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Abstract

In this paper, we propose an efficient algorithm, called vector field consensus, for establishing 
robust point correspondences between two sets of points. Our algorithm starts by creating a set of 
putative correspondences which can contain a very large number of false correspondences, or 
outliers, in addition to a limited number of true correspondences (inliers). Next, we solve for 
correspondence by interpolating a vector field between the two point sets, which involves 
estimating a consensus of inlier points whose matching follows a nonparametric geometrical 
constraint. We formulate this a maximum a posteriori (MAP) estimation of a Bayesian model with 
hidden/latent variables indicating whether matches in the putative set are outliers or inliers. We 
impose nonparametric geometrical constraints on the correspondence, as a prior distribution, using 
Tikhonov regularizers in a reproducing kernel Hilbert space. MAP estimation is performed by the 
EM algorithm which by also estimating the variance of the prior model (initialized to a large 
value) is able to obtain good estimates very quickly (e.g., avoiding many of the local minima 
inherent in this formulation). We illustrate this method on data sets in 2D and 3D and demonstrate 
that it is robust to a very large number of outliers (even up to 90%). We also show that in the 
special case where there is an underlying parametric geometrical model (e.g., the epipolar line 
constraint) that we obtain better results than standard alternatives like RANSAC if a large number 
of outliers are present. This suggests a two-stage strategy, where we use our nonparametric model 
to reduce the size of the putative set and then apply a parametric variant of our approach to 
estimate the geometric parameters. Our algorithm is computationally efficient and we provide 
code for others to use it. In addition, our approach is general and can be applied to other problems, 
such as learning with a badly corrupted training data set.
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Index Terms

Point correspondence; outlier removal; matching; regularization

I. Introduction

Establishing reliable correspondence between two images is a fundamental problem in 
computer vision and it is a critical prerequisite in a wide range of applications including 
structure-from-motion, 3D reconstruction, tracking, image retrieval, registration, and object 
recognition [22], [28], [34], [42], [47], [64]. In this paper, we formulate it as a matching 
problem between two sets of discrete points where each point is an image feature, extracted 
by a feature detector, and has a local image descriptor (e.g., SIFT [31] or shape context [4]). 
The matching problem is ill-posed and is typically regularized by imposing two types of 
constraints: (i) a descriptor similarity constraint, which requires that points can only match 
points with similar descriptors, and (ii) geometric constraint, which requires that the matches 
satisfy an underlying geometrical requirement, which can be either parametric (e.g., rigid 
transformations) or non-parametric (e.g., non-rigid). Even after regularization there remain 
an exponential number of possible matches between the two sets and efficient algorithms are 
required to obtain the best solution by removing the false matches. The difficulty of the 
matching problem is typically made harder by the presence of unmatched points in the two 
images (due to occlusion or failures of the feature detectors).

A popular strategy for solving the matching problem is to use a two stage process. In the 
first stage, a set of putative correspondences are computed by using a similarity constraint to 
reduce the set of possible matches. This putative correspondence set typically includes most 
of the true matches, the inliers, but also a large number of false matches, or outliers, due to 
ambiguities in the similarity constraints (particularly if the images contain repetitive 
patterns). The second stage is designed to remove the outliers and estimate the inliers and 
the geometric parameters [18], [26], [35], [49]. This strategy is commonly used for 
situations where the geometrical constraints are parametric, such as requiring that 
corresponding points lie on epipolar lines [22]. Examples of this strategy include the 
RANSAC algorithm [18] and analogous robust hypothesize-and-verify methods [13], [42], 
[49]. Although these methods are very successful in many situations they have had limited 
success if the geometrical constraints are non-parametric, for example if the real 
correspondence is non-rigid, and they also tend to degrade badly if the proportion of outliers 
in the putative correspondence set becomes large [26].

In this paper we address these limitations by formulating the point matching problem as 
robust vector field interpolation using a non-parametric geometrical constraint. As discussed 
in the background section, vector flow interpolation arises frequently in computer vision and 
machine learning. Regularization theory [57] provides a framework for estimating vector 
fields when the problems are ill-posed. Yuille and Grzywacz [64], [65] formulated the 
discrete motion matching task in terms of finding those matches which give rise to the best 
interpolated vector field and subsequent work by Rangarajan and colleagues [12], [21] 
applied this to shape matching. Poggio and his collaborators [41] formulated learning in 
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terms of interpolating a vector field from a discrete set of training samples (see also [37]), 
and other related machine learning work includes Gaussian processes [1], [8], [43].

Vector field interpolation assigns each position x ∈ IRP (e.g., in one image) to a vector y ∈ 
IRD defined by a vector-valued function f, hence specifying a mapping x ↦ f(x) between 
two images. The problem of vector field interpolation is to fit a vector field f which 
interpolates a given sparse sample set S = {(xn, yn) : n ∈ INN }, i.e., ∀n ∈ INN, yn = f(xn). In 
this paper, we define robust vector field interpolation to be the spacial case where the sparse 
sample set S contains a large number of outliers which must be removed. We formulate this 
by a mixture model by introducing explicit latent/hidden variables for all members of the 
sample set which identifies/rejects the outliers and imposing a prior on the geometry which 
imposes a non-parametric smoothness constraint on the vector fields [64]. This leads to a 
maximum a posteriori (MAP) estimation problem which risks having many local minima 
which an algorithm may get trapped in. To address this issue, we use the EM algorithm [17] 
to estimate the variance of the prior, while simultaneously estimating the outliers, and give 
the variance a large initial value. This is conceptually similar to deterministic annealing [63], 
which uses the solution of an easy (e.g., smoothed) problem to recursively give initial 
conditions to increasingly harder problems, but differs in several respects (e.g., by not 
requiring any annealing schedule). Our method is computationally attractive and able to deal 
with a significant amount (up to 90%) of outliers.

To illustrate the main ideas of this paper, we show a simple example in Fig. 1. Given two 
sets of interest points extracted from an image pair, we want to match them to establish their 
point-wise correspondence. We first compute a set of putative correspondences based on 
their SIFT features as shown in Fig. 1(a), where the blue and red lines denote inliers and 
outliers respectively (we only show a subset of 50 members of the putative set). The input x 

∈ ℛ2 denotes the location vectors, and the output y ∈ ℛ2 is the displacement vectors (or 
disparity) at that location; then the putative correspondences are displayed by motion field 
samples, as shown in Fig. 1(b). The inliers are shown in Fig. 1(c). If we use a recent 
interpolation method [37], which does not use an outlier process, we obtain the motion fields 
in Fig. 1(d) and (e) from the correspondences shown in Fig. 1(b) and (c) respectively. 
Clearly, the motion field in Fig. 1(d) is inaccurate because it is contaminated by the outliers 
in the putative set. Hence our task is to recover the motion field from the samples by 
removing the outliers – in other words to get Fig. 1(b)–(e). We note that our method can fail 
if the inliers of the putative set do not obey the smoothness assumption we impose [59], [64] 
(e.g., suppose the “true matches” are not indicated by the blue arrows and instead 
correspond to a subset of the red arrows). Interestingly, we demonstrate that we obtain very 
good results using our method even for cases where the underlying motion is rigid and 
parametric (e.g., cases addressed by RANSAC) and, in particular, we perform better than 
RANSAC if the putative set contains a large proportion of outliers.

Our contributions in this paper include the following. Firstly, we present an algorithm for 
determining point correspondences between a pair of 2D or 3D images. Unlike some 
standard methods, for example RANSAC, we do not assume an underlying parametric 
geometrical constraint (e.g., epipolar lines) but instead use a more flexible, non-rigid, non-
parametric constraint. This greatly increases the generality of our approach and makes it 
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robust to an extremely large amount of outliers – up to 90% of the putative set. Secondly, we 
also study a variant of our model which uses parametric constraints which we show is also 
more robust than RANSAC when the proportion of outliers is not so large (e.g., less than 
50%). This parametric variant can be used in a two-stage process where we first use our non-
parametric method to estimate an reduced putative set, by first removing many/most of the 
outliers in the putative set and then run our parameter method on this reduced set to directly 
output the parameters (assuming we want to estimate them). Thirdly, our approach can be 
used for robust learning where the dataset of training examples is contaminated by outliers. 
We illustrate this by a simple toy example, because it gives some insight in our approach, but 
we do not explore this application in this paper. This article is an extension of our earlier 
work [67], and the primary new contributions are an expanded derivation as well as 
comprehensive evaluations with more discussions and analysis.

The rest of the paper is organized as follows. Section II describes background material and 
related work. Section III describes our vector field consensus algorithm for interpolation 
which is robust to a high proportion of outliers. In Section IV, we discuss how to apply our 
algorithm to the point matching problem with either non-parametric or parametric geometric 
constraints. Section V illustrates our algorithm on a synthetic learning task and then tests it 
for motion correspondence on several datasets with comparisons to other approaches, 
followed by some concluding remarks in Section VI.

II. Related Work

This section briefly reviews the background material that our work is based on. This 
includes methods for establishing a set of putative correspondences and geometric 
constraints. Next we discuss approaches for solving matching problems which solve for a 
correspondence matrix between point sets. Then we discuss vector field interpolation.

A. Establishing Point Correspondences Using Putative Sets and Geometric Constraints

A popular strategy [42] for establishing reliable point correspondences between image pairs 
involves two steps: (i) computing a set of putative correspondences, and (ii) then removing 
the outliers using geometrical constraints. In the first step, putative correspondences are 
obtained by pruning the set of all possible point correspondence by computing feature 
descriptors at the points and removing the matches between points whose descriptors are too 
dissimilar. The types of descriptors used include as SIFT [31] and shape contexts [4] in the 
2D case, and spin image [24], MeshDOG and MeshHOG [66] in the 3D case. In the second 
step, robust estimators typically based on parametric geometrical models (e.g., rigidity 
constraints) are used to detect and remove the outliers.

There has been considerable study of robust estimation in the statistics literature [23], [46]. 
This work shows, for example, that maximum likelihood estimator of parameters using 
quadratic L2 norms are not-robust and highly sensitive to outliers. By contrast, methods 
which minimize L1 norm are more robust and capable of resisting a larger proportion of 
outliers. A particularly robust method is the redescending M-estimator [23]. It can be shown 
that this estimator results from using an explicit variable to indicate whether data is an 
outlier or an inlier (this indicator variable must be estimated) [19]. The use of explicit 

Ma et al. Page 4

IEEE Trans Image Process. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



variable to indicate outliers has a long history in computer vision [7], [19], [20] and for 
signal processing methods like robust PCA [61]. We return to the use of explicit outlier 
variables in the next section.

The RANSAC algorithm matches two point sets by first computing a putative set and then 
using robust methods to impose parametric geometric constraints [18]. RANSAC uses a 
hypothesize-and-verify framework. It proceeds by repeatedly generating solutions estimated 
from a small set of correspondences randomly selected from the data, and then tests each 
solution for support from the complete set of putative correspondences. RANSAC has 
several variants such as MLESAC [49], LO-RANSAC [14] and PROSAC [13]. MLESAC 
adopts a new cost function using a weighted voting strategy based on M-estimation and 
chooses the solution that maximizes the likelihood rather than the inlier count. RANSAC is 
also enhanced in LO-RANSAC with a local optimization step based on how well the 
measurements satisfy the current best hypothesis. Alternatively, prior beliefs are assumed in 
PROSAC about the probability of a point being an inlier to modify the random sampling 
step of the RANSAC. A detailed comparative analysis of RANSAC techniques can be found 
in [42]. Recently, some new non-parametric model-based methods have also been 
developed, such as identifying point correspondences by correspondence function (ICF) 
[26]. It uses support vector regression to learn a correspondence function pair which maps 
points in one image to their corresponding points in another, and then rejects the outliers by 
checking whether they are consistent with the estimated correspondence functions.

Another strategy for point correspondences is to formulate this problem in terms of a 
correspondence matrix between points together with a parametric, or non-parametric, 
geometric constraint [5], [12], [21], [39]. These approaches relate closely to earlier work on 
mathematical models of human perception of long-range motion. This includes Ullman’s 
minimal mapping theory [53] and Yuille and Grzywacz’s motion coherence theory [65] 
which formulate correspondence in terms of vector field interpolation and use Gaussian 
kernels. We note that these types of models give accurate prediction for human perception of 
long range motion [32].

These methods typically involve a two step update process which alternates between the 
correspondence and the (rigid/non-rigid) transformation estimation. The iterated closest 
point (ICP) algorithm [5] is one of the best known point registration approaches. It exploits 
nearest-neighbor relationships to assign a binary correspondence, and then uses estimated 
correspondence to refine the transformation. Rangarajan and colleagues [12], [21] 
established a general framework for estimating correspondence and transformations for 
point matching, building on Yuille and Grzywacz’s work [65]. Specifically, for the non-rigid 
case, they modeled the transformation as a thin-plate spline and did robust point matching 
by an algorithm (TRS-RPM) which involves deterministic annealing and soft-assignment. 
Alternatively, the coherence point drift (CPD) algorithm [39] uses Gaussian radial basis 
functions instead of thin-plate splines (this corresponds to a different type of regularizer, see 
next section). In these formulations, both the rigid and non-rigid cases can be dealt with, but 
these methods usually cannot tolerate large numbers of outliers and searching over all 
possible matches is in general NP-hard. Some robustness can be achieved by paying a 
penalty for unmatched points.
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Point correspondence has also been formulated as a graph matching problem, such as the 
dual decomposition (DD) [50], Spectral Matching (SM) [25], and graph shift (GS) [29], 
[30]. The DD approach formulates the matching task as an energy minimization problem by 
defining a complex objective function of the appearance and the spatial arrangement of the 
features, and then minimizes this function based on the dual decomposition approach. The 
SM method uses an efficient spectral method for finding consistent correspondences 
between two sets of features. Based on the SM method, the GS method constructs an affinity 
graph for the correspondences, and the maximal clique of the graph is viewed as spatially 
coherent correspondences. Besides, Cho and Lee [11] introduced novel progressive 
framework which combines probabilistic progression of graphs with matching of graphs. 
The SIFT-flow algorithm [28] builds a dense correspondence map between two arbitrary 
images with a particular advantage for matching two scenes; it does not explicitly deal with 
the outliers and may not be able to produce the accuracy for the precise matching for 
problems like structure-from-motion. Note that this type of graph matching formulation can 
in some cases be mathematically equivalent to the methods with correspondence variables 
and geometric constraints [63], [65].

B. Vector Field Interpolation

A classical problem of vector field interpolation is to measure dense motion (velocity) fields. 
In this specific context, a number of methods have been developed based on regularization 
theory [16], [65]. Corpetti et al. [16] proposed an optical-flow technique specifically 
dedicated to estimating fluid flows from image sequences. Yuille and Grzywacz [65] 
introduced the motion coherence theory for computing a velocity field defined in an image. 
They used a quadratic regularizer to impose geometric constraints on the correspondences, 
and showed that this was equivalent to formulating the problem in terms of a space of 
kernels. These methods usually do not consider the interactions among the x and y 

components of the fields. But recently Micchelli and Pontil [37] developed a framework of 
regularization in the RKHS of vector-valued functions, which can directly encode 
relationships between the components of vector fields by choosing a suitable matrix-valued 
kernel. Based on their work, Baldassarre et al. [3] investigated a spectral regularization 
scheme to interpolate vector fields. See also Wu et al. [60] who developed different 
regularizers and kernels for different types of motion fields and investigated their relation to 
human perception of motion flow. In addition, Lin et al. [27] proposed a novel semi-
supervised multi-task learning formulation using vector fields. These methods however 
ignore the robustness issue, in which the presence of outliers in the dataset may greatly 
degrade the performance.

The technique of robust vector field interpolation has been adopted in Gaussian processes, 
basically by using the so-called t-processes [62], [68]. The t-processes are inherently robust 
to outliers and can be seen as a robust extension of Gaussian processes, in which the priors 
of the function values are sampled from a (heavy-tailed) multivariate t distribution. In this 
work, we introduce a novel robust vector field interpolation method; our approach tries to 
associate each sample with a latent variable indicating whether it is an inlier for purpose of 
robust estimation.
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III. The Vector Field Consensus Algoroithm

This section describes the vector field consensus algorithm (the next section discusses how 
to apply it to point matching). We start by briefly introducing the interpolation problem, and 
then lay out the formulation of our robust vector field interpolation and derive an EM 
solution by using a regularized kernel method. We subsequently discuss some potentially 
useful matrix-valued kernels for vector field interpolation, and followed by the fast 
implementation. Finally, we analyze the computational complexity of the proposed 
approach.

A. Interpolation by Regularization

Assume a set of observed input-output pairs S = {(xn, yn) ∈  × : n ∈ INN } that are 
samples randomly drawn from a vector field, where  ⊆ IRP and  ⊆ IRD are input and 
output space respectively. The goal is to fit a mapping f interpolating the sample set, i.e., ∀n 
∈ INN, yn = f(xn). This problem is in general ill-posed since it has an infinite number of 
solutions. To obtain a meaningful solution, it can one way be formulated into an 
optimization problem with a certain choice of regularization [3], [41], which typically 
operates in a vector-valued Reproducing Kernel Hilbert Space (RKHS) [2] (associated with 
a particular kernel), as described in detail in Appendix A. Specifically, the Tikhonov 
regularization [48] in an RKHS ℋ defined by a matrix-valued kernel Γ : IRP × IRP → 
IRD×D minimizes a regularized risk functional

(1)

where the first term is the empirical error (risk) which enforces closeness to the data, the 
second term is a stabilizer which enforces smoothness to the vector field f, λ is a 
regularization constant controlling the trade-off between these two terms, and ||·||ℋ denotes 
the norm of ℋ.

According to the representer theorem [37], the solution of the regularized risk functional (1) 
is given by

(2)

with the coefficient set {cn : n ∈ INN } determined by a linear system

(3)
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where the Gram matrix Γ̃ ∈ IRDN×DN is an N × N block matrix with the (i, j)-th block Γ(xi, 

xj), I is an identity matrix,  and  are column vectors.

B. Problem Formulation

The Tikhonov regularization treats all samples as inliers, which may be problematic if there 
are outliers. Hence we assume that the given sample set S may contain some amount of 
unknown outliers. Our purpose is to fit a vector field f :  →  interpolating the inliers, 
and consequently distinguish inliers from the outliers.

Due to the existence of outliers, it is desirable to have a robust estimation of f. To this end, 
we make the assumption that, for the inliers, the noise is Gaussian on each component with 
zero mean and uniform standard deviation σ; for the outliers, the output space is a bounded 

region of IRD, and the distribution is assumed to be uniform , where a is just a constant (the 
volume of this region). We then associate the n-th sample with a latent variable zn ∈ {0, 1}, 
where zn = 1 indicates a Gaussian distribution and zn = 0 points to a uniform distribution. 
Let X and Y be the set of observed input and output data, in which the n-th rows represent 

 and . Thus, the likelihood is a mixture model given by

(4)

where θ = {f, σ2, γ } includes a set of unknown parameters, γ is the mixing coefficient 
specifying the marginal distribution over the latent variable, i.e., ∀zn, p(zn = 1) = γ. Note 
that the uniform distribution function is nonzero only in a bounded region (here we omit the 
indicator function for clarity).

We want to recover the vector field f from the data S. Taking a probabilistic approach, we 
assume f to be a realization of a random field with a known prior probability distribution 
p(f). The prior is used to impose constraints on f, assigning significant probability only to 
those functions that satisfy those constraints. We consider the slow-and-smooth model [59], 
[64] which has been shown to account for a range of motion phenomena, the prior of f then 
has the form:

(5)

where ϕ(f) is a smoothness functional and λ a positive real number (we will discuss the 
details of f later).
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Note that flat priors are also implicitly assumed on σ2 and γ. Using Bayes rule, we estimate 
a MAP solution of θ, i.e., θ* = argmaxθ p(θ|X,Y) = argmaxθ p(Y|X, θ)p(f). This is 
equivalent to seeking the minimal energy

(6)

The vector field f will be directly obtained from the optimal solution θ*, and the latent 
variables {zn : n ∈ INN } determine the inliers. In the next section, we show how to solve the 
estimation problem using an EM approach.

C. The EM Algorithm

There are several ways to estimate the parameters of the mixture model, such as EM 
algorithm, gradient descent, and variational inference. The EM algorithm [17] is a general 
technique dealing with the existence of latent variables. It alternates with two steps: an 
expectation step (E-step) and a maximization step (M-step).

We follow standard notations [6] and omit some terms that are independent of θ. 
Considering the negative log posterior function, i.e. Eq. (6), the complete-data log posterior 
is

(7)

E-step—We use the current parameter values θold to find the posterior distribution of the 
latent variables. Denote P = diag(p1, … , pN ) a diagonal matrix, where pn = P(zn = 1|xn, yn, 
θold) can be computed by applying Bayes rule:

(8)

The posterior probability pn is a soft decision, which indicates to what degree the n-th 
sample agrees with the current estimated vector field f.
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M-step—We determine the revised parameter estimate θnew as follows: θnew = argmaxθ 
(θ, θold). Considering P is a diagonal matrix and taking derivative of (θ) with respect to σ2 

and γ, and setting them to zero, we obtain

(9)

(10)

where Ṽ = (f(x1)T, … , f(xN )T)T, P̃ = P ⊗ ID×D with ⊗ denoting the Kronecker product, 
and tr(·) is the trace.

Next we consider the terms of (θ) that are related to f. We obtain a regularized risk 
functional as [37]:

(11)

It is a special form of Tikhonov regularization, i.e. equation (1), and the first term could be 
seen as a weighted empirical error. Thus the maximization of  with respect to f is 
equivalent to minimizing the regularized risk functional (11).

We model f by requiring it to lie within an RKHS ℋ defined by a matrix-valued kernel Γ : 
IRP × IRP → IRD×D. For the smoothness functional ϕ(f), we use the square norm, i.e., 

. Therefore, we have the following representer theorem [37].

Theorem 1—The optimal solution of the regularized risk functional (11) is given by 
equation (2) with the coefficient set {cn : n ∈ INN } determined by a linear system

(12)

The proof is given in Appendix B. Once the EM algorithm converges, we then obtain a 
vector field f. Besides, we have the estimation of the inliers as well. Here we present two 
particular scenarios:

i. with a predefined threshold τ, we obtain an inlier set ℐ

(13)
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ii. since we have recovered the vector field, we are then able to determine the inliers 
by checking whether they are consistent with f.

In this paper, we use the first scenario. Moreover, we observe that in practice the posterior 
probabilities of the samples are mostly (over 99%) either smaller than 0.01 or larger than 
0.99, after the EM iteration converges. Therefore, our method is not sensitive to the choice 
of τ. When such a hard decision is made, the set ℐ is the so-called consensus set in 
RANSAC [18]. This is the reason we name our method vector field consensus (VFC). We 
summarize the VFC method in Algorithm 1.

Algorithm 1

The Vector Field Consensus Algorithm

Analysis of convergence—Note that the energy function (6) is not convex so it unlikely 
that any algorithm can find its global minimum. Our strategy is to initialize the variance σ2 

by a large initial value and then use the EM algorithm. At large sigma, the objective function 
will be convex in a large region surrounding the global minimum. Hence we are likely to 
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find the global minimum for large variance. As sigma decreases, the position of the global 
minimum will tend to change smoothly. The objective function will be convex in a small 
region around its minimum, which makes it likely that using the old global minimum as 
initial value could converge to the new global minimum. Therefore, as the iteration 
proceeds, we have a good chance of reaching the global minimum. This is conceptually 
similar to deterministic annealing [63], which uses the solution of an easy (e.g., smoothed) 
problem to recursively give initial conditions to increasingly harder problems.

D. Matrix-Valued Kernels

Kernels play a central role in regularization theory as they provide a flexible and 
computationally feasible way to choose an RKHS. Next, we briefly review some potentially 
useful kernels which will be adopted and tested in the experiments.

Decomposable kernels—Baldassarre et al. [3] discussed a decomposable kernel for 
interpolating a vector field which has the form

(14)

where the scalar kernel κ (e.g., Gaussian kernel) encodes the similarity between the inputs, 
and the positive semidefinite D×D matrix A encodes the relationships between the outputs. 
The matrix-valued kernel can exploit the relationships among the components of the vector 
field.

Divergence-free and curl-free kernels—Important examples of divergence-free and 
curl-free fields are incompressible fluid flows and magnetic fields respectively. These 
kernels have been used in [36] to interpolate divergence-free or curl-free vector fields. The 
divergence-free kernel is

(15)

and the curl-free kernel is

(16)

where σ̃ is the width of the Gaussian part of the kernels. Note that in these two kernels the 
dimensions of the input and output are the same, i.e. P = D. Observe that non-negative linear 
combinations of matrix-valued kernels still obey the kernel properties. Thus, we can 
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interpolate a vector field and reconstruct its divergence-free and curl-free parts by taking a 
convex combination of these two matrix-valued kernels, controlled by a parameter

(17)

E. Fast Implementation

Solving the vector field f merely requires to solve the linear system (12). However, for large 
values of N, it may pose a serious problem due to heavy computational (e.g. scales as 
O(N3)) or memory (e.g. scales as O(N2)) requirements, and, even when it is implementable, 
one may prefer a suboptimal but simpler method. In this section, we provide a fast 
implementation based on a similar kind of idea as the subset of regressors method [40].

Rather than searching for the optimal solution in ℋN, we use a sparse approximation and 
search a suboptimal solution in a space with much less basis functions defined as 

, and then minimize the regularized risk functional 
over all the sample data. Here M ≪ N and we choose the point set {x̃m : m ∈ INM} as a 
random subset of {xn : n ∈ INN } according to [44] and [33]. There, it was found that simply 
selecting an arbitrary subset of the training inputs performs no worse than more 
sophisticated methods. According to the sparse approximation, we search a solution with the 
form

(18)

with the coefficients {cm : m ∈ INM} determined by a linear system

(19)

where  is the coefficient vector, Γ̃s is an M × M block Gram matrix with 
the (i, j )-th block Γ(x̃i, x̃j ), Ũ is an N ×M block matrix with the (i, j)-th block Γ(xi, x̃j ).

In contrast to the optimal solution given by the representer theorem, which is a linear 
combination of the basis functions {Γ(·, xn) : n ∈ INN }, the suboptimal solution is formed 
by a linear combination of arbitrary M-tuples of the basis functions. Generally, this sparse 
approximation will yield a vast increase in speed and decrease in memory requirements with 
negligible decrease in accuracy. We call this implementation SparseVFC. Compared with the 
VFC algorithm shown in Algorithm 1, SparseVFC solves a different linear system (19) in 
Line 9.
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F. Computational Complexity

For the VFC algorithm, the corresponding Gram matrix is of size DN × DN. Because of the 
representer theorem, it needs to solve a linear system (12) to estimate the vector field f. The 
time complexity is O(D3N3) and it is the most time-consuming step in the algorithm. As a 
result, the total time complexity of the VFC algorithm is O(mD3N3), where m is the number 
of EM iterations. In our current implementation, we just use the Matlab “\” operator, which 
implicitly uses Cholesky decomposition to invert a matrix. The space complexity of VFC 
scales like O(D2N2) due to the memory requirements for storing the Gram matrix Γ̃.

For SparseVFC, the corresponding Gram matrix is of size DM×DM, where M is the number 
of basis functions used for sparse representation. Then the time complexity is reduced to 
O(mD3M2N+mD3M3), and the space complexity is reduced to O(D2MN + D2M2). Due to 
M ≪ N, the time and space complexities can be written as O(mD3M2N) and O(D2MN). Our 
experiments demonstrate that SparseVFC is much faster than VFC with negligible 
performance degradation.

IV. Establishing Point Matching Using VFC

This section describes how we can apply the vector field consensus algorithm to the problem 
of establishing matches between two sets of points. Our strategy is to construct a putative set 
of matches by considering all possible matches (between points in the two sets) and 
rejecting matches between points whose feature descriptor vectors (e.g., SIFT or shape 
context) are sufficiently different. This putative set typically contains many false matches 
(outliers), in addition to a small number of true matches (inliers), and hence it is important 
that the VFC algorithm is highly robust to outliers.

We also address the issue of using parametric and non-parametric geometrical constraints. 
The non-parametric constraints are more general and allow slow-and-smooth motion fields, 
while the parametric constraints impose stronger constraints based on rigidity of motion 
(e.g., the epipolar line constraint). We discuss why there is a relationship between slow-and-
smooth and rigid motion, which justifies applying the slow-and-smooth model (described in 
the last section) to cases where the motion is rigid. In addition, we formulate a variant of the 
VFC algorithm which uses parametric models.

A. Vector Field Introduced by Point Correspondences

We first establish a set of putative correspondences by considering all matches between the 
two point sets and then removing matches between points whose feature descriptors are 
above threshold. Each member of the putative set is comprised of a pair (un, vn), where un 

and vn are positions of the two points. The performance of point matching algorithms 
depends, typically, on the coordinate system in which points are expressed. We use data 
normalization to control for this. More specifically, we make a linear re-scaling of the 
correspondences so that the positions in the first and second point sets have zero mean and 
unit variance. Suppose the normalized correspondence is (ûn, v̂n); we convert it into a 
motion field sample by a transformation (ûn, v̂n) → (xn, yn), where xn = un, yn = v̂n − ûn.
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B. Kernel Choice

By choosing different kernels, the norm in the corresponding RKHS encodes different 
notions of smoothness. Usually, for the correspondence problem, the structure of the 
generated motion field is relatively simple. A decomposable kernel with the form (14) is 
effective. For the scalar kernel κ, we choose a Gaussian kernel as κ(xi, xj ) = e−β||xi−xj||2. For 
the relationship matrix A, we find that empirically using an identity matrix works well. In 
this case we can solve a more efficient linear system instead of Eq. (12) as

(20)

where the Gram matrix K ∈ IRN×N with Kij = κ(xi, xj), and C = (c1, …, cN )T is a matrix of 
size N × D.

C. Applicability of The Method: Rigid and Non-Rigid Motion

Our basic approach assumes that the motion flow between the two datasets can be modelled 
non-parametrically which, in practice, requires imposing some type of smoothness, or slow-
and-smoothness, constraint. This is a plausible assumption if the transformation between the 
transformation between the images is a homography or a non-rigid transformation. But it is 
less clear that this is a good assumption if the underlying transformation is rigid in three-
dimensional space (e.g., the epipolar geometry constraint). In this situation, the motion flow 
may not be smooth if, for example, there are large depth discontinuities. But as we argue 
below, and our experimental results support, rigid motion in space often corresponds to 
slow-and-slow motion in the images.

A close relationship between rigid transformation in three-dimensions and slow-and-smooth 
motion in two dimensions was shown by Ullman [53] and by [54]. They assumed plausible 
probability distributions about the rigid motion in three-dimensional (i.e. for the translation 
and rotation) and showed that the resulting projected motion in the image plane was 
typically slow-and-smooth. These analyses were performed to address the apparent paradox 
that humans appear to use slowness and smoothness to resolve ambiguities in matching 
points between images, but use rigidity assumption to estimate the structure of the moving 
objects.

Further evidence for a relation between slow-and-smooth and rigidity comes from the 
empirical studies of Roth and Black [45]. They analyzed the motion flow in images obtained 
by a camera moving in a fixed environment. They showed that the motion statistics were 
consistent with a variant of the slow-and-smooth model.

In summary, the analysis in this section shows that it is reasonable to apply our VFC 
algorithm even if the underlying motion is rigid. This is confirmed by our experimental 
results which also show that VFC gives better estimates of the motion flow (and for 
detecting the outliers in the putative set) compared to other approaches which exploit this 
rigid structure (e.g., RANSAC and the algorithm described in the next section).
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D. Extension to Parametric Models

As mentioned in the last section, if the two datasets are related by an underlying rigid 
transformation then the VFC algorithm may not get the correct result if the image pair 
contains a large depth discontinuity. Nevertheless, our formulation can be easily extended to 
a parametric model, e.g., the fundamental matrix or homography. For the sake of clarity, in 
the following we present a parametric variant of our model to estimate the fundamental 
matrix alone.

Suppose we are given a set of putative correspondences , where u and v 

are homogeneous image coordinates, i.e. u = (ux, uy, 1)T. The epipolar line constraint is then 
represented by a fundamental matrix F: vTFu = 0. We assume Gaussian noise on inliers, i.e., 

, and uniform distribution on outliers. By using the same notation as in our 
non-parametric formulation, we obtain a likelihood as:

(21)

where θ = {F, σ2, γ } is the set of unknown parameters. Similar to our non-parametric 
formulation, a maximum likelihood estimation of θ can be derived based on the EM 
algorithm. We omit the details of the derivation, and only present the estimation of F.

The fundamental matrix F can be estimated by minimizing a weighted error function

(22)

We aim to seek a non-zero solution F. To this end, a condition on the norm such as ||F||F = 1 
is used. Denote by f the nine-element vector made up of the entries of F in row-major order, 
P = diag(p1, … , pn), and A has the following form

Then the problem may be stated as finding the f that minimizes ||P1/2Af|| subject to ||f|| = 1. 
The solution is the unit singular vector corresponding to the smallest singular value of 
P1/2A. Specifically, if P1/2A = UDVT with D diagonal with positive diagonal entries, 
arranged in descending order down the diagonal, then f is the last column of V. Moreover, 
an important property of F is that it is singular, in fact of rank 2. To enforce this constraint, 
we replace F in each EM iteration by the closest singular matrix to it under a Frobenius 
norm [22].
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For the case of homography, we have a parametric model: vn − Hun = 0. The derivation of H 

is similar to the derivation of F, and we omit the details for clarity.

E. Implementation Details

In the VFC algorithm, if the linear system (12) is solved directly, the matrix inversion 
operation then causes some problem when the matrix P is singular. For the numerical 
stability, we cope with this problem by defining a lower bound ε. Diagonal elements of P 
that are below ε is set to ε. In this paper, we set ε as 10−5. Similarly, we constrain γ ∈ [0.05, 
0.95].

In the SparseVFC algorithm, there is a problem to which we need pay attention. We must 
ensure that the point set {xm̃ : m ∈ INM} used to construct the basis functions does not 
contain two identical points since in this case the coefficient matrix in linear system (19), i.e. 
(ŨT P̃ Ũ +λσ2Γs ), will be singular. Obviously, this may appear in the point correspondence 
problem, since in the putative correspondence set there may exist one point in the first point 
set matched to several points in the second point set.

Parameter settings—There are four parameters in the VFC algorithm: β, λ, τ and γ. 
Parameters β and λ both reflect the amount of the smoothness constraint. Parameter β 
determines how wide the range of interaction between samples. Parameter λ controls the 
trade-off between the closeness to the data and the smoothness of the solution. Parameter τ 
is a threshold, which is used for deciding the correctness of a correspondence. Parameter γ 
reflects our initial assumption on the amount of inliers in the correspondence sets. In 
general, we find our method to be very robust to parameter changes. We set β = 0.1, λ = 3, τ 
= 0.75 and γ = 0.9 throughout this paper.

V. Experimental Results

To evaluate our algorithm, we first design a set of experiments on vector field interpolation 
to demonstrate the efficiency of our technique in dealing with severe outliers, and then focus 
on the correspondence problem for building reliable point correspondences for 2D and 3D 
images. The experiments are performed on a laptop with 2.0 GHz Intel Pentium CPU, 8 GB 
memory and Matlab Code.

A. Learning With Outliers

We focus on interpolating a synthetic 2D vector field from sparse samples as in [3]. The 
field is constructed from a function defined by a mixture of five Gaussians, which have the 
same covariance 0.25I and centered at (0, 0), (1, 0), (0, 1), (−1, 0) and (0, −1) respectively. 
Its gradient and perpendicular gradient are shown in Fig. 2, which indicate a divergence-free 
and a curl-free field respectively. The synthetic data is then constructed by taking a convex 
combination of these two vector fields, controlled by a parameter α which is set to 0 and 0.5. 
The field is computed on a 70 × 70 grid over the square [−2, 2] × [−2, 2]. The sparse inlier 
sets are obtained by uniformly sampled points from the grid. The outliers are generated as 
follow: the input x is chosen randomly from the grid; the output y is generated randomly 
from a uniform distribution on the square [−2, 2] × [−2, 2].
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The kernel is chosen to be a convex combination of the divergence-free and curl-free 
kernels, i.e. Eqs. (15) and (16), with width σ ̃= 0.8, controlled by a parameter α ̃which is 
selected via cross-validation. After interpolating the vector field, we use it to predict the 
outputs on the whole grid and compare them to the ground truth. The experimental results 
are evaluated by means of interpolation errors, and the interpolation error is measured by an 
angular measure of error between the interpolated vector and the ground truth [3]. If 

 and  are the ground truth and estimated fields, we consider the 

transformation . The interpolation error is defined as err = 
arccos(ṽe, ṽg).

The Tikhonov regularization on sample sets without outliers is used for comparison. For 
each set with a fixed number of inliers, we add outliers for VFC so that the inlier percentage 
varies from 0.9 to 0.1. Generally speaking, the performance of the Tikhonov regularization 
on a sample set without outliers can be considered as an upper bound performance of VFC 
on the sample set with outliers.

The results are reported in Fig. 3, in which we consider both the noiseless and noise cases. 
For the noise case, we add a Gaussian noise with zero mean and uniform standard deviation 
0.1 to the inliers. As shown, the performance consistently improves with the increase of the 
cardinality of the sample set. When the sample set is small, the performance of the Tikhonov 
regularization without outliers is better than VFC, and the performance of VFC becomes 
worse as the outlier percentage increases. However, the difference in performance between 
them becomes small when the sample set is large. In conclusion, the performance of VFC is 
influenced both by the outlier percentage and sample set size, and it can reach the upper 
bound performance when the size of the given samples grows to an appropriate number, 
regardless of the percentage of the outliers.

B. Feature Correspondence on 2D Image Datasets

In this section, we focus on establishing feature correspondences for 2D real images. The 
open source VLFeat toolbox [56] is used to determine the putative correspondences of SIFT 
[31]. All parameters are set as the default values except for the distance ratio threshold t. In 
the VLFeat toolbox, it is defined as the ratio of the Euclidean distance of the second-closest 
neighbor and the closest neighbor. Usually, the greater is the value of t, the smaller amount 
of correspondences with higher inlier percentage will be. The default value of t is 1.5 and the 
smallest possible value is 1.0, which corresponds to the nearest neighbor strategy.

The experimental results are evaluated by precision and recall, where the precision is defined 
as the ratio of the preserved inlier number and the preserved correspondence number, and 
the recall is defined as the ratio of the preserved inlier number and the inlier number 
contained in the putative correspondences. We compare our VFC algorithm with other four 
methods which remove outliers from given putative point correspondences, such as ICF 
[26], GS [29], [30], RANSAC [18] and MLESAC [49]. We implement ICF and tune all 
parameters accordingly to find optimal settings. For GS and MLESAC, we implement them 
based on the publicly available codes. Throughout all the experiments, five algorithms’ 
parameters are all fixed.
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1) Results on Image Pairs of Homography—We test our method on the dataset of 
Mikolajczyk et al [38], which contains image pairs either of planar scenes or taken by 
camera in a fixed position during acquisition. The images, therefore, always obey 
homography. The ground truth homographies are supplied by the dataset. We use all the 40 
image pairs, and for each pair, we set the SIFT distance ratio threshold t as 1.5, 1.3, 1.0 
respectively. To determine the match correctness on this dataset, we similarly use an overlap 
error εS as in [38]: we reduce the scale of feature points to be 1/3 of the original scale, and a 
correspondence is regarded as inlier if εS > 0. The cumulative distribution function of 
original inlier percentage is shown in Fig. 4(a). The average precision of all image pairs is 
69.57%, and about 30 percent of the correspondence sets have inlier percentage below 50%. 
Fig. 4(b) presents the cumulative distribution of the number of point matches contained in 
the experimental image pairs. We see that most of the image pairs have large scale of point 
matches (i.e. in the order of 1000’s).

The results of five methods are summarized in Fig. 4(c) and (d), in which each scattered dot 
represents a precision-recall pair on an image pair. On the left is a comparison of our method 
to non-parametric model based methods ICF and GS, while on the right RANSAC and 
MLESAC based on geometric constraint (homography) are used for comparison. The 
average precision-recall pairs are (93.95%, 62.69%), (96.29%, 77.09%), (95.49%, 97.55%), 
(97.95%, 96.93%) and (98.57%, 97.75%) for ICF, GS, RANSAC, MLESAC and VFC 
respectively. As shown, ICF usually has high precision or recall, but not simultaneously. It 
lacks robustness when the outlier percentage is high or the viewpoint change is large. GS has 
high precision and low recall. This is probably because GS cannot estimate the factor for 
affinity matrix automatically and it is not affine-invariant. MLESAC performs a little better 
than RANSAC, and they both achieve quite satisfactory performance. This can be explained 
by the lack of complex constraints between the elements of the homography matrix. Our 
proposed method VFC has the best precision-recall trade-off. We also observe that the 
outlier removal capability of VFC is not affected by the large view angle, image rotation and 
affine transformation since these cases are all contained in the dataset. In fact, VFC performs 
well except when the initial number (not the percentage) of inliers is very small.

Since the scenes in the test image pairs are all rigid, we test the performance of our 
parametric variant (i.e., homography) as presented in Section IV-D. The results are shown in 
Fig. 4(d), marked by red circles, where we get an average precision-recall pair (85.58%, 
98.70%). We see that our algorithm works quite well on most pairs, and fails on a small part 
of them (about 20%). In fact, we find that the inlier percentages in the failure image pairs are 
all below 50%. For the image pairs with inlier percentages over 50%, the average precision-
recall pair is about (99.84%, 99.21%), compared to (98.15%, 99.87%), (99.38%, 99.79%) 
and (99.71%, 97.60%) in RANSAC, MLESAC and VFC respectively. That is to say, for 
handling a rigid scene, our algorithm with parametric model is somewhat sensitive to noise, 
however, if the outlier percentage is not so high, e.g., less than 50%, it still works quite well 
and yields comparable results.

The SparseVFC algorithm is also tested on this dataset, where the number M of basis 
functions used for sparse approximation is fixed to 15. The precision-recall pairs are 
summarized in Table I. We see that SparseVFC approximates VFC quite well, especially 
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SparseVFC. The average run-times of VFC and SparseVFC are also presented in Table I. 
For comparison, we provide the run-time of RANSAC as well. The average run-times of 
VFC and RANSAC have the same order of magnitude. However, SparseVFC achieves a 
significant speedup with respect to VFC and RANSAC, more specifically, of two orders of 
magnitude, without any performance degradation.

2) Results on Image Pairs of Non-Rigid Object—The traditional methods such as 
RANSAC and similar techniques depend on a parametric geometrical model, for example, 
the fundamental matrix. If there exist some deformable objects with different shapes in the 
image pairs (this often happens in the area of image retrieval or image-based non-rigid 
registration), then these parametric model-based methods can no longer work, since the 
parametric model between the image pairs is not known apriori. However, our proposed 
VFC is a general method and it does not depend on any particular parametric model. Instead, 
it just uses a smoothness constraint so long as the deformation does not destroy the 
smoothness of the field.

To validate this idea, we consider two image pairs with deformable objects as shown in Fig. 
5. In the first image pair, we first add a regular grid on it, and then warp it and take two 
views with different deformations. The second image pair consists of scenes of two different 
deformations with illumination changes of a T-shirt. The match correctness is determined by 
manually refining the results of our VFC algorithm. The results are shown in Fig. 5 as well. 
On the DogCat pair, our VFC method correctly removes all the outliers and keeps all the 
inliers. On the T-shirt pair, there are still a few false positives and false negatives in the result 
since we could not precisely estimate the true warp function between the image pair under 
this framework. The average run-time of VFC on these two image pairs is about 55 
milliseconds.

Recent work [51] justifies a simple RANSAC-driven deformable registration technique with 
an affine model that is at least as accurate as other methods based on the optimization of 
fully deformable models. Therefore, besides ICF and GS, we compare VFC to RANSAC as 
well on these two image pairs. The result is shown in Table II. We see that RANSAC 
performs well in case of small or moderate distortion, e.g., in the DogCat pair. However, 
when the deformation is relatively large, e.g., in the T-shirt pair, it cannot obtain satisfactory 
results, since just an affine model is not capable to handle a large complex deformation. Our 
method VFC has the best precision-recall scores. In general, VFC is effective for 
establishing feature correspondence on image pairs related by smooth motion fields, 
including both rigid and non-rigid cases.

3) Results on Wide Baseline Images—The motion fields introduced by the image 
pairs in the previous sections are usually smooth, and we obtain good performance. Now we 
test the VFC method on wide baseline image pairs, in which the motion fields are in general 
not continuous. The test images are from the dataset of Tuytelaars et al. [52], and the match 
correctness is determined by manually refining the results of RANSAC.

We first consider two wide baseline image pairs, Mex and Tree, as shown in Fig. 6. The Mex 
pair is a structured scene and the Tree pair is an unstructured scene. On the Mex pair, as 
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shown on the top row of Fig. 6, there are 158 putative correspondences with 76 outliers; the 
inlier percentage is 51.90%; after using the VFC to remove the outliers, 85 correspondences 
are preserved, including all the 82 inliers. The precision-recall pair is about (96.47%, 
100.0%). A similar result on the Tree pair is presented on the bottom row of Fig. 6. The 
average run-time of VFC on these two image pairs is about 17 milliseconds.

The performance of VFC compared to other four approaches is shown in Table III. The 
geometry model used in RANSAC and MLESAC is epipolar geometry. We see that 
MLESAC is slightly better than GS and RANSAC. The recall of ICF is quite low, although 
it has a satisfactory precision score. However, VFC can successfully distinguish inliers from 
outliers, and it has the best trade-off between precision and recall. These results suggest that 
even though the motion field is discontinuous and not consistent with the smoothness 
constraint, the VFC method is still effective for establishing feature correspondences.

Since the smoothness constraint is imposed as a prior in our approach, it may be problematic 
in some particular cases. We now consider an image pair shown in Fig. 7. In this image pair, 
there exists a large depth discontinuity; the point correspondences on the sky violate the 
smoothness prior, which will be removed by our VFC method, as shown on the left of Fig. 7. 
It should be noted that this does not influence the recovery of epipolar geometry, since the 
point correspondences preserved by VFC in general do not lie in a dominant plane, and 
thereby are not geometrically degenerate with respect to the fundamental matrix [15].

To validate this idea, we again take the Valbonne pair for example, and apply our parametric 
variant to estimate the epipolar geometry, e.g., the fundamental matrix, based on the 
correspondences preserved by our non-parametric model VFC. After we estimate the 
fundamental matrix, we use it to determine match correctness of the whole set of putative 
correspondences. The result is shown on the right of Fig. 7. We see that all the inliers are 
preserved, including the point correspondences on the sky. This suggests that the epipolar 
geometry has been correctly estimated.

4) Robustness Test—We next test the robustness of VFC and compare it to ICF, GS, 
RANSAC and MLESAC on the image pair shown in Fig. 7. In our evaluation we consider 
the following two scenarios.

On the one hand, reducing the distance ratio threshold would generate more inliers. For 
instance, changing t from 1.5 to 1, the number of inliers will increase from 69 to 120 in the 
Valbonne pair. This is sometimes important for the possible subsequent analysis such as 
fundamental matrix estimation. Here we design a series of experiments from this 
perspective. For each image pair, we generate five correspondence sets by the following 
procedure: the distance ratio thresholds are first set to 1.5, 1.3 and 1.0 respectively; then we 
fix threshold to 1.0 and add 2, 000 and 4, 000 random outliers respectively. The result is 
presented in Table IV. We observe that the performance of VFC is satisfactory, and it can 
tolerate even 90% outliers. As the inlier percentage decreases, the precision and recall of 
VFC decrease gradually. Still, the results are acceptable compared to other four alternative 
methods.
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On the other hand, images taken at close range may result in plenty of outliers while having 
only a few inliers. One standard example is in the endoscopic images, since they often 
involve low texture, abundant specularity, blurs and extreme illumination changes [58]. Here 
we test the robustness of the VFC by reducing the percentage of inliers. For each image pair, 
we generate five correspondence sets by the following procedure: we first fix the distance 
ratio threshold to be 1.5 and then randomly remove inliers so that the numbers of inliers 
become 50, 40, 30, 20 and 10 respectively. The initial number of correspondence and inlier 
are 126 and 69 respectively. The result is presented in Table V. We see that VFC becomes 
ineffective when both the inlier number and the inlier percentage in the sample set are very 
small. However, in other cases, the performance of VFC is still satisfactory compared with 
other four competing methods.

C. Feature Correspondence on 3D Surfaces

In this section, we establish feature correspondences for 3D surfaces. We adopt the datasets 
used in [66], which contain two types of 3D data: rigid and non-rigid objects. In the rigid 
case, the test datasets are Dino and Temple datasets; each surface pair is from the same rigid 
object which can be aligned using a rotation, translation and scale. In the non-rigid case, the 
dataset is the INRIA Dance-1 sequence, each surface pair is from the same moving person.

We determine the putative correspondences by using the method of Zaharescu et al. [66] 
which detects correspondences between nontrivial feature points on the 2D manifolds, such 
as the photometric and local curvature data. The feature point detector is called MeshDOG, 
and the feature descriptor is called MeshHOG.

The match correctness is determined as follows. For the rigid objects such as the Dino and 
Temple datasets, the correspondence between the two surfaces can be formulated as y = sRx

+t, where R3×3 is a rotation matrix, s is a scaling parameter, and t3×1 is a translation vector. 
We can use some robust rigid point registration methods such as the Coherent Point Drift 
(CPD) [39] to solve for these three parameters, and then the match correctness can be 
accordingly determined. On the INRIA Dance-1 sequence, which contains non-rigid objects, 
the match correctness is difficult to determine; we just visualize the results in image pairs.

1) Results on Rigid Objects—We test the VFC method on two surface pairs of rigid 
objects, the Dino and Temple datasets, which satisfy similarity transformations. For 
comparisons, we choose RANSAC combined with similarity transformation. The 
correspondence between two surfaces can be formulated as y = sRx + t. This model has 
seven degrees of freedom: three for rotation matrix R, three for translation vector t and one 
for scaling factor s. Therefore, three point correspondences are sufficient to recover the 
similarity transformation. The only restriction is that the three points must be in “general 
position”, which means that they should not be collinear. To obtain the closed form solution 
for these three parameters, we use the method of Umeyama [55].

The results of the VFC are shown in Fig. 8. For the Dino dataset, there are 325 putative 
correspondences with 61 outliers; after using the VFC to remove outliers, 266 
correspondences are preserved, in which 263 are inliers. That is to say, 58 of 61 outliers are 
eliminated while discarding only 1 inlier. A similar result on the Temple dataset is presented 
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on the right of Fig. 8. The average run-time of VFC on these two surface pairs is about 48 
milliseconds. Experiments on these datasets with rotation and scale transformations are also 
performed. We observe similar performances.

However, using RANSAC obtains even better results: the precision-recall pairs of RANSAC 
on these two datasets are (100.0%, 100.0%) and (99.07%, 100.0%). Actually, in this case, 
RANSAC is only influenced by noise on inliers, but not the random outliers. On the one 
hand, despite how large the proportion of outliers is, the sampling rule ensures with high 
probability, p (usually is chosen at 0.99), at least one of the random samples of points is free 
from outliers; that is to say that we can work out the correct model generally. On the other 
hand, for a point on the first object, there is one, and only one, point on the other object 
corresponds to it by the similarity transformation; if we obtain the parameters of the 
similarity transformation, all outliers could be removed. This is different from the case of 
RANSAC with fundamental matrix on the 2D image pairs. For a point in one image, there is 
one line in the other image corresponding to it and all points on this line satisfy the epipolar 
line constraint.

We then test the robustness of the VFC on a surface pair, the Dino dataset, and compare it 
with the RANSAC algorithm. We generate five correspondence sets by adding different 
numbers of additional outliers: 500, 1, 000, 2, 000, 4, 000 and 8, 000 respectively. Here each 
outlier is generated by randomly choosing one vertex from each of the surfaces. The results 
are shown in Table VI. As we expect, RANSAC is not influenced by outliers. Similar to the 
2D case, the performance of VFC is also quite satisfactory, and it can tolerate 90% outliers. 
As the inlier percentage decreases, the recall of VFC decreases gradually while having slight 
changes on the precision. From these results we observe that the VFC is not influenced by 
the dimension of the input data; the performance is as good as that in the 2D case, although 
the RANSAC is more effective in this rigid case.

2) Results on Non-Rigid Objects—We further conduct experiments on non-rigid object 
case, and we used the INRIA Dance-1 sequence.

We first test two nearby frames. In this case, the object often observes small deformations. 
The results are presented in the left two figures of Fig. 9. There are 191 putative 
correspondences. After the VFC is used to remove the outliers, 164 correspondences are 
preserved.

We then consider two frames that are far apart. In this case, the object usually has a large 
deformation, leading to less putative correspondences. The results are shown in the right two 
figures of Fig. 9. There are 23 putative correspondences, and 20 of them are preserved after 
using the VFC for outlier removal. Note that the preserved correspondences contain two on 
the fist which seem not fit the spatially smooth field introduced by the other identified 
suspect inliers. This could be due to the sparsity of the sample set, which increases the 
uncertainty of the vector field. Unlike the outliers in the bottom right figure of Fig. 9, the 
two correspondences on the fist just slightly violate the spatial smoothness. Thus, it is 
possible to find a smooth field which agrees with those preserved correspondences.
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In conclusion, for the feature correspondence problem, VFC demonstrates its capability of 
handling 3D data which contains both rigid and non-rigid objects.

D. Non-Rigid Point Set Registration

Point set registration aims to align two point sets  (the model point set) and 
(the target point set). Typically, in the non-rigid case, it requires estimating a non-rigid 
transformation f which warps the model point set to the target point set. Recall that our VFC 
method is able to generate a smoothly interpolated vector field with adherence to a set of 
observed input-output pairs. Therefore, it could be used to recover the transformation 
between two point sets with a set of putative correspondences.

We determine the putative correspondences by using the shape context descriptor [4], using 
the Hungarian method for matching with the χ2 test statistic as the cost measure. The two 
steps of estimating correspondences and transformations are iterated to obtain a reliable 
result. We use a fixed number of iterations, typically 10 but more refined schemes are 
possible.

We tested our method on a synthesized fish shape as in [12]. We test the robustness of our 
VFC on different degrees of deformations and occlusions, and for each deformation level 
100 samples are generated. Fig. 10 shows the registration results. We see that for both 
deformation and occlusion with moderate degradation, our method is able to produce an 
almost perfect alignment. The matching performance degrades gradually and gracefully as 
the degree of distortion in the data increases. To provide a quantitative comparison, we 
report the results of other two state-of-the-art algorithms such as TPS-RPM [12] and CPD 
[39] which are implemented using publicly available codes. The registration error on a pair 
of shape is quantified as the average Euclidean distance between a point in the warped 
model and the corresponding point in the target. Then the registration performance of each 
algorithm is compared by the mean and standard deviation of the registration error of all the 
100 samples in each distortion level. The statistical results, error means, and standard 
deviations for each setting are summarized in the last column of Fig. 10. As shown, our VFC 
method achieves similar matching performance compared to CPD on the deformation test, 
and both algorithms perform better than TPS-RPM. However, in the occlusion test, VFC 
consistently outperforms the other two algorithms in all degrees of rotations.

VI. Conclusion

In this paper, we proposed and studied a new vector field interpolation algorithm called 
vector field consensus (VFC) that is robust and fast. It simultaneously generates a smoothly 
interpolated vector field and estimates the consensus set by an iterative EM algorithm. We 
apply it to point correspondence problems in computer vision, in which the feature 
correspondences between image pairs are determined based on the coherence of the 
underlying motion fields rather than the geometric constraints. Experiments on 2D and 3D 
real image datasets demonstrate the capability of VFC being able to tolerate 90% outliers. 
Quantitative results demonstrate that VFC outperforms state-of-the-art methods such as 
RANSAC. In addition, we describe a variant of VFC which uses a parametric model (e.g., 
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exploiting rigidity) which we show in more effective than RANSAC, but less effective that 
VFC if there are many outliers. We also provide an efficient implementation of VFC called 
SparseVFC, which significantly reduces the computational complexity without much 
performance degradation.
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Appendix A. Vector-Valued RKHS

We review the basic theory of vector-valued reproducing kernel Hilbert space, and for 
further details and references we refer to [37] and [10].

Let  be a real Hilbert space with inner product (norm) 〈·, ·〉, (||·||), for example,  ⊆ IRD, 
a set, for example,  ⊆ IRP, and ℋ a Hilbert space with inner product (norm) 〈·, ·〉ℋ, (||
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·||ℋ). Note that a norm can be induced by an inner product, for example, ∀f ∈ ℋ, 

.

Definition 1

A Hilbert space ℋ is an RKHS if the evaluation maps evx : ℋ →  are bounded, i.e. if ∀x 

∈  there exists a positive constant Cx such that

(23)

A reproducing kernel Γ :  ×  → ℬ( ) is then defined as: , where 

ℬ( ) is the space of bounded operators on , for example, ℬ( ) ⊆ IRD×D, and  is the 
adjoint of evx.

Remark 1

The kernel Γ reproduces the value of a function f ∈ ℋ at a point x ∈ . Indeed, ∀x ∈ 

and y ∈ , we have , so that 〈f(x), y〉 = 〈f, Γ(·, x)y〉ℋ.

Remark 2

An RKHS defines a corresponding reproducing kernel. Conversely, a reproducing kernel 
defines a unique RKHS.

More specifically, for any N ∈ IN, {xn : n ∈ INN} ⊆ , and a reproducing kernel Γ, a unique 
RKHS can be defined by considering the completion of the space

(24)

with respect to the norm induced by the inner product

(25)

where  and .

Ma et al. Page 30

IEEE Trans Image Process. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix B. Proof of Theorem 1

For any given reproducing kernel Γ, we can define a unique RKHS ℋN as in Eq. (24). Let 

 be a subspace of ℋ,

(26)

Form the reproducing property, i.e. Remark 1, 

(27)

Thus  is the orthogonal complement of ℋN; then every f ∈ ℋ can be uniquely 

decomposed in components along and perpendicular to , where fN ∈ ℋN and 

. Since by orthogonality  and by the reproducing 
property f(xn) = fN (xn), the regularized risk functional then satisfies

(28)

Therefore, the optimal solution of the regularized risk functional (11) comes from the space 
ℋN, and hence has the form (2). To solve for the coefficients, we consider the definition of 
the smoothness functional ϕ(f) and the inner product (25), the regularized risk functional 
then can be conveniently expressed in the following matrix form:

(29)

where Γ̃ is an N × N block matrix with the (i, j)-th block Γ(xi, xj), and  is 
the coefficient vector. Taking the derivative of the last Eq. with respect to C̃ and setting it to 
zero, we obtain the linear system in Eq. (12). Thus the coefficient set {cn : n ∈ INN} of the 
optimal solution f is determined by the linear system (12).
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Fig. 1. 

Robust Vector field interpolation. (a) An image pair and its putative correspondences. Blue 
and red lines represent inliers and outliers respectively. For visibility, only 50 randomly 
selected elements of the putative set are shown. (b) and (c) Motion field samples generated 
by all putative correspondences and only inliers respectively. The head and tail of each arrow 
correspond to the positions of feature points in two images. (d) and (e) The interpolated 
vector field using samples from (b) and (c) respectively. The visualization method is line 
integral convolution (LIC) [9], color indicates the magnitude of the displacement at each 
point. Best viewed in color.
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Fig. 2. 

Visualization of the synthetic 2D vector field. Left: its divergence-free part, corresponding to 
α = 0; right: its curl-free part, corresponding to α = 1.
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Fig. 3. 

Detailed results on synthetic 2D vector fields. Top: combination coefficient α = 0 and 0.5 
respectively, noiseless inliers; bottom: combination coefficient α = 0 and 0.5 respectively, 
Gaussian noise with zero mean and uniform standard deviation 0.1 on inliers.
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Fig. 4. 

Experimental results on the dataset of Mikolajczyk et al [38]. (a) Cumulative distribution 
function of initial inlier ratio. (b) Cumulative distribution function of number of point 
matches in the image pairs. (c) Precision-recall statistics for ICF, GS and VFC. (d) 
Precision-recall statistics for RANSAC, MLESAC and our method with parametric model. 
Our VFC (red circles, upper right corner) has the best precision and recall overall.
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Fig. 5. 

Experimental results on two image pairs of non-rigid objects: DogCat and T-shirt. Top: 
results on DogCat, the initial inlier percentage is 82.30%, and the precision-recall pair is 
(100.0%, 100.0%); bottom: results on T-shirt, the initial inlier percentage is 36.50%, and the 
precision-recall pair is (90.67%, 93.15%). The lines and arrows indicate inlier detection 
results (blue = true positive, black = true negative, green = false negative, red = false 
positive). For visibility, in the image pairs, only 50 randomly selected correspondences are 
presented, and the true negatives are not shown. Best viewed in color (the same 
representation is used in the following experiments).

Ma et al. Page 36

IEEE Trans Image Process. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 

Experimental results on two wide baseline image pairs: Mex and Tree. Top: results on Mex, 
the initial inlier percentage is 51.90%, and the precision-recall pair is (96.47%, 100.0%); 
bottom: results on Tree, the initial inlier percentage is 56.29%, and the precision-recall pair 
is (94.85%, 97.87%).
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Fig. 7. 

Results on the image pair of Valbonne. Left: result of VFC, the correspondences on the sky 
are falsely removed; right: first use point correspondences preserved by VFC to estimate 
fundamental matrix, and then use it for outlier removal; in this time all the inliers are 
preserved.
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Fig. 8. 

Experimental results on rigid object datasets of Dino and Temple. Left: results on Dino, the 
initial inlier percentage is about 81.23%, and the precision-recall pair is (98.87%, 99.62%); 
right: results on Temple, the initial inlier percentage is about 89.96%, and the precision-
recall pair is (99.07%, 99.53%).
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Fig. 9. 

Experimental results on non-rigid object real datasets of the INRIA Dance-1 sequence. Left 
two: results on frames 525 and 527; right two: results on frames 530 and 550. For each 
group, the left pair denotes the identified suspect inliers, and the right pair denotes the 
removed suspect outliers. For visibility, at most 50 randomly selected correspondences are 
presented.
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Fig. 10. 

Point set registration results of our VFC method on a fish shape with deformation (top) and 
occlusion (bottom) presented in every two rows. The goal is to align the model point set 
(blue pluses) onto the target point set (red circles). For each group of experiments, the upper 
figure is the model and target point sets, and the lower figure is the registration result. From 
left to right, increasing degree of degradation. The rightmost figures are comparisons of the 
registration performance of our method with TPS-RPM [12] and CPD [39] on the 
corresponding distortions. The error bars indicate the registration error means and standard 
deviations over 100 trials.
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TABLE I

Average Precision-Recall and Run-Time Comparison of RANSAC, VFC And Sparsevfc on the Dataset of 
Mikolajczyk

RANSAC [18] VFC SparseVFC

(p, r) (95.49, 97.55) (98.57, 97.75) (98.57, 97.78)

t (ms) 3784 6085 21
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TABLE II

Performance Comparison on the Image Pairs of DogCat and T-shirt. The Pairs in the Table Are Precision-
Recall Pairs (%) (the Same Representation is Used in the Following Experiments)

ICF GS RANSAC VFC

DogCat (92.19, 63.44) (97.70, 91.40) (97.89, 100.0) (100.0, 100.0)

T-shirt (77.94, 72.60) (94.83, 75.34) (80.00, 87.67) (90.67, 93.15)
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