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Abstract— This paper presents a new formulation for the
UAV task assignment problem with uncertainty in the envi-
ronment. The problem is posed as a weapons task assignment
with uncertainty in the cost data, and we apply a modified
robustness technique that allows the operator to tune the
level of robustness in the optimization. This robust formu-
lation is then used to solve the assignment problem for a
heterogeneous fleet of vehicles operating in an environment
with target identities and locations that are uncertain. The
key aspect of this formulation is that it directly addresses the
coupling inherent in deciding how to assign vehicles to perform
reconnaissance tasks that provide the most benefit to the strike
part of the missions. We demonstrate that the robust solution
to this coupled problem can be solved as single mixed-integer
linear problem. The paper presents simulations and discusses
hardware testbeds that will be used for future experiments.

I. I NTRODUCTION

Future UAV missions will require more autonomous
high-level planning capabilities onboard the vehicles using
information acquired through sensing or communicating
with other UAVs in the group. This information will include
battlefield parameters such as target identities/locations, but
will be inherently uncertain due to real-world disturbances
such as noisy sensors or even deceptive adversarial strate-
gies. This paper presents a new approach to the high-level
planning (i.e., task assignment) that accounts for uncertainty
in the situational awareness of the environment.

Except for a few recent results [1], [8], [10], the controls
community has largely treated the UAV task assignment
problem as a deterministic optimization problem with per-
fectly known parameters. However, the Operations Research
and finance communities have made significant progress in
incorporating this uncertainty in the high-level planning and
have generated techniques that make the optimizationrobust
to the uncertainty [2], [3], [9], [11]. While these results have
mainly been made available for Linear Programs (LPs) [2],
robust optimization for Integer Programs (IPs) has only
recently been provided with elegant and computationally
tractable results [4], [9]. The latter formulation allows the
operator to tune the level of robustness included by selecting
how many parameters in the optimization are allowed to
achieve their worst case values. The result is a robust design
that reflects the level of risk-aversion (or acceptance) of the
operator. This is by no means a unique method to tune the
robustness, as the operator could want to restrict the worst
case deviation of the parameters in the optimization, instead
of allowing only a few to go to their worst case. This paper

investigates including robustness to the uncertainty in the
environment in the task assignment process to ensure that
we obtain designs that are less sensitive to the errors in our
situational awareness.

Environmental uncertainty also creates an inherent cou-
pling between the missions of the heterogeneous vehicles
in the team. Future UAV mission packages will include
both strike and reconnaissance vehicles (possibly mixed),
with each type of vehicle providing unique capabilities to
the mission. For example, strike vehicles will have the
critical firepower to eliminate a target, but may have to rely
on reconnaissance vehicle capabilities in order to obtain
valuable target information. Including this coupling will
be critical in truly understanding the cooperative nature of
missions with heterogeneous vehicles.

This paper investigates the impact of uncertain target
identity by formulating aweapon taskassignment problem
with uncertain data. We assume that sensing errors cause
uncertainty in the classification of a target. In the presence
of this uncertainty, we robustly assign a set of vehicles to
a subset of these targets in order to maximize a perfor-
mance criterion. We then extend this robustness formulation
to solve a mission with heterogeneous vehicles (namely,
reconnaissance and strike) with coupled actions operating
in an uncertain environment.

II. ROBUST FORMULATION

Consider a weapon-target assignment problem – given a
set of NT targets and a set ofNV vehicles, we seek to
assign the vehicles to the targets to maximize the score
of the mission. We assume that each target has a score
associated with it based on the current classification, and
that the vehicle accrues that score if it is assigned to that
target. If a vehicle is not assigned to a target, it receives a
score of 0. The mission score is the sum of the individual
scores accrued by the vehicles; in order for the vehicles to
visit the “best” targets, we assume thatNV < NT . Due
to sensing errors, deceptive adversarial strategies, or even
poor intelligence, these scores will be uncertain, and we
need to incorporate this lack of perfect information in our
planning. We extend the stochastic and robust formulations
that have been introduced in OR literature to deal with this
uncertainty.

The basic stochastic programming formulation of this
problem replaces the deterministic target scores with ex-
pected target scores [5], and mathematically, the goal is to



maximize the following objective function at timek

max
x

Jk =
NT∑
i=1

c̄k,ixk,i (1)

subject to:
NT∑
i=1

xk,i = NV , xi ∈ {0, 1}

(We henceforth summarize the constraints asx ∈ X.) The
binary variablexk,i is 1 if a vehicle is assigned to targeti
and zero if it is not, and̄ck,i represent the expected score
of the ith target at timek. We assume that any vehicle
can be assigned to any target and (for now) all the vehicles
are homogeneous. This formulation however only incorpo-
rates first moment information, which could be misleading;
for example, two targets with equal expected scores but
different variances in these scores would appear identically
attractive to a strike vehicle with this formulation. In reality
however, we would certainly prefer to assign a strike vehicle
to the target that has the lower variance, and thus we
require a formulation that incorporates this higher moment
information.

Robust formulations have been developed to account for
uncertainty in the data by incorporating uncertainty sets
for the data [2]. These uncertainty sets can be modeled in
various ways. One way is to generate a set of realizations
(or scenarios) based on statistical information of the data,
and using them explicitly in the optimization; another
way is by using the values of the moments (mean and
standard deviation) directly. Using either method, therobust
formulation of the weapon task assignment is posed as

max
x

min
c

Jk =
NT∑
i=1

ck,ixk,i

subject to: x ∈ X (2)

ck,i ∈ Ck

The optimization becomes to obtain the “best” worst-case
score when eachck,i is assumed to lie in the uncertainty set
Ck. Characterization of this uncertainty set depends on any
a priori knowledge we have of the uncertainty. The choice
of this uncertainty set will generally result in different robust
formulations that are either computationally intensive (many
areNP -hard [7]) or extremely conservative.

One formulation that falls in the latter case is the Soyster
formulation [11]. The appeal of the Soyster formulation
however is its simplicity, as we will subsequently show.
Here we investigate a modification of the Soyster formu-
lation applied to integer programs. It allows a designer
to solve a robust formulation in the same manner as an
integer program while allowing a designer to tune the level
of robustness desired in the solution. Here, the expected
target scores,̄ck,i, are assumed to lie in the interval[c̄k,i−
σk,i, c̄k,i +σk,i], whereσk,i indicates the standard deviation
of target i at time k. In this case the Soyster formulation

solves the following problem

max
x

Jk =
NT∑
i=1

(c̄k,i − σk,i)xk,i

subject to: x ∈ X (3)

This formulation assigns vehicles to the targets that exhibit
the highest “worst-case” score. Note that the use of expected
scores and standard deviations is not restrictive; quite the
opposite, they are rather general, providing sufficient statis-
tics for the unknown true target scores. In general, solving
the Soyster formulation results in an extremely conservative
policy, since it is unlikely that each target will indeed
achieve its worst case score; furthermore, it is unlikely that
each target will achieve this scoreat the same time. We
therefore introduce a straightforward modification to the
cost function allowing the operator to accept or reject the
uncertainty, by introducing a parameter (µ) that can vary
the degree of uncertainty introduced in the problem. The
modified robust formulation then takes the form

max
x

Jk =
NT∑
i=1

(c̄k,i − µσk,i)xk,i

subject to: x ∈ X (4)

µ restricts theµσ deviation that the mission designer
expects and serves as a tuning parameter to adjust the
robustness of the solution. Note thatµ = 0 corresponds to
the basic stochastic formulation (which relies on expected
scores, and ignores second moment information), while
µ = 1 recovers the Soyster formulation. Higher values ofµ
may be used if we desire to be robust to larger variations of
the data. Furthermore, we need not restrictµ to a positive
scalar;µ could actually be a vector with elementsµi which
penalize each target score differently. This would certainly
be useful if the operator desires to accept more uncertainty
in one target than another.

III. S IMULATION RESULTS

We now demonstrate numerical results of this robust
optimization for the case of an assignment with uncertain
data, and compare them to the stochastic programming
formulation (where we replace the target scores with the ex-
pected target scores). We took the case of 10 targets having
random scoreck,i and standard deviationσi, and evaluated
the assignments generated from therobust and stochastic
formulation, when the scores were allowed to vary in the
interval [ck,i−σi, ck,i+σi]. We then compared the expected
mission score, standard deviation, minimum, and maximum
scores attained in 1000 numerical simulations, and the
results may be seen in Table I. The simulations confirm the
expectation that the robust optimization results in a lower
but more certainmission score; while the robust mission
score is 2.8% lower than the stochastic programming score,
there is a 65% reduction in the standard deviation of this
resulting score.
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This results in less variability in the resulting mission
scores, seen by considering a2σ range for the mission
scores: for the stochastic formulation this is[2.65, 26.93]
while for the robust one this is[10.15, 18.59]. Although
the expected mission score is indeed lower, there is much
more of a guarantee for this score. Furthermore, we note
that the robust optimization has a higher minimum score in
the simulations of11.43 compared to6.30 of the stochastic
optimization, indicating that with the given bounds on the
cost data, the robust optimization has a better guarantee
of “worst-case” performance. This can also be seen in the
probability density functions shown in Figure 1 (and the
associated probability distribution functions in Figure 2).
We can see that as the numerical results indicate, the
stochastic formulation results in larger spread in the mission
scores than the robust formulation, which restricts the range
of possible missions scores. Thus, while the maximum
achievable mission score is lower in the robust formulation
than that obtained by the stochastic one, the missions scores
in the range of the mean occur with much higher probability.

We also compared this robust formulation to the Condi-
tional Value at Risk (CVaR) formulation in [8] in another

TABLE I

COMPARISON OF STOCHASTIC AND MODIFIEDSOYSTER

Optimization J̄ σJ max min

Stochastic 14.79 6.07 23.50 6.30

Robust 14.37 2.11 17.20 11.43

TABLE II

COMPARISON OFCVAR WITH MODIFIED SOYSTER

Number of Scenarios J̄ σJ max min

10 18.01 2.41 22.80 13.20

20 17.33 1.87 20.98 13.62

50 17.39 1.99 20.98 13.62

100 16.51 1.18 18.90 14.10

200 16.58 1.31 19.16 14.04

500 16.51 1.18 18.90 14.10

Robust 16.51 1.18 18.90 14.10

series of experiments, where we had to assign5 strike
vehicles and10 targets. CVaR is a modified version of the
VaR optimization, which allows the operator to choose the
level of “protection” in a probabilistic sense, based on given
number of scenarios (Nscen) of the data. These scenarios
are generated from realizations of the data in the range of
[ck,i− σi, ck,i + σi]. This optimization can be expressed as

max
x

JV aR,k = γ +
1

Nscen(1− β)

Nscen∑
m=1

[γ − cT
mx]+

subject to: γ ≤
N∑

i=1

ck,ixk,i (5)

NT∑
i=1

xk,i = NV

xk,i ∈ {0, 1}

Here x is the assignment vector,x = [x1, x2, . . . , xNV
]T ,

cm is the mth realization of the target score vector, and
[g]+ ≡ max(g, 0). In our simulations we chose a value
of β = 0.01, allowing for a 1% probability of exceeding
our “loss function”. The target scores were varied in same
interval as before,[ck,i−σi, ck,i +σi]. We compared this to
the modified Soyster (Robust entry in the table) formulation
using a value ofµ = 3. The numerical results can be seen
in Table II.

Note that the CVaR approach depends crucially on the
number of scenarios; for lower number of scenarios, the
robust assignment generated by CVaR results in higher
expected mission score, but also higher standard deviation.
With 50 scenarios, the CVaR approach results in a higher
mission score than the robust formulation, but also has a
higher standard deviation. As the number of scenarios is
increased to 100, the CVaR approach results match with
the modified Soyster results; note that at 200 scenarios, a
different assignment is generated, and the mission score



is increased (as well as standard deviation). Beyond 500
scenarios, the two approaches generated the same assign-
ments, and thus resulted in the same performance. In the
next section, we extend the modified Soyster formulation
to account for the coupling between the reconnaissance and
strike vehicles.

IV. M ODIFICATION FOR COOPERATIVE

RECONNAISSANCE/STRIKE

As stated previously, future UAV missions will involve
heterogeneous vehicles with coupled mission objectives. For
example, the mission of reconnaissance vehicles is to reduce
uncertainty in the environment and is coupled with the
objective of the strike vehicles (namely, destroying targets
in the presence of this uncertainty). First, we introduce the
uncertainty and estimation models used in our work; we
then use the robust formulation to pose and solve a mission
with coupled reconnaissance and strike objectives.

A. Estimator model

For our estimator model, the target’s state at timek is
represented by its target type (i.e. its score). The output of
a classification task is assumed to be a measurement of the
target type, corrupted by some sensor noiseνk

zk = Hck + νk (6)

where ck represents the true target state (assumed con-
stant); νk represents the (assumed zero-mean, Gaussian
distributed) sensor noise, with covarianceE[ν2

k ] = R. The
estimator equations for the updated expected score and
covariance that result from this model are [6]

c̄k+1 = c̄k + Lk+1(zk+1 − ẑk+1|k) (7)

P−1
k+1 = P−1

k + HR−1HT (8)

Here, c̄k represents the estimate of the target score at time
k; Lk+1 represents an estimator gain on the innovations;
the covariancePk = σ2

k; and ẑk+1|k = Hc̄k. Note that
here,H = 1 since we are directly observing the state of
the target.

It is clear from Eq. 8 that the updated estimate relies on
a new observation. However, this observation willonly be-
come available once the reconnaissance vehicle has actually
visited the target. As such, at timek, our best estimate of
the future observation (e.g. at timek + 1) is

z̃k+1|k = E
[
Hck+1|k + νk+1

]
= Hc̄k (9)

We can use this expected observation in the estimator equa-
tions to update our predictions of the target classification.

c̄k+1|k = c̄k|k + Lk+1(z̃k+1|k − ẑk+1|k)
= c̄k + Lk+1(Hc̄k −Hc̄k) = c̄k (10)

P−1
k+1|k = P−1

k + HR−1HT (11)

This update is the key component of the coupled reconnais-
sance/strike problem discussed in this paper. By rearranging
Eq. 11 for the scalar case (H = 1), the modification to

the uncertainty in the target classification as a result of
assigning a future reconnaissance task can be rewritten as

σk+1|k =

√
σ2

kR

R + σ2
k

(12)

or equivalently as the difference

σk+1|k − σk = σk

{√
R

R + σ2
k

− 1

}
(13)

Note that in the limiting casesR → ∞ (i.e., a very poor
sensor), thenσk+1|k = σk, and the uncertainty does not
change. In the case ofR = 0 (i.e., a perfect sensor)
then σk+1|k = σk = 0 and the uncertainty in the target
classification will be eliminated by the measurement. In
summary, these equations present a means to analyze the
expected reduction in the uncertainty of the target type by
a future reconnaissance prior to visiting the target.

B. Preliminary reconnaissance/Strike formulation

Reconnaissance and strike vehicles have inherently differ-
ent mission goals – the objective of the former is to reduce
the uncertainty of the information about the environment,
the objective of the latter is to recover the maximumscore of
the mission by destroying the most valuable targets. Thus,
it would be desirable for a reconnaissance vehicle to be
assigned to higher variance targets (equivalently, targets
with higher standard deviations), while a strike vehicle
would likely be assigned to targets exhibiting the best
“worst-case” score. One could then derive an optimization
criterion for these mission objectives as

max
x,y

Jk =
NT∑
i=1

(c̄k,i − µσk,i)xk,i + µσk,iyk,i

subject to:
NT∑
i=1

yk,i = NV R ,
NT∑
i=1

xk,i = NV S (14)

xk,i, yk,i ∈ {0, 1}

Here,xk,i andyk,i represent the assignments for the strike
and reconnaissance vehicles respectively, and the maxi-
mization is taken over these assignments.NV S and NV R

represent the total number of strike and reconnaissance
vehicles respectively. Note that this optimization can be
solved separately forx and y, as there is no coupling in
the objective function.

With this decoupled objective function, the resulting
optimization is straightforward. However, this approach
does not capture the cooperative behavior that is required
between the two types of vehicles. For example, it would
be beneficial for the reconnaissance vehicle to do more than
just update the knowledge of the environment by visiting
the most uncertain targets. Since the ultimate goal is to
achieve the best possible mission score, we would like to
modify the reconnaissance mission to account for the strike
mission, and vice versa. We can achieve this by coupling



the mission objectives and using the estimator results on
the reduction of uncertainty due to reconnaissance.

We can solve for this cooperation by considering an
objective function that couples the individual mission ob-
jectives. As mentioned previously, the target’s score will
remain the same if a reconnaissance vehicle is assigned to it
(since an observation has not yet arrived to update its score),
but its uncertainty (given byσ) will decrease fromσk to
σk+1|k. We can use this reduction in the uncertainty into
the assignment problem for the strike vehicle. The result
would exhibit truly cooperative behaviorin the sense that
the reconnaissance vehicle will be assigned to observe the
target whose reduction in uncertainty will prove most ben-
eficial for the strike vehicles, thereby creating this coupled
behavior between the vehicle missions. The optimization
for the coupled mission can be written as

max
x,y

Jk =
NT∑
i=1

(
c̄k,i − µσk,i(1− yk,i)− µσk+1|k,i yk,i

)
xk,i

subject to:
NT∑
i=1

yk,i = NV R ,
NT∑
i=1

xk,i = NV S (15)

xk,i, yk,i ∈ {0, 1}

This objective function implies that if a target is assigned
to be visited by a reconnaissance vehicle, thenyk,i = 1,
and thus the uncertainty in target scorei decreases from
σk,i to σk+1|k,i. Similarly, if a reconnaissance vehicle is
not assigned to targeti, the uncertainty does not change.
Note that by coupling the assignment, if both a strike and
reconnaissance vehicle are assigned to targeti, the strike
vehicle recovers an improved score.

We can simplify the objective function by combining
similar terms to give

max
x,y

Jk =
NT∑
i=1

(c̄k,i−µσk,i)xk,i +µ(σk,i−σk+1|k,i)xk,iyk,i

Note that this is a nonlinear objective function that cannot
be solved as a Mixed-Integer Linear Program (MILP), but
we can definevk,i ≡ xk,iyk,i as an additional optimization
variable, and constrain it as follows

vk,i ≤ xk,i

vk,i ≤ yk,i (16)

vk,i ≥ xk,i + yk,i − 1
vk,i ∈ {0, 1}

This change of variables enables the problem to be posed
and solved as a MILP of the form

Algorithm #1

max
x,y

Jk =
NT∑
i=1

(c̄k,i − µσk,i)xk,i + µ(σk,i − σk+1|k,i)vk,i

subject to:
NT∑
i=1

yk,i = NV R ,
NT∑
i=1

xk,i = NV S (17)

xk,i, yk,i, vk,i ∈ {0, 1}

TABLE III

TARGET PARAMETERS

Target c̄ σk σk+1

1 20 4 0.3152

2 22 7 0.3159
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Fig. 3. Decoupled mission
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Fig. 4. Coupled mission

vk,i ≤ xk,i

vk,i ≤ yk,i (18)

vk,i ≥ xk,i + yk,i − 1

The key point with this formulation is that it captures
the coupling in the cooperative heterogeneous mission by
assigning the reconnaissance and strike vehiclestogether,
taking into account the individual missions.

As a straightforward example, we consider a 2 target case
with one strike and reconnaissance vehicle to be assigned
(Figure 3). This problem is simple enough to visualize and
be used as a demonstration of the effectiveness of this
approach. The reconnaissance (R1) and strike (S1) vehicles
are represented by? and∆, respectively, and theith target,
Ti, is represented by2. The expected score of each target is
proportional to the size of the box, and the uncertainty in the
target score is proportional to the radius of the surrounding
circle . The target parameters for this experiment are given
in Table III (µ=1).

Figures 3 and 4 compare the assignments of the recon-
naissance and strike vehicle for the decoupled and coupled
cases. In the decoupled case, strike vehicleS1 is assigned to
T1, while reconnaissance vehicleR1 is assigned toT2. Here
the optimization is completely decoupled in that the strike
vehicle and reconnaissance vehicle assignments are found
independently. In the coupled case, both strike vehicleS1



and reconnaissance vehicleR1 are assigned toT2. We can
see that without reconnaissance toT1, the expected worst
case score is higher inT1; however, with reconnaissance
to that target, uncertainty is reduced for both targets, and
T1 then has a higher expected worst score. Note that with
the two formulations, the strike vehicles are assigned to
different targets. This serves to demonstrate that solving
the optimization in Eq. 15 does not result in the same
assignment as the coupled formulation. This is key: if
we were able to solve the decoupled formulation for the
strike vehicle assignments, we could then simply assign
reconnaissance vehicles to those targets and obtain our
reconnaissance/strike mission. As these results show, that
is not the case.

To demonstrate these results numerically, we conducted
a straightforward two-stage mission analysis. In the first
stage, the above two optimizations were solved with the
target parameters; after this first stage, the vehicles pro-
gressed toward their intended targets. At the second stage,
it was assumed that the reconnaissance vehicle had actually
reachedthe target to which it was assigned, and thus, there
was no uncertainty in the target score. The optimization
in Eq. 6 was then solved for the strike vehicle, with the
updated target scores (from the reconnaissance vehicle’s
observation) and standard deviations. Note that this target
score could have actually beenworsethan predicted, as the
observation was made only at time of the reconnaissance
UAV arrival; the target that was not visited by the recon-
naissance vehicle maintained its original expected score and
uncertainty. In order to compare the two approaches, we
tabulated the scores accrued by the strike vehicles at the
second stage and discounted them by their current distance
to the (possibly new) target to visit. Both vehicles incurred
this score penalty, but since the targets were en route to their
previously intended targets, a re-assignment to a different
target incurred agreaterscore penalty, and hence reduction
in score.

Of interest in this experiment is the time delay between
the assignment of the reconnaissance vehicle to a target, and
its observation of that target. Clearly, if a reconnaissance
vehicle had a high enough speed such that it could update
the “true” state (i.e.,score) of the target almost immediately,
then the effects of a coupled reconnaissance and strike
vehicle would likely be identical to those obtained in
a decoupled mission, since the strike vehicles would be
immediately reassigned. This time delay however is present
in these typical reconnaissance/strike missions; our time
discount “penalty” for a change in reassignment does reflect
that a reassignment as a result of improved information will
result in a lower accrued score for the mission.

The numerical results of 1000 simulations are given in
Table IV, where J̄ indicates the average mission score
of each approach, andσJ indicates the standard deviation
of this score. Note that the score accrued by the coupled
approach has a much improved performance over the de-
coupled approach. Furthermore, we note that the variation

TABLE IV

NUMERICAL COMPARISONS OFDECOUPLED ANDCOUPLED

RECONNAISSANCE/STRIKE

Reconnaissance/Strike J̄ σJ

Coupled 61.19 26.56

Decoupled 41.50 23.12

of this mean performance is almost equivalent for the two
approaches (though we note that this is troubling for the
decoupled approach due to its lower mean). From this
simple example, we can thus see the importance of coupling
the missions of the two types of vehicles.

C. Improved reconnaissance/Strike formulation

While the above example shows that the coupled ap-
proach performs better than a decoupled one, using Eq. 19
for more complex missions can result in an incomplete
use of resources if there are more reconnaissance vehicles
than strike vehicles, or if we seek to also reward recon-
naissance as a mission objective in its own right. The cost
function mainly rewards the strike vehicles, by improving
their score if a reconnaissance vehicle is assigned to that
target. However, it does not fully capture the reward for the
reconnaissance vehicles that are, for example, not assigned
to strike vehicle targets. With the previous algorithm, these
unassigned vehicles could be assigned anywhere, but we
would like them to explore the remaining targets based
on a certain criteria. Such a criterion could be to assign
them to the targets with the highest standard deviation, or
to targets that exhibit the “best-case” score (ck,i+σk,i) so as
to incorporate the notion of cost in the optimization. Either
of these options can be included by adding a an extra term
to the cost function

Algorithm #2

max
x,y

Jk =
NT∑
i=1

(c̄k,i − µσk,i)xk,i + µ(σk,i − σk+1,i)vk,i

+Kσk,i(1− xk,i)yk,i (19)

For smallK this cost function keeps the strike objective as
the principal objective of the mission, while the weighting
on the latter part of the cost function assigns the remaining
reconnaissance vehicles to highly uncertain targets. Again,
this is a behavior that is intuitive to capture. Since the cou-
pling between reconnaissance vehicles and strike vehicles
is captured in the first part of the cost function, it seems
appropriate to assign the remaining reconnaissance vehicles
to targets that have the highest uncertainty. The term(1−
xk,i)yk,i captures the fact that these extra reconnaissance
vehicles will be assigned to targets that have not been
assigned (recall when the targets are unassigned,xk,i = 0).
Note that this approach is quite general, since theKσk,i

term can be replaced by any expression that captures an
alternative objective function for the reconnaissance vehicle.
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Fig. 5. Comparison of Algorithm 1 (top) and Algorithm 2 (bottom)
formulations

We demonstrate this change in the objective function in
Figure 5. In this example, we consider the assignment of
3 reconnaissance and 2 strike vehicles (strike assignments
remained identical in both cases), andK = .01. In the
earlier formulation,R3 is assigned toT5, a target with
virtually no uncertainty (note that the target score is vir-
tually certain since it has such a low uncertainty), since
in this instance there was no reward for decreasing the
uncertainty in the environment. The extra reconnaissance
vehicle was assigned randomly, as assignment to any target
did not improve the cost function. Note that there is benefit
in the extra reconnaissance vehicle going toT3 instead
of T5 since it will inherently decrease the uncertainty
in the environment, and in fact this is what happens in
the modified formulation. Thus, the modified formulation
captures more intuitive results via a better allocation of
resources.

V. HARDWARE TESTBED IMPLEMENTATION

We are currently developing a heterogeneous testbed
that consists of blimps (taking the role of reconnaissance
vehicles) and autonomous trucks (taking the role of strike
vehicles). The blimps are 7-ft spheres and carry a Sony
VAIO to do onboard control. Currently, assignment- and
waypoint-generation are done off-board. Position and head-
ing information are obtained with the use of a ArcSecond
3Di Constellation system, which includes four transmit-
ters and a receiver (one receiver per vehicle). We have
a four transmitter setup that uniquely determines a set
of inertial reference axes for the environment in which
we do our experiments. Each vehicle is equipped with
its own sensor to obtain unique position solution accurate
to within millimeters; velocity is estimated via a Kalman
filter based on truck and blimp dynamics, and is very
accurate for navigational purposes. Heading information

for the blimps is obtained with a second onboard receiver,
whose position is numerically differenced from that of the
primary sensor to determine a relative position vector with
respect to the transmitter axes. The intent is to transi-
tion these newly developed algorithms on these testbeds,
thereby demonstrating the applicability of these algorithms
in the presence of real-world disturbances. Furthermore,
we can begin demonstrating cooperative assignments based
on unique vehicle capabilities (i.e., the ability of blimps
to overfly obstacles). These capabilities can be captured in
more complex formulations of the coupled robust approach.
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Fig. 6. Truck and blimp scenario

Figure 6 shows a mission with one of the blimps and
a truck – here the blimp simulated doing reconnaissance
for the benefit of the truck. Both vehicles operated au-
tonomously in closed loop control. The truck began its
mission unaware of the existence of target C, while the
blimp was sent out to explore the environment. When it
discovers target C, this target was added to the mission
of the truck, and it can be seen that the truck corrects
its trajectory to visit target C. While this mission did not
incorporate the aforementioned algorithms, these will be
implemented on our testbeds soon.

VI. CONCLUSIONS

This paper has presented a novel approach to the problem
of mission planning for a team of heterogeneous vehicles
with uncertainty in the environment. We have presented a
simple modification of a robustness approach that allows
for a direct tuning of the level of robustness in the solution.
This robust formulation was then extended to account for
the coupling between the reconnaissance (tasks that reduce
uncertainty) and strike (tasks that directly increase the
score) parts of the combined mission. Although nonlinear,
we show that this coupled problem can be solved as a single



MILP. Future work will investigate the use of time discount-
ing explicitly in the cost function, thereby incorporating the
notion of distance in the assignment, as well as different
vehicle capabilities and performance (speed). We are also
investigating alternative representations of the uncertainty
in the information of the environment.
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