, and the mission score



is increased (as well as standard deviation). Beyond 5@8e uncertainty in the target classification as a result of
scenarios, the two approaches generated the same assapsigning a future reconnaissance task can be rewritten as
ments, and thus resulted in the same performance. In the

next section, we extend the modified Soyster formulation o _ o (12)

to account for the coupling between the reconnaissance and kLl R+ o}

strike vehicles. . .
or equivalently as the difference

IV. M ODIFICATION FOR COOPERATIVE

RECONNAISSANCESTRIKE itk — Ok = Jk{ | R 1} (13)

o - 2
As stated previously, future UAV missions will involve R+op

heterogeneous vehicles with coupled mission objectives. FRiie that in the limiting case® — oo (i.e., a very poor

example, the mission of reconnaissance vehicles is to red“§@nsor), thenr,.1, = o4 and the uncertainty does not
uncertainty in the environment and is coupled with th%hange. In the case oR — 0 (i.e., a perfect sensor)
objective of the strike vehicles (namely, destroying targetg,q, orsie = ok = 0 and the uncertainty in the target

in the presence of this uncertainty). First, we introduce thgssification will be eliminated by the measurement. In
uncertainty and estimation models used in our work; We,mmary, these equations present a means to analyze the
then use the robust formulation to pose and solve a missiqgected reduction in the uncertainty of the target type by
with coupled reconnaissance and strike objectives. a future reconnaissance prior to visiting the target.

A. Estimator model

For our estimator model, the target’s state at tilnés . . . . .
. L Reconnaissance and strike vehicles have inherently differ-
represented by its target type (i.e. its score). The output of

e . nt mission goals — the objective of the former is to reduce
a classification task is assumed to be a mgasurement of % uncertainty of the information about the environment
target type, corrupted by some sensor noige the objective of the latter is to recover the maximsaare of

zr = Hey, + v, (6) the mission by destroying the most valuable targets. Thus,

it would be desirable for a reconnaissance vehicle to be

where c; represents the true target state (assumed Co_Qésigned to higher variance targets (equivalently, targets
stant); v, represents the (assumed zero-mean, Gaussighn “higher standard deviations), while a strike vehicle
d'SF”b“ted) SENsor Noise, with covariankgv;] = R. The would likely be assigned to targets exhibiting the best
estimator equations for the _updated expected score aﬂfgorst—case" score. One could then derive an optimization
covariance that result from this model are [6] criterion for these mission objectives as

B. Preliminary reconnaissance/Strike formulation

Cr+1 = €k + L1 (2k41 — Zhgar) (7) Nr
P =P '+ HR'HT (8) max Jy = > (Cki — 1oki)Th,i + 1OR Yk,

i=1
Here, ¢, represents the estimate of the target score at time

NT NT
k; Li+1 represents an estimator gain on the innovations;  subject to: Zy’“ = Nvr , Zﬂfki = Nyg (14)

the covarianceP, = o%; and Zr41e = Hcg. Note that i—1 i—1
here, H = 1 since we are directly observing the state of Tk Yk, € {0,1}
the target.

It is clear from Eq[B that the updated estimate relies of€r€,x,; andyj,; represent the assignments for the strike
a new observation. However, this observation willy be- @nd reconnaissance vehicles respectively, and the maxi-
come available once the reconnaissance vehicle has actudliization is taken over these assignments:s and Ny r
visited the target. As such, at timie our best estimate of represent the total number of strike and reconnaissance

the future observation (e.g. at tinke+ 1) is vehicles respectively. Note that this optimization can be
R solved separately fox andy, as there is no coupling in
Zep1k = B [Heppp + vis1] = Hey, (9)  the objective function.

We can use this expected observation in the estimator equa Vit this decoupled objective function, the resulting
optimization is straightforward. However, this approach

tions to update our predictions of the target classification. ; i , )
does not capture the cooperative behavior that is required

Chrile = Crk + Lip1Grgae — Zeg1ik) between the two types of vehicles. For example, it would
= G+ Ly (He, — Hep) =6 (10) be beneficial for the reconnaissance vehicle to do more than

P +11| ., = Pi'+HR'HT (11) Jtlrjusat rl:]%i?ti nt::rt;ril:v;/;dge of the environment by visiting

gets. Since the ultimate goal is to

This update is the key component of the coupled reconnaiaehieve the best possible mission score, we would like to
sance/strike problem discussed in this paper. By rearrangingpdify the reconnaissance mission to account for the strike
Eq.[1I] for the scalar caseéi( = 1), the modification to mission, and vice versa. We can achieve this by coupling



TABLE Il

the mission objectives and using the estimator results on
TARGET PARAMETERS

the reduction of uncertainty due to reconnaissance.

We can solve for this cooperation by considering an ’ Target\ c \ Ok \ Tkl \
objective function that couples the individual mission ob- 1 20 | 4 | 0.3152
jectives. As mentioned previously, the target’s score will 2 22 | 7 | 0.3159
remain the same if a reconnaissance vehicle is assigned to it
(since an observation has not yet arrived to update its score), Recon Package Recon Package

but its uncertainty (given by) will decrease fromo to
or+1)k- We can use this reduction in the uncertainty into
the assignment problem for the strike vehicle. The result ™
would exhibittruly cooperative behavioin the sense that = sf 1
the reconnaissance vehicle will be assigned to observe theg ©) 2
target whose reduction in uncertainty will prove most ben-
eficial for the strike vehicles, thereby creating this coupled
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behavior between the vehicle missions. The optimization 2 2
for the coupled mission can be written as 2wt 2wt
Nt Strike Package Strike Package
max.Jj, = > (ék,]iv_ pio,i(1 — yk,i)N_ WOkl Yhi) Thi o, S, )3
i=1 T T s’ .
subject to: Zyk,i = Nygr, me = Nyg (15) 10 '¢" 10 ’&'
i=1 i=1 = 8 T,e° = 8 T R
This Yk, € 10,1} S = .
This objective function implies that if a target is assigned 4 @ 4 @

to be visited by a reconnaissance vehicle, thgn = 1,
and thus the uncertainty in target scar@ecreases from 5 ; . : 5 " . .
Ok,i 10 opq1)k,:- Similarly, if a reconnaissance vehicle is X [m] X [m]

not assigned to target the uncertainty does not change.

Note that by coupling the assignment, if both a strike and Fig- 3. Decoupled mission  Fig. 4. Coupled mission
reconnaissance vehicle are assigned to targéie strike
vehicle recovers an improved score.

2 2

We can simplify the objective function by combining Ukyi = Thyi
similar terms to give Vkyi < Yk,i (18)
Ny Uk = Ty + Yk — 1
max.Jy = > (@i —honi) e+ 1(oki—oki1k)TeiYii  The key point with this formulation is that it captures
=1 the coupling in the cooperative heterogeneous mission by

Note that this is a nonlinear objective function that cannaéssigning the reconnaissance and strike vehitdgsther

be solved as a Mixed-Integer Linear Program (MILP), butaking into account the individual missions.

we can definey, ; = 25, ;yx,; as an additional optimization  As a straightforward example, we consider a 2 target case
variable, and constrain it as follows with one strike and reconnaissance vehicle to be assigned
(Figure[3). This problem is simple enough to visualize and

ki S Tk be used as a demonstration of the effectiveness of this
Vki S Yk (16) approach. The reconnaissanég Y and strike 6;) vehicles

Vki = Thi+ Yk — 1 are represented byand A, respectively, and thé” target,

wi € {0,1} T;, is represented byl. The expected score of each target is

) ] proportional to the size of the box, and the uncertainty in the
This change of variables enables the problem to be posegget score is proportional to the radius of the surrounding
and solved as a MILP of the form circle . The target parameters for this experiment are given

Algorithm #1 in Table[Ml (1=1).

N Figures[3 andl]4 compare the assignments of the recon-
max Jj, = Z(EW — WOi)Thei (ki — Ot (ki) Uk naissance and strike vehicle for the decoupled and coupled
e i—1 ' cases. In the decoupled case, strike vehiglés assigned to

Nr Nr T1, while reconnaissance vehiclg is assigned td@5. Here
subject tO:Zyk,i = Nyr , Zx,w- = Nys (17) the optimization is completely decoupled in that the strike

i=1 i=1 vehicle and reconnaissance vehicle assignments are found

Tk iy Yk,is Vi € {0,1} independently. In the coupled case, both strike vehitle



TABLE IV
NUMERICAL COMPARISONS OFDECOUPLED AND COUPLED
RECONNAISSANCHSTRIKE

and reconnaissance vehidy are assigned td@,. We can
see that without reconnaissance’ftg, the expected worst
case score is higher iff}; however, with reconnaissance

to that target, uncertainty is reduced for both targets, and Reconnaissance/strike J | o, |
T, then has a higher expected worst score. Note that with Coupled 61.19 | 26.56
the two formulations, the strike vehicles are assigned to Decoupled 4150 | 23.12

different targets. This serves to demonstrate that solving
the optimization in Eq[ 15 does not result in the same

assignment as the coupled formulation. Th|s'|s key: 'I)f this mean performance is almost equivalent for the two
we were able to solve the decoupled formulation for th

: npproaches (though we note that this is troubling for the

strike vehicle assignments, we could then simply assig . :
: : ; ecoupled approach due to its lower mean). From this
reconnaissance vehicles to those targets and obtain qur

reconnaissance/strike mission. As these results show, tr?ér{lple_z e>_<ample, we can thus see the_lmportance of coupling
is not the case. e missions of the two types of vehicles.

To Qemonstrate these result; n.umerically,. we condugtqg_ Improved reconnaissance/Strike formulation
a straightforward two-stage mission analysis. In the first .
stage, the above two optimizations were solved with the While the above example shows that the coupled ap-
target parameters: after this first stage, the vehicles prBroach performs better than a decoupled one, using Eq. 19
gressed toward their intended targets. At the second stad®, more complex missions can result in an incomplete
it was assumed that the reconnaissance vehicle had actudlff Of resources if there are more reconnaissance vehicles
reachedthe target to which it was assigned, and thus, thef@an strike vehicles, or if we seek to also reward recon-
was no uncertainty in the target score. The optimizatior/2iSSance as a mission objective in its own right. The cost
in Eq.[§ was then solved for the strike vehicle, with thdunction mainly rewards the strike vehicles, by improving
updated target scores (from the reconnaissance vehicitheir score if a reconnaissance vehicle is assigned to that
observation) and standard deviations. Note that this targé@rget- However, it does not fully capture the reward for the
score could have actually beerorsethan predicted, as the "€connaissance vehicles that are, for example, not assigned
observation was made only at time of the reconnaissant® Strike vehicle targets. With the previous algorithm, these
UAV arrival; the target that was not visited by the reconin@ssigned vehicles could be assigned anywhere, but we
naissance vehicle maintained its original expected score af@uld like them to explore the remaining targets based
uncertainty. In order to compare the two approaches, W' & certain criteria. _Such a criterion could be to assign
tabulated the scores accrued by the strike vehicles at tHi™ t0 the targets with the highest standard deviation, or
second stage and discounted them by their current distarfOd@rgets that exhibit the “best-case” scarg;{+ oy,;) o as
to the (possibly new) target to visit. Both vehicles incurred© incorporate the notion of cost in the optimization. Either

this score penalty, but since the targets were en route to th8frthese options can be included by adding a an extra term

previously intended targets, a re-assignment to a differeff the cost function
Farget incurred greaterscore penalty, and hence reduction Algorithm #2
mS(f:O'r? tin thi iment is the time delay bet <

Of interest in this experiment is the time delay between _ —— N o N
the assignment of the reconnaissance vehicle to a target, andr.s- I = ;(Ck’l HOKt)Ths + POkt = Tt 1)U
its Qbservation pf that target. Clearly, if a rgconnaissance +K ok, (1 — Tk,i)Yk,q (19)
vehicle had a high enough speed such that it could update
the “true” statei(e., score) of the target almost immediately,For small K this cost function keeps the strike objective as
then the effects of a coupled reconnaissance and strikee principal objective of the mission, while the weighting
vehicle would likely be identical to those obtained inon the latter part of the cost function assigns the remaining
a decoupled mission, since the strike vehicles would beconnaissance vehicles to highly uncertain targets. Again,
immediately reassigned. This time delay however is presetitis is a behavior that is intuitive to capture. Since the cou-
in these typical reconnaissance/strike missions; our tim@ing between reconnaissance vehicles and strike vehicles
discount “penalty” for a change in reassignment does refleis captured in the first part of the cost function, it seems
that a reassignment as a result of improved information wilippropriate to assign the remaining reconnaissance vehicles
result in a lower accrued score for the mission. to targets that have the highest uncertainty. The term

The numerical results of 1000 simulations are given imy ;)yx, captures the fact that these extra reconnaissance
Table [E where J indicates the average mission scorevehicles will be assigned to targets that have not been
of each approach, and; indicates the standard deviationassigned (recall when the targets are unassigagd= 0).
of this score. Note that the score accrued by the couplédbte that this approach is quite general, since fe; ;
approach has a much improved performance over the derm can be replaced by any expression that captures an
coupled approach. Furthermore, we note that the variati@iternative objective function for the reconnaissance vehicle.



Recon Package

; ; ‘ for the blimps is obtained with a second onboard receiver,

155 41 whose position is numerically differenced from that of the
@ primary sensor to determine a relative position vector with
Eor .. 1 respect to the transmitter axes. The intent is to transi-
| \\ PP L G | tion these newly dgveloped algorit_h_ms on these tes_tbeds,
Seop F thereby demonstrating the applicability of these algorithms
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ in the presence of real-world disturbances. Furthermore,
0 2 4 6 8 10 12 14 16 . . . .
X [m] we can begin demonstrating cooperative assignments based
Recon Package on unique vehicle capabilities (i.e., the ability of blimps
o ‘ ‘ ‘ | to overfly obstacles). These capabilities can be captured in
more complex formulations of the coupled robust approach.
> ~~~ is 20,
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Fig. 5. Comparison of Algorithm 1 (top) and Algorithm 2 (bottom)

formulations 14r

E
> 10t
We demonstrate this change in the objective function in )
. . . . 8f Blimp
Figure[$. In this example, we consider the assignment of
3 reconnaissance and 2 strike vehicles (strike assignments 6r
remained identical in both cases), and = .01. In the 4t
earlier formulation, R3 is assigned tols, a target with ,
virtually no uncertainty (note that the target score is vir-
tually certain since it has such a low uncertainty), since 0
in this instance there was no reward for decreasing the X [m]

uncertainty in the environment. The extra reconnaissance
vehicle was assigned randomly, as assignment to any target
did not improve the cost function. Note that there is benefit

in the extra reconnaissance vehicle goingTtp instead Figure[6 shows a mission with one of the blimps and
of 75 since it will inherently decrease the uncertaintya truck — here the blimp simulated doing reconnaissance
in the environment, and in fact this is what happens ifor the benefit of the truck. Both vehicles operated au-
the modified formulation. Thus, the modified formulationtonomously in closed loop control. The truck began its
captures more intuitive results via a better allocation ofission unaware of the existence of target C, while the
resources. blimp was sent out to explore the environment. When it
discovers target C, this target was added to the mission

) of the truck, and it can be seen that the truck corrects
We are currently developing a heterogeneous testbgd yaiectory to visit target C. While this mission did not

that consists of blimps (taking the role of reconnaissanGgqmorate the aforementioned algorithms, these will be
vehicles) and autonomous trucks (taking the role of St”kﬁnplemented on our testbeds soon.

vehicles). The blimps are 7t spheres and carry a Sony
VAIO to do onboard control. Currently, assignment- and
waypoint-generation are done off-board. Position and head-
ing information are obtained with the use of a ArcSecond This paper has presented a novel approach to the problem
3Di Constellation system, which includes four transmitof mission planning for a team of heterogeneous vehicles
ters and a receiver (one receiver per vehicle). We haweith uncertainty in the environment. We have presented a
a four transmitter setup that uniquely determines a sstmple modification of a robustness approach that allows
of inertial reference axes for the environment in whicHor a direct tuning of the level of robustness in the solution.
we do our experiments. Each vehicle is equipped witfihis robust formulation was then extended to account for
its own sensor to obtain unique position solution accuratiie coupling between the reconnaissance (tasks that reduce
to within millimeters; velocity is estimated via a Kalmanuncertainty) and strike (tasks that directly increase the
filter based on truck and blimp dynamics, and is vengcore) parts of the combined mission. Although nonlinear,
accurate for navigational purposes. Heading informatiowe show that this coupled problem can be solved as a single

Fig. 6. Truck and blimp scenario

V. HARDWARE TESTBED IMPLEMENTATION

VI. CONCLUSIONS



MILP. Future work will investigate the use of time discount-
ing explicitly in the cost function, thereby incorporating the
notion of distance in the assignment, as well as different
vehicle capabilities and performance (speed). We are also
investigating alternative representations of the uncertainty
in the information of the environment.
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