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	is study demonstrated particle size e
ect on the measurement of saikosaponin A in Bupleurum chinense DC. by near infrared
re�ectance (NIR) spectroscopy. Four types of granularity were prepared including powder samples passed through 40-mesh, 65-
mesh, 80-mesh, and 100-mesh sieve. E
ects of granularity on NIR spectra were investigated, which showed to be wavelength
dependent. NIR intensity was proportional to particle size in the rst combination-overtone and combination region. Local partial
least squares model was constructed separately for every kind of samples, and data-preprocessing techniques were performed
to optimize calibration model. 	e 65-mesh model exhibited the best prediction ability with root mean of square error of
prediction (RMSEP) = 0.492mg⋅g−1, correlation coe�cient (��) = 0.9221, and relative predictive determinant (RPD) = 2.58.
Furthermore, a granularity-hybrid calibration model was developed by incorporating granularity variation. Granularity-hybrid
model showed better performance than local model. 	e model performance with 65-mesh samples was still the most accurate
with RMSEP= 0.481mg⋅g−1, �� = 0.9279, and RPD= 2.64. All the results presented the guidance for construction of a robust
model coupled with granularity-hybrid calibration set.

1. Introduction

Near infrared (NIR) re�ectance spectroscopy is widely used
for quality assessment of solid sample in areas of pharmaceu-
ticals, agriculture, food, fruits, forage, and so on due to its
rapid measuring speed, �exibility, and less or even no sample
preparation [1–3]. 	is technology has also shown many
applications in Chinese herbal medicine (CHM), including
quality control of raw materials [4], manufacturing process
control [5–8], and quality assessment of nal dosage form
[9]. Before NIR analysis, sample preparation of CHM is
vital because CHM shape was irregular with coarse surface.
Sample preparation was performed by crushing the sample
into powder and controlling the particle size by passing the
ground powder through sieves so as to keep the consistency
of sample presentation.

However, for sample presentation of CHM, di
erent par-
ticle sizes a
ected sample homogeneity, sample packing den-
sity, and sample surface, which all introduced uncontrolled
variations that brought forth di
erence in optical path length
and multiplicative light scattering e
ects [10, 11]. Several
mathematical methods such as multiplicative scatter correc-
tion (MSC) [12], standard normal variate (SNV), extended
multiplicative scatter correction (EMSC) [13], orthogonal sig-
nal correction (OSC) [14], and optical path length estimation
and correction (OPLEC) [15] have been used tomitigate light
scattering e
ects. But the degree of the scattering e
ects to
be mitigated was di
erent according to di
erent granularity
e
ect of sample.

In addition, the fact that sample presentation to the
instrument (e.g., particle size) has been found to a
ect the
characteristics of NIR spectra should be paid great attention,
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thus determining the robustness and accuracy of NIR as
analytical technique. According to the e
ect of soil particle
size (SPS) on the NIR measurement of exchangeable sodium
(Na), NIR accuracy for soils with great particle sizes (SPS-
0.212, 0.212mm)was higher than soil with small particle sizes
(SPS-0.053, 0.053mm) [16].

	erefore, how to guarantee low noise and good NIR
model performance with di
erent granularity e
ect was
worth clarication. Researches concerning this issue have
done limited work to give conduction in CHM. David
reported a method for quantifying the median particle
size of a dry powder using preprocessing NIR spectra. A
quadratic model was developed to explain these summations
as a function of median particle size, since the e
ect of
densication was minimal [17]. In addition, Sarraguça et al.
compared the estimation of the particle size distribution of
a pharmaceutical powder using NIR. 	e estimations were
made by considering the former data blocks separately and
together using a multiblock approach [18]. Furthermore, par-
ticle size determination of amoxicillin trihydrate particleswas
developed byBittner. A linear coherence between particle size
and absorbance signal was found at specic wavenumbers
[19].

Nevertheless, this is only one paper on the particle size of
CHM in NIR measurement, which illuminates the in�uence
of granularity on NIR spectra characteristic of Coptis chinen-
sis [20]. Few studies focused on the e
ect of granularity on
the quantitative analysis of active pharmaceutical ingredients
(API) in CHM, and there was not a globally acceptedmethod
that guided the crushing process.

Bupleurum chinense DC. is a well-known CHM and is
used in at least 66% of the prescriptions in Chinese medicine
and Kampo medicine [21]. Saikosaponin was demonstrated
to be the major active ingredient in Bupleurum chinense DC.
	erefore, the content of saikosaponin A (SSA) was quantita-
tively analyzed by NIR technique with di
erent sized samples
with the aim of presenting a methodology to investigate
the e
ects of granularity on di
erent NIR frequency range.
Partial least squares (PLS) regression analysis with incorpo-
rating samples of various granularities into calibration set
was developed for low content of SSA of Bupleurum chinense
DC.

2. Materials and Methods

2.1. Sample Preparation. All Bupleurum chinense DC. sam-
ples were collected from di
erent growing places of China
to give increased geographical variations. All the samples
were identied by Dr. Chunsheng Liu (Beijing University of
Chinese Medicine, China). Sample origins and the numbers
of samples are shown in Table 1.

A�er being cleaned by brushing o
 soil dust from the
surface, Bupleurum chinense DC. was crushed into pieces by
a disintegrator. 	en the samples were ground to ne pieces
with a blender and screened through a 20-mesh sieve. Finally,
the powders were divided into four parts. Every part was
continually smashed and screened through 40-, 65-, 80-, and
100-mesh sieve, respectively.

Table 1: A summary of tested samples.

Sample number Origins Growth pattern

1∼5 Shanxi Unknown

6∼9 Shanxi Unknown

10∼14 Shanxi Cultivated

15∼19 Shanxi Wild

20∼25 Shanxi Wild

25∼30 Hebei Cultivated

Table 2: Elution gradient used in the HPLC method.

Time/min ACN (v/v) Water (v/v)

0–50 25–90 75–10

50–55 90 10

55–60 25 75

60–67 25 75

2.2. NIR Spectra Acquisition. About 1 g sample powder was
packed into the sample cup. NIR spectra were acquired
in re�ectance mode with the Integrating-Sphere module of
the Antaris I FT-NIR analyzer (	ermo Fisher, USA). Each
spectrum was the average of 64 successive scans with air as

the background. 	e spectral range was 10000–4000 cm−1

with 1.928 cm−1 data interval. To guarantee the analysis
accuracy, each samplewas analyzed in triplicate and themean
value of three spectra was used in the following analysis. To
avoid the e
ects of environment condition in the laboratory,
such as temperature and humidity, the room temperature was
controlled at 25∘C, and the humidity was kept at an ambient
level.

2.3. Reference Analysis Method. 	e reference method used
for SSA determination was the high performance liquid
chromatography (HPLC) assay recommended by theChinese
Pharmacopoeia (ChP, 2010 Edition) for Bupleurum chinense
DC. Amounts of SAA (12.5mg) were accurately weighed
using an XS205DU electronic balance (Mettler Toledo,
Greifensee, Switzerland) and dissolved with methanol into a
25mL volumetric �ask. Chromatographic analysis was con-
ducted on aWondasil C18 column (250mm × 4.6mm, 5 �m,
SHIMADZU, Japan) at 30∘C using an Agilent 1100 series
HPLCapparatus, equippedwith a quaternary solvent delivery
system, an autosampler, and a DAD detector. 	e detection
wavelength was 210 nm. With a �ow rate of 1.0mL/min,
the linear gradient elution program was set, as shown in
Table 2.

2.4. Data Pretreatment and Analysis. All the computations
were performed using TQ Analyst so�ware package (version
8.0, 	ermo Scientic, Madison, USA). Other data analyses
were performed by Unscrambler 9.7 so�ware package (Camo
So�ware AS, Norway) andMATLAB version 7.0 (MathWorks
Inc., USA). Some of the algorithms used in this paper were
developed by us.
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Figure 1: 	e chromatograms of Bupleurum chinense DC. extraction solution.
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Figure 2: (a) Raw spectra of samples with di
erent granularity. (b) Di
erence of NIR frequency range to the granularity.

3. Results and Discussion

3.1. Chromatographic Studies on Bupleurum chinense DC.
Figure 1 shows typical HPLC chromatograms of Bupleurum
chinense DC. extraction solution. 	e retention time of the
SSA in the sample solution was the same with the reference
standard solution.	e calibration curve of theHPLCmethod
was investigated before real sample analysis. 	e calibration

curve exhibited good linearity (� = 0.0031� + 0.0126, �2 =
0.9999) within the content range 0.804–6.432 �g.

3.2. E�ects of Granularity on Absorption Characteristics of
Overtones and Combination of NIR. Figure 2(a) shows typ-
ical raw spectra of one sample with di
erent granularity.
Figure 2(b) describes overtones and combination character-
istics of NIR spectra to the granularity. It was obvious that

the di
erence of spectral characteristics was closely related to
granularity.	e e
ects of granularitywerewavelength depen-
dent. According to Kubelka-Munk function (1), re�ectance
was inversely proportional to the light scatter coe�cient �:

ϝ (�∞) =
(1 − �∞)

2

2�∞
= �� .

(1)

Former research demonstrated that � value was inversely
proportional to particle size [22]. 	erefore, Log(1/�) value
was proportional to particle size. However, Figure 2 shows
that this principle was only e
ective for NIR spectra of
Bupleurum chinense DC. in the rst combination-overtone
region (FCOT, 7100–5000 cm−1) and combination region

(CR, 5000–4000 cm−1).
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Figure 3: Plot of PRESS value against latent factors.

It could be observed that Log(1/�) value was sensitive to
granularity changes, which tended to become larger as the
particle size increased. Compared with FCOT region (RSD,
0.025–0.035), NIR absorption of CR region was more easily
interfered with by granularity (RSD, above 0.035). However,
in the second combination-overtone region (SCOT, 7100–

10,000 cm−1), Log(1/�) value was relatively steady and not
vulnerable to disturbance (RSD, less than 0.015).

3.3. Optimization of NIR Data-Preprocessing Methods. To
avoid bias in sample selection, the Kennard-Stone (KS) algo-
rithm was used to split the NIR data set into calibration and
validation. Twenty concentration levels including 60 samples
were used as the calibration set, and the remaining samples
were the validation set, which was shown in Table 3. Outliers
were rstly removed before model calibration according to

Table 3: Concentration range of SSA in calibration and validation
set (mg⋅g−1).

Sample set Numbers
Concentration

range
Average

Standard
deviation

Calibration 60 1.476–8.162 3.695 1.452

Validation 30 1.601–5.807 3.727 1.269

Dixon test. Dixon test is dened as that if the deviation
of a standard from the mean is outside a 95% condence
threshold, the standard is an outlier.

Data-preprocessing techniques were investigated prior
to calibration development. To optimize the spectra, the
empirical multiplicative light scattering correction method,
MSC, and SNVwere applied.	en combination of derivative
methods including rst derivative (1D) and second derivative
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Figure 4: Correlation diagrams between the NIR predicted values and the reference values of SSA content.

(2D) was used to reduce baseline variations observed in
original di
use re�ectance spectra and to enhance spectral
features.Meanwhile, smoothingmethods including Savitzky-
Golay smoothing lter (SG) and Norris derivative lter (ND)
were employed to depress the background noise amplied by
derivative. 	e optimum preprocessing method was deter-
mined by the lowest PRESS value (Figure 3). It was concluded
that, for Bupleurum chinenseDC. of di
erent granularity, the
optimization result was a little di
erent.

3.4. E�ects of Granularity on Local PLS Model Prediction
Ability. A�er application of the best data pretreatments, four
local PLS models were constructed with powder samples,
which were screened through 40-, 65-, 80-, and 100-mesh
sieve separately. To compare the prediction performance of
every local model, test-set validation was performed and
the result was shown in Table 4. 	e correlation diagram
was shown in Figure 4. To avoid overtting phenomenon,

Table 4: Local model performance of di
erent granularity.

Model LVs
Cross validation Test-set validation

RPD
RMSECV �CV RMSEP ��

40 4 0.682 0.7671 0.650 0.8519 1.95

65 4 0.574 0.8347 0.492 0.9221 2.58

80 3 0.567 0.8408 0.534 0.9070 2.38

100 3 0.664 0.7484 0.522 0.9162 2.43

RMSECV value was closed to RMSEP when determining the
principle component numbers.

It was signicantly found that local model performance
was not gradually increasing with decreased granularity. 	e
result demonstrated that model performance went down at
65mesh and tended to be steady from 80mesh to 100mesh.
	e result showed that granularity and sample heterogene-
ity were both critical for NIR analysis. When grinding
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Table 5: Prediction performance of GH model.

Pretreatment
methods

LVs
Cross validation

Test-set validation
(40)

Test-set validation
(65)

Test-set validation
(80)

Test-set validation
(100)

RMSECV �CV RMSEP �� RMSEP �� RMSEP �� RMSEP ��
RAW 5 0.763 0.6903 0.814 0.7657 0.747 0.8031 0.707 0.8292 0.635 0.8862

MSC 2 0.716 0.7278 0.716 0.8293 0.654 0.8551 0.621 0.8628 0.538 0.9123

1D + SG 7 0.602 0.8229 0.687 0.8420 0.621 0.8473 0.566 0.8909 0.566 0.8929

2D + SG 4 0.624 0.8025 0.671 0.8621 0.596 0.8815 0.612 0.8651 0.540 0.9065

MSC + 1D + SG 6 0.606 0.8276 0.575 0.8971 0.481 0.9279 0.524 0.9137 0.545 0.9146

MSC + 2D + SG 3 0.678 0.7621 0.690 0.8538 0.664 0.8552 0.618 0.8648 0.522 0.9126

MSC + 1D + ND 6 0.609 0.8821 0.672 0.8508 0.580 0.8873 0.631 0.8655 0.765 0.8371

MSC + 2D +
ND

6 0.566 0.8450 0.621 0.8757 0.527 0.9099 0.583 0.8863 0.603 0.8879

the solid sample, sample granularity should be considered.
Furthermore, the local model was not very perfect though
its correlation coe�cient was greater than 0.9. To further
improve model performance, granularity-hybrid calibration
model was tried in the next section.

3.5. Construction of Granularity-Hybrid Calibration Model.
To develop a robust calibration model and realize model’s
successful application, another way to defend variations of
particle sizes is to construct a granularity-hybrid calibration
model (GH model), including calibration set of every granu-
larity (240 samples, 40, 65, 80, and 100mesh).	en validation
sets of every particle size were predicted by the GH model,
as shown in Figure 4. RMSEP and �� were compared to nd
whether model with granularity-hybrid sample set could be
more accurately predicted.

GH model performance constructed with di
erent data-
preprocessing methods was exhibited in Table 5. We con-
cluded that MSC + 1D + SG was the best method for
GH model development. 	e correlation diagram of GH
model was shown in Figure 5. Similarly conclusion has
shown that model performance of 65-mesh sample could
be the most accurately predicted based on the chemometric
indicators. 	e 80-mesh and 100-mesh samples’ prediction
results showed no signicant di
erence ranking the second.
Furthermore, the prediction performance of 40-mesh sam-
ples was still the worst. 	e above results illuminated basic
guidance for sample preparation. It was obvious that GH
model was better than local model, which demonstrated that
hybrid calibration model was a good alternative to deal with
variations.

4. Conclusions

E
ects of granularity on NIR were investigated; the results
concluded that in�uence on NIR spectra was wavelength
dependent. NIR intensity was proportional to particle size in
the FCOT and CR region. A�er appropriate data preprocess-
ing, the local PLS model of 65-mesh samples showed the best
prediction ability for Bupleurum chinense DC. Furthermore,
a granularity-hybrid calibration model was developed by
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Figure 5: Correlation diagrams of GH model.

incorporating granularity variation. It showed that model
performance of hybrid calibration model was better than
local model, which demonstrated that hybrid calibration
model was a good alternative to deal with variations. All
the results present guidance for sample preparation in NIR
analysis of CHM and reference for construction of a robust
model eliminating granularity factors.
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