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Abstract In this paper we provide a survey of recent contributions to robust portfolio strate-
gies from operations research and finance to the theory of portfolio selection. Our survey
covers results derived not only in terms of the standard mean-variance objective, but also in
terms of two of the most popular risk measures, mean-VaR and mean-CVaR developed re-
cently. In addition, we review optimal estimation methods and Bayesian robust approaches.

Keywords Robust portfolio · Mean-variance · Mean-VaR · Mean-CVaR · Parameter
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1 Introduction

Since Markowitz’s (1952) seminal work, the mean-variance framework has become the ma-
jor model used in practice today in asset allocation and active portfolio management despite
many sophisticated models developed by academics. Grinold and Kahn (2000), Litterman
(2003), and Meucci (2005) are important monographs detailing the practical applications
of the mean-variance framework. Because of its enormous theoretical and practical impor-
tance, a substantial body of literature has developed under the mean-variance framework,
and it is not surprising to find several insightful reviews that have been written on the related
portfolio selection problem. To mention a few, Steinbach (2001) provides an extensive re-
view of the interplay between objectives and constraints with different single-period variants
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in the mean-variance framework. Brandt (2004) details the various approaches in the finance
literature to portfolio choice. Konno and Koshizuka (2005) survey the mean-absolute devi-
ation model and its relation to the capital asset pricing model, as well as its application to
asset-liability management and mortgage-backed securities portfolio optimization.

In this paper we provide a survey of recent contributions from operations research and
finance to the theory of robust portfolio selection. In contrast to existing surveys, our paper
focuses on one of the most rapid and important areas, the construction of robust portfo-
lios. We survey robust portfolio strategies not only in terms of the standard mean-variance
objective, but also in terms of two of the most popular measures that have been recently
developed: mean-VaR (value-at-risk) and mean-CVaR (conditional value-at-risk). We pro-
vide a unified framework to understand the various advances. In addition, we survey optimal
estimation methods and Bayesian robust approaches.1

On the basis of return-risk tradeoff, we address two aspects of portfolio selection prob-
lem: 1) what is a proper risk measure that can adapt to the vicissitudes of the financial market
when vagaries occur more often than ever; and 2) how to make this proper risk measure work
well in practice. In particular, we discuss in some detail two downside risk measures, VaR
and CVaR, that have been proposed to deal with the negative effects of extreme portfolio
downside movements. Although VaR has become the industry benchmark for risk manage-
ment due to its intuitive appeal and acceptance by bank regulators (Jorion 2006), CVaR, first
used in the insurance industry (Embrechts et al. 1997), has better theoretical properties as
a risk measure than VaR, and hence can be regarded as a good supplement. On the other
hand, all these models, no matter mean-variance, mean-VaR, and mean-CVaR, require pa-
rameter inputs, that usually suffer from data inadequacy, contamination, or estimation error,
and hence lead to counterintuitive portfolios. There is a long history of how to improve the
parameter estimation and a plethora of methods have been attempted.

Since Markowitz (1952) formulates the idea of diversification of investments by incor-
porating into portfolio selection the variance as a risk measure that can be reduced (but
not necessarily eliminated) without changing expected portfolio return, the mean-variance
framework is so intuitive and powerful that it has been continually applied to different ar-
eas within finance and risk management. Indeed, numerous innovations within finance have
either been an application of the concept of mean-variance analysis or an extension of the
methodology to alternative portfolio risk measures (Fabozzi et al. 2002). Unfortunately, the
omnipotence of mean-variance in theory does not make its employment in practice as ubiq-
uitous as expected.

A critical weakness of mean-variance analysis is the use of variance as a measure of risk.
In some sense, risk is a subjective concept and different investors adopt different investment
strategies in seeking to realize their investment objectives (Holton 1997; Siu et al. 2001; and
Boyle et al. 2002), and hence the exogenous characteristics of investors mean that probably
no unique risk measure exists that can accommodate every investor’s problem (Ortobelli et
al. 2005). For example, one investor may be concerned about dramatic market fluctuation no
matter whether this movement is upside or downside, whereas another investor may be more
concerned with the downside movements, which usually imply severe loss consequences. In
this case, the variance is obviously not sufficient to express or measure the investors’ risk.
On the other hand, the market may change in nature. The introduction of new derivatives and
new investment strategies may require the formulation of an alternative risk measure more

1We do not cover in this survey the treatment of higher-order moments (skewness and kurtosis) and loss-
aversion preferences. Models for dealing with these two topics are provided by Gul (1991), Harvey et al.
(2003), Ang et al. (2005), Hong et al. (2007), and Guidolin and Timmermann (2008).
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appropriate for different investors. This is because the portfolio distribution with derivatives
such as futures and options is skewed and heavy-tailed, which calls for a risk measure to
respond to downside deviation and upside deviation asymmetrically (Siu et al. 2001; Boyle
et al. 2002).

The importance of measuring the downside risk of a portfolio rather than variance has
long been recognized by academics and practitioners. This can be traced back to Roy (1952)
who proposed a “safety first” strategy to maximize portfolio expected return subject to a
downside risk constraint. Probably due to computational difficulties, this downside risk mea-
sure failed to be adopted extensively in the industry until J.P. Morgan’s decision in 1994 to
make its RiskMetrics publicly available. In RiskMetrics, the concept of VaR was first ex-
plicitly proposed to materialize the capital adequacy and market risk of commercial banks.2

Two other reasons that sparked the greater use of VaR were 1) the fact that financial disasters
were occurring with greater frequency than prior periods (e.g. Orange County, Barings, and
Long-Term Capital Management); and 2) central bank regulators adopted VaR to calculate
a bank’s required capital.3

Due to its conceptual simplicity, VaR has become a very popular risk management tool
and an industry benchmark in many different types of organizations (Jorion 2006). However,
VaR has important theoretical limitations. For example, it is not a coherent risk measure in
general and it ignores extreme losses beyond itself (Artzner et al. 1999). To overcome these
hurdles, Rockafellar and Uryasev (2000, 2002) propose an alternative risk measure to VaR,
CVaR. CVaR has tractable properties: it is a coherent risk measure, it is easy to implement,
and it takes into consideration the entire tail that exceeds VaR on average.

There is broad consensus in the investment community as to what the challenge of
investment theory is today. Merton (2003) points out that the challenge is to put “the
rich set of tools” into practice, and concludes that “I see this as a tough engineering
problem, not one of new science”. Indeed, Merton (2003) addresses an ongoing prob-
lem since the portfolio selection problem was first formulated by Markowitz in 1952 of
how to make the theoretical model do a good job in practice. One major obstacle to suc-
cessful implementation and industry adoption of the mean-variance strategy in practice is
that the “optimal” portfolios resulting from these portfolio optimization models are ex-
tremely sensitive to the inputs, which are typically estimated from historical data, and
often prone to be imprecise. As a result, the “optimal” portfolios frequently have ex-
treme or counterintuitive weights for some assets (Best and Grauer 1991; Broadie 1993;
Chopra and Ziemba 1993). This obstacle also applies to strategies using risk measures other
than variance such as VaR and CVaR (El Ghaoui et al. 2003; Ceria and Stubbs 2006; Zhu
and Fukushima 2008; Huang et al. 2008).

There are two standard methods extensively adopted in the literature to deal with es-
timation errors. The first is the robust estimation methods, such as moment estimation,
which can be quite robust to distributional assumptions. The second is the Bayesian
approach that is neutral to uncertainty in the sense of Knight (1921) because it as-
sumes a single prior on the portfolio distribution (Garlappi et al. 2007). An extension of

2Prior to 1994, a more elegant theoretical risk measure than safety first, the lower partial moment measure,
was proposed by Bawa (1975). This measure can accommodate a significant number of the known Von
Neumann-Morgenstern utility functions, from risk loving or engaging to risk neutral to risk aversion.
3VaR can be informally explained in this way: suppose that we believe with β (= 95% or 99%) certainty that
we will not lose more than V dollars in the next N (= 1 or 10) days. The variable V is the VaR. In defining
a bank’s required capital, typically regulators use N = 10 and β = 99%. The required capital is therefore the
losses over this 10-day period that are expected to happen 1% of the time.
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this is the multiple prior approach. This robust technique has obtained prodigious suc-
cess since the late 1990s, especially in the field of optimization and control with un-
certainty parameters (Ben-Tal and Nemirovski 1998, 1999; El Ghaoui and Lebret 1997;
Goldfarb and Iyengar 2003a). With respect to portfolio selection, the major contributions
have come in the 21st century (see, for example, Rustem et al. 2000; Costa and Paiva 2002;
Ben-Tal et al. 2002; Goldfarb and Iyengar 2003b; El Ghaoui et al. 2003; Tütüncü and Koenig
2004; Pinar and Tütüncü 2005; Lutgens and Schotman 2006; Natarajan et al. 2009; Gar-
lappi et al. 2007; Pinar 2007; Calafiore 2007; Huang et al. 2008; Natarajan et al. 2008a;
Brown and Sim 2008; Natarajan et al. 2008b; Shen and Zhang 2008; Elliott and Siu 2008;
Zhu and Fukushima 2008). For a complete discussion of robust portfolio management and
the associated solution methods, see Fabozzi et al. (2007), Föllmer et al. (2008), and the
references therein.

The paper is organized as follows. Section 2 reviews the mean-VaR and mean-CVaR
models for portfolio selection, as well as a brief introduction of mean-variance analysis.
Section 3 surveys the application of robust optimization techniques in portfolio selection.
Section 4 discusses how to improve the robustness of portfolio selection by utilizing appro-
priate statistical estimators. Section 5 reviews the recent advances of Bayesian approach in
portfolio selection, which is followed by a simple conclusion on future directions (Sect. 6).

2 The models

In this section, we review first the classic mean-variance framework of Markowitz (1952,
1959). Portfolio optimization models based on alternative risk measures have been intro-
duced in the literature such as semivariance (Markowitz 1959), lower partial moment (Bawa
1975), mean absolute deviation (Konno and Yamazaki 1991), minimax (Young 1998), VaR
(Ahn et al. 1999; Basak and Shapiro 2001), CVaR (Rockafellar and Uryasev 2000), co-
herent risk measures (Artzner et al. 1999), convex risk measures (Föllmer and Schied 2002;
Frittelli and Rosazza Gianin 2002), generalized deviation measures (Rockafellar et al. 2006),
proper and ideal risk measures (Stoyanov et al. 2007; Rachev et al. 2008a), and have been
widely applied in practice (Dembo and Rosen 2000; Ortobelli et al. 2005). Among these,
we address in this section the minimization of VaR and CVaR in portfolio selection. Partic-
ularly, we explain in some detail the difference between both mean-VaR and mean-CVaR
and mean-variance analysis, and how far away the efficient frontiers are from each other.

2.1 The classic mean-variance problem

We consider in this section a one-period portfolio selection problem. Let the random vector
r = (r1, . . . , rn)

� ∈ �n denote random returns of the n risky assets, and x = (x1, . . . , xn)
� ∈

X = {x ∈ �n : 1�
n x = 1} denote the proportion of the portfolio to be invested in the n risky

assets, where � means transposition and 1n denotes a vector of all ones. Suppose that r has a
probability distribution p(r) with mean vector μ and covariance matrix �.4 Then the target
of the investor is to choose an optimal portfolio x that lies on the mean-risk efficient frontier.
In the Markowitz model, the “mean” of a portfolio is defined as the expected value of the
portfolio return, μ�x, and the “risk” is defined as the variance of the portfolio return, x��x.

4Later we may denote a random variable and its related deterministic variable/constant as the same symbol
since they can be distinguished clearly by the context.
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Mathematically, minimizing the variance subject to target and budget constraints leads to a
formulation like:

min
x

{
x��x : μ�x ≥ μ0, 1�

n x = 1

}
, (1)

where μ0 is the minimum expected return. There are two implicit assumptions in this for-
mulation: 1) the first two moments of portfolio return exist and 2) the initial wealth is nor-
malized to be 1 without loss of generality.

If the moment parameters are known, the analytical solution to the above formulation
is straightforward to apply, and the above problem can be solved numerically under vari-
ous practical constraints, such as no-short-selling or position limits. However, the moment
parameters are never known in practice and they have to be estimated from an unknown
distribution with limited data. Typically, the procedure of minimizing the portfolio variance
with a given expected return can be decomposed into three steps: 1) estimate the expected
return and covariance, 2) use the above optimization problem to create an efficient frontier,
and 3) select a point on the efficient frontier or select a mix of the risk-free asset and the
optimal risky asset allocation according to the investor’s risk tolerance. This procedure is
clearly not optimal, and hence robust procedures for making good use of portfolio theory
are called for in the presence of parameter or model uncertainties or both.

2.2 Mean-VaR model

Here we consider the mean-VaR model for portfolio selection. Following Rockafellar and
Uryasev (2000), we can define the portfolio loss as the minus return, −r�x. For the purpose
of exposition, we assume that the distribution of r is continuous.

For a given portfolio x ∈ X, the probability of the loss not exceeding a threshold α is
given by �(x, α) = ∫

−r�x≤α
p(r)dr . Given a confidence level β , the VaR associated with

the portfolio x is defined as VaRβ(x) = min{α ∈ � : �(x, α) ≥ β}. When the portfolio
return distribution is Gaussian with mean μ and covariance matrix �, then the VaR can be
expressed as

VaRβ(x) = ζβ

√
x��x − μ�x, (2)

where ζβ = −�−1(1 − β) and �(·) is the standard normal distribution function. From (2),
the computation of VaR involves three components (the mean, the variance, and the distri-
bution of the portfolio return), which in turn implies that an investor who regards VaR as
the risk measure can adjust ζβ and μ�x to reduce the portfolio risk. In this sense the VaR
measure is more flexible than the variance measure.

Alexander and Baptista (2002, 2004) point out that, for any portfolio x, when β → 1/2,
ζβ → 0, and hence limβ→1/2 VaR(x) = −μ�x. This indicates that a risk-neutral investor
can choose a confidence level of 50% to maximize the expected return in the mean-VaR
framework. On the other hand, if β → 1, ζβ → +∞, then limβ→1 VaR(x)/ζβ = √

x��x.
In this case, minimizing VaR over x ∈ X is equivalent to minimizing the variance.

Under regular condition that 0.5 < β < 1, ζβ > 0, then the following optimization prob-
lem

min
x

{
ζβ

√
x��x − μ�x : 1�

n x = 1

}
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is convex and there exists a real number μ0 such that the above problem is equivalent to

min
x

{
x��x : μ�x ≥ μ0,1�

n x = 1

}
,

where μ0 is a function of ζβ . Up to this point, the problem

min
x

{
VaRβ(x) : 1�

n x = 1

}

is equivalent to the mean-variance optimization problem

min
x

{
x��x : μ�x ≥ μ0,1�

n x = 1

}

in the sense that the mean-VaR boundary coincides with the mean-variance boundary. More
specifically, a portfolio lies on the mean-VaR boundary if and only if it lies on the mean-
variance boundary. Denote a = 1�

n �−1μ, b = μ��−1μ, c = 1�
n �−11n, and d = bc − a2.

Alexander and Baptista (2002) show that the minimum VaR portfolio at the β confidence
level exists if and only if ζβ >

√
d/c. Moreover, this minimum VaR portfolio is mean-

variance efficient, and can be given by

x∗
VaR = g + h

[
E[rx∗

σ
] + σ [rx∗

σ
]
√

d2/c2

(ζβ)2 − d/c

]
,

which yields the optimal VaR as

VaRβ(x∗
VaR) = σ [rx∗

σ
]
√

(ζβ)2 − d/c − E[rx∗
σ
],

where g = (1/d)[b(�−11n)−a(�−1μ)], h = (1/d)[c(�−1μ)−a(�−11n)], rx∗
σ

is the return
of the minimum variance portfolio x∗

σ , and σ [rx∗
σ
] is its corresponding standard deviation.

2.3 Mean-CVaR model

Motivated by the theoretical limitations of VaR, Rockafellar and Uryasev (2000) propose an
alternative risk measure, CVaR, that is defined as the conditional expectation of the loss of
the portfolio exceeding or equal to VaR,5 that is,

CVaRβ(x) = 1

1 − β

∫
−r�x≥VaRβ (x)

−r�xp(r)dr.

Moreover, Rockafellar and Uryasev (2000) prove that CVaR is sub-additive and can be
casted into the following convex optimization problem: CVaRβ(x) = minα∈� Fβ(x, α),

where Fβ(x, α) is expressed as

Fβ(x, α) = α + 1

1 − β

∫
r∈�n

[−r�x − α]+p(r)dr, (3)

5With more delicate assumptions on portfolio returns, CVaR is also called Extreme Value Theory VaR, Mean-
Excess Loss, Mean Shortfall, Tail VaR, Expected Shortfall, or Conditional Tail Expectation (Embrechts et al.
1997; Artzner et al. 1999).
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where [·]+ is defined as [t]+ = max{0, t} for any t ∈ �. Thus, minimizing CVaR over x ∈ X

is equivalent to minimizing Fβ(x, α) over (x, α) ∈ X × �, i.e.,

min
x∈X

CVaRβ(x) = min
(x,α)∈X×�

Fβ(x, α),

which implies that a pair (x∗, α∗) solves min(x,α)∈X×� Fβ(x, α) if and only if x∗ solves
minx∈X CVaRβ(x). Moreover, because Fβ(x, α) is convex with respect to (x, α) and
CVaRβ(x) is convex with respect to x, the joint minimization is a convex programming
problem, which can be efficiently solved by an interior algorithm.

In particular, Rockafellar and Uryasev (2000) show that, under the mild assumption of
β > 0.5 and normal distribution with mean μ and covariance �, CVaR reduces to

CVaRβ(x) = κβ

√
x��x − μ�x,

where κβ = − ∫ �−1(1−β)
−∞ tφ(t)dt

1−β
and φ(·) is the standard normal density function. Recall that

the parameter ζβ of VaR in the case of a normal distribution, κβ > ζβ when 1/2 < β < 1, we
have CVaRβ(x) > VaRβ(x). Hence, if the minimum VaR portfolio at the β confidence level
exists, then it is mean-CVaR efficient at the β confidence level.

In the more general case where the distribution is not necessarily normal, to deal with the
calculation of the integral of the multivariate and non-smooth function in (3), Rockafellar
and Uryasev (2000) present an approximation approach via sampling method:

Fβ(x, α) ≈ α + 1

T (1 − β)

T∑
t=1

[−(r t )�x − α]+,

where T denotes the number of samples with respect to the portfolio distribution and r t

denotes the t -th sample.
Finally, we are in a position to present an interesting conclusion found by Alexander and

Baptista (2004) that in the case of the normal distribution, the mean-VaR, mean-CVaR, and
mean-variance efficient frontiers have the following relationship: 1) If κβ ≤ √

d/c, then the
mean-VaR and mean-CVaR efficient frontiers are empty; 2) If ζβ ≤ √

d/c < κβ , then the
mean-VaR efficient frontier is empty but the mean-CVaR efficient frontier is a nonempty
proper subset of the mean-variance efficient frontier; and 3) If ζβ >

√
d/c, then a portfo-

lio belongs to the mean-VaR efficient frontier if and only if it belongs to the mean-CVaR
efficient frontier and E[rx∗

VaR
] > E[rx∗

CVaR
] > E[rx∗

σ
], where c and d are defined in the VaR

section.

3 Robust portfolios

In this section, we survey some recent advances in portfolio selection with parameter un-
certainty. Suppose θ and θ̂ represent the true and estimated input parameters in a portfolio
selection model, respectively. For example, θ denotes the mean μ and the covariance � in
the mean-variance model, whereas in the mean-VaR or mean-CVaR model, it represents the
distribution of portfolio return. Typically, θ is unobservable but is believed to belong to a
certain set P which is generated from the estimated parameter θ̂ , i.e., θ ∈ P = Pθ̂ (we will
discuss in some detail how to generate Pθ̂ from real data later). We aim at constructing a
portfolio so that the risk is as small as possible with respect to the worst-case scenario of the
uncertain parameters in this set P .
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3.1 Portfolio with known moments

We consider a general portfolio optimization model where the investor seeks to maximize
the expectation of his utility u(·). The investor solves the following general stochastic math-
ematical program:

max
x∈X

E[u(r�x)], (4)

where X = {x ∈ �n : 1�
n x = 1}.6

When the distribution of the portfolio return r is exactly known, problem (4) is a gen-
eral one-stage stochastic optimization problem without recourse. Particularly, if u(·) is a
quadratic utility u(r) = c2r

2 + c1r + c0, problem (4) does not depend on the actual distribu-
tion of r , except its mean μ and covariance �, and amounts to: maxx∈X c2x

�(� +μμ�)x +
c1μ

�x + c0. This only applies to the case of quadratic utility functions, partially explain-
ing why it is particularly favored in economics and finance models, especially for portfolio
selection.

Instead, in the general case where u(·) is not quadratic and the distribution p(r) is par-
tially known, we formulate the portfolio selection problem with robust optimization tech-
nique as follows:

max
x∈X

min
r∼(μ,�)

E[u(r�x)], (5)

where r ∼ (μ,�) indicates the fact that the distribution of r belongs to the class P(μ,�) of
n-variate distributions with mean μ and covariance �.

For a given vector x, denote the inner optimization problem of (5) as

U(x) = min
r∼(μ,�)

E[u(r�x)]. (6)

Popescu (2007) shows that problem (6) is equivalent to an optimization problem of univari-
ate distributions with a given mean and variance; that is,

U(x) = min
r∼(μ,�)

E[u(r�x)] = min
rx∼(μx ,σ 2

x )

E[u(rx)],

which can be further reduced to optimizing over a restricted class of distribution with at
most two support points if u is differentiable such that the first-order derivative of u is in-
verse S-shaped with finite limits at ±∞. That is, the objective U(x) can be casted as a
deterministic optimization problem with at most two variables, reducing the robust opti-
mization problem (5) to a deterministic bi-criteria problem that only depends on the mean
and variance of the random variable r�x.7 More specifically, if the robust objective function

6We abuse max and min in the wide sense of sup and inf, respectively, to account for the case when the
optimum is not attained.
7A function f defined on � is convex-concave if there exists x0 ∈ � such that f is convex on (−∞, x0)

and concave on (x0,∞). A function f defined on � is concave-convex if −f is convex-concave. A function
f is S-shaped if it is increasing and convex-concave. A function f is inverse S-shaped if −f is S-shaped.
A function u satisfies the two-point support property with respect to (μ,σ 2) if there exists a quadratic function
that supports u from below and intersects it at two points a, b such that a feasible (μ,σ 2) distribution with
support {a, b} exists. A function u satisfies the two-point support property if it satisfies the property with
respect to any (μ,σ 2).
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U(x) = minrx∼(μx ,σ 2
x ) E[u(rx)] is continuous, non-decreasing in μx , non-increasing in σx

and quasi-concave, then problem (5) over X is equivalent to solving the following paramet-
ric quadratic program:

max
x∈X

γμ�x − (1 − γ )x��x. (7)

Thus, if x∗(γ ) denotes the optimal solution of problem (7), then the function U(x∗(γ ))

is continuous and unimodal in γ ∈ [0,1]. Moreover, if γ ∗ is its maximum, then x∗(γ ∗) is
optimal for problem (5). With simple formulation, problem (7) can be written as (1) with
μ0 = μ0(γ ).

Problem (7) implies that even if the distribution/input is unknown, under mild assump-
tions, we can still transform the portfolio selection problem with expected utility maximiza-
tion into a tractable quadratic problem without increasing the level of complexity relative to
the conventional problem with known input.

3.2 Portfolio with unknown mean

In this part, we follow Garlappi et al. (2007) by discussing the robust version of the mean-
variance portfolio problem when uncertainty is assumed to be present only in the expected
return (� is known), i.e., θ = μ ∈ Pμ̂.

3.2.1 Box uncertainty on mean

The simplest choice for the uncertain set of μ is box:

Pμ = {μ : |μi − μ̂i | ≤ δi, i = 1, . . . , n}.

The δis could be related to some confidence interval around the estimated expected return.
For example, if the individual return of the risky assets is normally distributed, then μi−μ̂i

σi /
√

Tj

follows a standard normal distribution, and a 95% confidence interval for μi can be obtained
by setting δi = 1.96σi/

√
Ti , where Ti is the sample size used in the estimation and σi is the

standard deviation of asset i.
The robust portfolio problem can be formulated as

min
x∈X

{
x��x : min

μ
μ�x ≥ μ0, |μi − μ̂i | ≤ δi, i = 1, . . . , n

}
,

which can be further formulated as

min
x∈X

{
x��x : (μ̂ − μδ)

�x ≥ μ0

}
, (8)

where μδ = (sign(x1)δ1, . . . , sign(xn)δn)
�. Here sign(x) is the sign function equal to 1 if

x ≥ 0 and 0 otherwise.
There are two explanations for (8). First, μ̂−μδ can be regarded as a shrinkage estimator

of the expectation of portfolio returns, i.e., constructing a robust portfolio for μ from μ̂ is
equivalent to constructing a conventional portfolio from μ̂ − μδ . If the weight of asset i in
the portfolio is negative, the expected return on this asset is increased, μi + δi , while if it is
positive, the expected return on this asset is decreased, μi − δi .



200 Ann Oper Res (2010) 176: 191–220

Second, by using the equality, xisign(xi)δi = xi
xi

|xi |δi = xi√|xi |δi
xi√|xi | , we can rewrite

the problem as minx∈X{μ̂�
x − x̂

�
�x̂ − γx��x}, where x̂ = (

x1√|x1| , . . . ,
xn√|xn| )

�, � =
diag(δ1, . . . , δn), and γ = γ (μ0). Interestingly, the term x̂

�
�x̂ can be interpreted as a risk

adjustment performed by an investor who is averse to estimation error, and the magnitude
of this “risk-like” term is determined by the values of δis.

3.2.2 Ellipsoidal uncertainty on mean

Here we consider another uncertain set for μ:

min
x∈X

{
x��x : min

μ
μ�x ≥ μ0, (μ − μ̂)��−1(μ − μ̂) ≤ χ2

}
, (9)

where χ2 is a non-negative number (χ2 is related to a chosen quantile for chi-square distri-
bution with n degrees of freedom if the portfolio returns are multivariate and � is known).

For any feasible x ∈ X, let us look at the following optimization problem with respect
to μ:

min
μ∈�n

{
μ�x : (μ − μ̂)�−1(μ − μ̂) ≤ χ2

}
.

Apparently, the objective is linear, the constraint is quadratic, and hence we can use the
necessary and sufficient Kuhn-Tucker condition to obtain its optimal solution

μ∗ = μ̂ − χ�x√
x��x

with unique optimal objective value, μ̂
�
x − χ

√
x��x. Therefore, problem (9) reduces to

the following second-order cone program:

min
x∈X

−μ̂
�
x + χ

√
x��x + γx��x,

where γ = γ (μ0). Since this is a convex programming problem, it is easy to show that there
exists a γ̃ = γ̃ (μ0, χ) ≥ γ such that the above problem is equivalent to

min
x∈X

−μ̂
�
x + γ̃x��x.

Similar to the box uncertainty, the investor who is averse to the estimation error becomes
more conservative.

3.3 Portfolio with unknown mean and covariance

Now we extend our discussion to a more realistic situation where the covariance � is also
subject to estimation error. Then, θ = (μ,�) ∈ P(μ̂,�̂).

A few different methods for modeling uncertainty in the covariance matrix are used in
practice. Some are superimposed on top of factor models for returns (Goldfarb and Iyen-
gar 2003b), while others consider confidence intervals for the individual covariance matrix
entries (Tütüncü and Koenig 2004). Benefits for portfolio performance have been observed
even when the uncertainty set is defined simply as a collection of several possible scenarios
for the covariance matrix (Rustem et al. 2000; Costa and Paiva 2002).
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3.3.1 Factor models

In the robust factor model, the portfolio return r ∈ �n is given by

r = μ + V �f + ε,

where μ ∈ �n is the vector of mean returns, f ∈ �m ∼ N (0,F ) is the vector of random
returns of the m (< n) factors that drive the market, V ∈ �m×n is the factor loading matrix,
and ε ∼ N (0,D) is the vector of residual returns. The mean return vector μ, the factor
loading matrix V , the covariance matrices of the factor return vector f , and the residual
error vector ε are known to lie within suitably defined uncertain sets.

In addition, we assume that the vector of residual return ε is independent of the vector of
factor returns f , the covariance matrix F  0 and the covariance matrix D = diag(d) � 0,
i.e., di ≥ 0, i = 1, . . . , n.8 Thus, the portfolio return r ∼ N (μ,V �FV +D), in which μ, D,
and V are uncertain.

Without loss of generality, we assume the uncertain set P for μ, D, and V is separable,
that is,

θ = (μ,D,V ) ∈ P(μ̂,D̂,V̂ ) = Pμ̂ × PD̂ × PV̂ .

Following Goldfarb and Iyengar (2003b), the mean returns vector μ is assumed to lie in
the uncertain set Pμ̂ given by

Pμ̂ = {μ : |μi − μ̂i | ≤ δi, i = 1, . . . , n}. (10)

The individual diagonal elements di of the covariance matrix D are assumed to lie in an
interval [di, di], i.e.,

PD̂ = {D : D = diag(d), di ∈ [di, di], i = 1, . . . , n}.
Finally, the columns of the matrix V are also assumed to be known approximately, i.e., V

belongs to an elliptical uncertain set PV̂ :

PV̂ = {V : V = V̂ + W,‖wi‖g ≤ ρi, i = 1, . . . , n},
where wi is the ith column of W and ‖w‖g = √

w�Gw denotes the elliptic norm of w with
respect to a symmetric, positive definite matrix G. Then the portfolio return is given by

r�x = μ�x + f �V x + ε�x ∼ N (μ�x,x�(V �FV + D)x).

The robust mean-variance optimization problem is given by

min
x∈X

{
max

V ∈P
V̂

,D∈P
D̂

x�(V �FV + D)x : min
μ∈Pμ̂

μ�x ≥ μ0

}
.

By introducing auxiliary variables ν and ς , Goldfarb and Iyengar (2003b) prove that this
problem can be reformulated as

min
(x,ν,ς,ψ,τ,η,t,s)

ν + ς

8For two n × n symmetric matrices A,B ∈ Ln, A � B (resp. A  B) means A − B is positive semidefinite
(resp. definite).
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s.t. 1�
n x = 1, μ̂

�
x − δ�ψ ≥ μ0,

ψi ≥ xi, ψ ≥ −xi, i = 1, . . . , n,

τ + 1�
mt ≤ ν − ς, η ≤ 1

lmax(H)
,

∥∥∥∥
[

2D
1/2

x

1 − ς

]∥∥∥∥ ≤ 1 + ς,

∥∥∥∥
[

2ρ�ψ

η − τ

]∥∥∥∥ ≤ η + τ,

∥∥∥∥
[

2sj

1 − nlj − tj

]∥∥∥∥ ≤ 1 − ηlj + tj , j = 1, . . . ,m,

where QLQ� is the spectral decomposition of H = G−1/2FG−1/2, L = diag(l1, . . . , lm)

(lmax is the maximum of these elements), and s = Q�H 1/2G1/2V̂ x.

3.3.2 Box uncertainty on the covariance matrix

Instead of using uncertain sets based on estimates from a factor model, Tütüncü and Koenig
(2004) directly specify intervals for the individual elements of the covariance matrix:

� ∈ P(�,�) = {� : � � � � �},

where � and � are assumed to be positive semidefinite. The uncertainty of the expected
return is the same with (10).

Suppose that short sales are not permitted (i.e., x ≥ 0), then the resulting problem is very
simple to formulate. We just need to replace μ̂ by μ̂ − δ and � by � because

min
x

{
x��x : (μ̂ − δ)�x ≥ μ0,1�

n x = 1,x ≥ 0

}

is equivalent in fact to

min
x

{
max

�∈P
(�,�)

x��x : min
μ∈Pμ̂

μ�x ≥ μ0,1�
n x = 1,x ≥ 0

}
.

In the general situation without short-sale constraints, the robust counterpart remains a
convex problem, and is given by

max
x,x+,x−,�,�

〈�,�〉 − 〈�,�〉

s.t. 1�
n x = 1,

μ̂
�
x − δ�(x+ + x−) ≥ μ0,

x = x+ − x−, x+ ≥ 0, x− ≥ 0,

� � 0, � � 0,

[
� − � x

x� 1

]
� 0,

where for any two symmetric matrices A and B , 〈A,B〉 represents the trace of the matrix
product AB , i.e, 〈A,B〉 = trace(AB).
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3.4 Robust VaR

Recall in Sect. 2 that if the distribution of portfolio return is Gaussian with mean μ and
covariance matrix �, the VaR at the β confidence level can be expressed as

VaRβ(x) = ζβ

√
x��x − μ�x.

Now we assume that the true distribution of returns is only partially known. Particularly,
in parallel with the robust mean-variance framework, we first consider the case where the
distribution of portfolio return belongs to a certain set of distributions, i.e., p(r) ∈ P(μ,�),
whose mean and covariance matrix are perfectly known, denoted by μ and �, respectively.

Mathematically, for a given confidence level β ∈ (1/2,1], and a given portfolio x ∈ X,
the robust VaR with respect to the set of probability distributions P(μ,�) is defined as

RVaRβ(x) = minγ s.t. sup
p(·)∈P(μ,�)

P{γ ≤ −r�x} ≤ 1 − β.

El Ghaoui et al. (2003) show that supp(·)∈P(μ,�)
P{γ ≤ −r�x} ≤ 1 −β has the following four

equivalent counterparts:

1.

ζ̃β

√
x��x − μ�x ≤ γ, (11)

where ζ̃β = √
β/(1 − β);

2. There exist a symmetric matrix M ∈ Ln+1 and τ ∈ � such that

〈M,�〉 ≤ τ(1 − β), M � 0, τ ≥ 0, M +
[

0 x

x� −τ + 2γ

]
� 0, (12)

where � = [
�+μμ� x

x� 1

]
;

3. For every μ̂ ∈ �n such that

[
� μ̂ − μ

(μ̂ − μ)� ζ̃ 2
β

]
� 0, (13)

we have −μ̂
�
x ≤ γ ; or

4. There exist � ∈ Ln and v ∈ � such that

〈�,�〉 + ζ̃ 2
β v − μ�x ≤ γ,

[
� x/2

x�/2 v

]
� 0. (14)

With these four equivalent formulations, we can easily solve the robust VaR portfolio se-
lection problem with distribution uncertainty, which have the most interesting properties of
transforming probability chance constraints into tractable convex inequality constraints.

We now turn to the case when (μ,�) are only known to belong to a given convex set
P of �n × Ln. We denote by P+ the set {(μ,�) ∈ P |�  0}. Then the portfolio selection
problem with robust VaR strategy can be formulated as:

min
M,τ,x

max
μ,�

{
γ : (μ,�) ∈ P+, 〈M,�〉 ≤ τ(1 − β),M � 0, τ ≥ 0,
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M +
[

0 x

x� −τ + 2γ

]
� 0

}
,

min
x∈X

max
μ̂,μ,�

{
− μ�x : (μ,�) ∈ P+,

[
� μ̂ − μ

(μ̂ − μ)� ζ̃ 2
β

]
� 0

}
,

or

min
�,v,x

max
μ,�

{
〈�,�〉 + ζ̃ 2

β v − μ�x : (μ,�) ∈ P+,

[
� x/2

x�/2 v

]
� 0

}
,

which correspond to cases (12), (13), and (14). We omit the case of (11) since its formulation
is very similar to the mean-VaR portfolio selection with known distribution. The above three
formulations are ready for application once the structure of the uncertain set P+ is specified.
Fortunately, P+ consists of the information of the mean and covariance of the portfolio
return, so it can be specified as in the robust mean-variance section. Here we omit this
discussion because of space limitation and refer interested readers to El Ghaoui et al. (2003).

3.5 Robust CVaR

In this section, we consider another type of uncertainty which is directly associated with
the distribution of the portfolio return rather than its first- and second-order moments. More
specifically, we assume in this section that the density function of the portfolio return is
only known to belong to a certain set P of distributions, i.e., p(·) ∈ P . Zhu and Fukushima
(2008) define the robust CVaR (RCVaR) for fixed x ∈ X with respect to P as

RCVaRβ(x) = max
p(·)∈P

CVaRβ(x).

Moreover, they investigate some special cases of P such as mixture distribution uncertain
set and box uncertain set that meet practical requirements and, at the same time, can be
efficiently solved.

3.5.1 Mixture distribution

We assume in our discussion that the density function of r is only known to belong to a set
of distributions which consists of all the mixture distributions of some possible distribution
scenarios; that is,

p(·) ∈ PM =
{

L∑
l=1

λlp
l(·) :

L∑
l=1

λl = 1, λl ≥ 0, l = 1, . . . ,L

}
,

where pl(·) denotes the l-th distribution scenario, and l denotes the number of possible
scenarios. Mixture distributions have already been studied in robust statistics and used in
modeling the distribution of financial data (Hall et al. 1989; Peel and McLachlan 2000).

Denote

� =
{

λ = (λ1, . . . , λL) :
L∑

l=1

λl = 1, λl ≥ 0, l = 1, . . . ,L

}
,
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and

F l
β(x, α) = α + 1

1 − β

∫
r∈�n

[−r�x − α]+pl(r)dr, l = 1, . . . ,L.

Using the minimax theorem, for each x, RCVaRβ(x) with respect to PM is given by

RCVaRβ(x) = min
α∈� max

l∈L
F l

β(x, α),

where L = {1,2, . . . ,L}.
Denote

F L
β (x, α) = max

l∈L
F l

β(x, α).

Then, minimizing RCVaRβ(x) over X can be achieved by minimizing F L
β (x, α) over X×�,

i.e.,

min
x∈X

RCVaRβ(x) = min
(x,α)∈X×�

F L
β (x, α).

More specifically, if (x∗, α∗) attains the right-hand side minimum, then x∗ attains the left-
hand side minimum and α∗ attains the minimum of F L

β (x∗, α), and vice versa. Furthermore,
it can be seen that the RCVaR minimization is equivalent to

min
(x,α,θ)∈X×�×�

{
θ : α + 1

1 − β

∫
r∈�n

[f (x, r) − α]+pl(r)dr ≤ θ, l = 1, . . . ,L

}
. (15)

Thus, the computation of (15) is similar to CVaR. More specifically,

min
(x,α,θ)∈X×�×�

{
θ : α + 1

Sl(1 − β)

Sl∑
k=1

[f (x, r l
[k]) − α]+ ≤ θ, l = 1, . . . ,L

}
, (16)

where r l
[k] is the k-th sample with respect to the l-th distribution scenario pl(·), and Sl

denotes the number of the corresponding samples. Instead of the simple random sampling
method, some improved sampling approaches can be used to approximate the integral. Gen-
erally, the approximation of problem (15) can be formulated as

min
(x,α,θ)∈X×�×�

{
θ : α + 1

1 − β

Sl∑
k=1

πl
k[f (x, r l

[k]) − α]+ ≤ θ, l = 1, . . . ,L

}
, (17)

where πl
k denotes the probability according to the k-th sample with respect to the l-th distri-

bution scenario pl(·). If πl
k is equal to 1

Sl for all k, then (17) reduces to (16). In the following,
we denote π l = (πl

1, . . . , π
l

Sl )
�.

Let m = ∑l

l=1 Sl . Then, by introducing an auxiliary vector u = (u1;u2; . . . ;uL) ∈ �m,
the optimization problem (17) can be rewritten as the following minimization problem with
variables (x,u, α, θ) ∈ �n × �m × � × �:

min θ

s.t. x ∈ X,
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α + 1

1 − β

(
π l

)�
ul ≤ θ, (18)

ul
k ≥ f (x, r l

[k]) − α, ul
k ≥ 0, k = 1, . . . , Sl, l = 1, . . . ,L.

More specifically, if (x∗,u∗, α∗, θ∗) solves (18), then (x∗, α∗, θ∗) solves (17). Conversely,
if (x∗, α∗, θ∗) solves (17), then (x∗,u∗, α∗, θ∗) solves (18), where u∗ is constructed as

ul∗
k = [f (x∗, r l

[k]) − α∗]+, k = 1, . . . , Sl, l = 1, . . . , l.

In the special case where L = 1 (i.e., the distribution of r is confirmed to be only one sce-
nario without any other possibility), problem (18) is exactly that of Rockafellar and Uryasev
(2000) with πl

k = 1
S1 for all k. Although in the above discussion we assume a continuous dis-

tribution, it is easy to see from Rockafellar and Uryasev (2002) that the results also hold in
the general distribution case. For example, in the discrete distribution case, it is straightfor-
ward to interpret the integral as a summation. Moreover, it should be interpreted as a mixture
of an integral and a summation in the case of mixed continuous and discrete distributions.

3.5.2 Discrete distribution

In this subsection, we assume that r follows a discrete distribution and discuss the mini-
mization of the robust CVaR under box uncertainty. From a practical viewpoint, this consid-
eration still makes sense for continuous distributions, since we usually use a discretization
procedure to approximate the integral resulting from a continuous distribution.

Let the sample space of a random vector r be given by {r [1], r [2], . . . , r [S]} with Pr{r [k]} =
πk and

∑S

k=1 πk = 1, πk ≥ 0, k = 1, . . . , S. Denote π = (π1,π2, . . . , πS)
� and define

Gβ(x, α,π) = α + 1

1 − β

S∑
k=1

πk[x�r [k] − α]+.

For given x and π , the corresponding CVaR is then defined as (Rockafellar and Uryasev
2002)

CVaRβ(x,π) = min
α∈�

Gβ(x, α,π).

We denote P as Pπ in the case of a discrete distribution. Then we may identify Pπ as a
subset of �S and the robust CVaR for fixed x ∈ X with respect to Pπ is defined as

RCVaRβ(x) = max
π∈Pπ

CVaRβ(x,π),

or equivalently,

RCVaRβ(x) = max
π∈Pπ

min
α∈�

Gβ(x, α,π).

Then, for each x, we have

RCVaRβ(x) = min
α∈� max

π∈Pπ

Gβ(x, α,π).
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Particularly, if Pπ is a compact convex set, the problem of minimizing RCVaRβ(x) over X

can be written as

min
(x,α,θ)∈X×�×�

{
θ : max

π∈Pπ

α + 1

1 − β

S∑
k=1

πk[−x�r [k] − α]+ ≤ θ

}
. (19)

By introducing an auxiliary vector u ∈ �S , we can show that problem (19) is equivalent to
the following minimization problem with variables (x,u, α, θ) ∈ �n × �S × � × �:

min

{
θ : x ∈ X, max

π∈Pπ

α + 1

1 − β
π�u ≤ θ,uk ≥ −x�r [k] − α,uk ≥ 0, k = 1, . . . , S

}
. (20)

In the following, we show that under the box uncertainty in the distributions, (20) can be
casted as linear programs.

Suppose π belongs to a box set, i.e.,

π ∈ P B
π =

{
π : π = π0 + η,1�

S η = 0,η ≤ η ≤ η
}

,

where π0 is a nominal distribution which represents the most likely distribution, 1S denotes
an S-dimensional vector of ones, and η and η are given constant vectors. The condition
1�

S η = 0 ensures π to be a probability distribution, and the non-negativity constraint π ≥ 0
is included in the binding constraints η ≤ η ≤ η.

Since

α + 1

1 − β
π�u = α + 1

1 − β

(
π0

)�
u + 1

1 − β
η�u,

we have

max
π∈PB

π

α + 1

1 − β
π�u = α + 1

1 − β

(
π0

)�
u + γ ∗(u)

1 − β
,

where γ ∗(u) is the optimal value of the following linear program

max
η∈�S

{
u�η : 1�

S η = 0, η ≤ η ≤ η

}
. (21)

The dual program of (21) is given by

min
(z,ξ ,ω)∈�×�S×�S

{
η�ξ + η�ω : 1Sz + ξ + ω = u, ξ ≥ 0, ω ≤ 0

}
. (22)

Consider the following minimization problem over (x,u, z, ξ ,ω, α, θ) ∈ �n ×�S ×�×
�S × �S × � × �:

min θ

s.t. x ∈ X,

α + 1

1 − β

(
π0

)�
u + 1

1 − β

(
η�ξ + η�ω

)
≤ θ, (23)

1Sz + ξ + ω = u, ξ ≥ 0, ω ≤ 0,
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uk ≥ −x�r [k] − α, uk ≥ 0, k = 1, . . . , S.

If (x∗,u∗, z∗, ξ ∗,ω∗, α∗, θ∗) solves (23), then (x∗,u∗, α∗, θ∗) solves (20) with Pπ = P B
π .

Conversely, if (x̃∗
, ũ∗

, α̃∗, θ̃∗) solves (20) with Pπ = P B
π , then (x̃∗

, ũ∗
, z̃∗, ξ̃

∗
, ω̃∗

, α̃∗, θ̃∗)
solves (23), where (z̃∗, ξ̃

∗
, ω̃∗

) is an optimal solution to (22) with u = ũ∗.
In the special case where η = η = 0, (23) reduces to the original CVaR minimization

problem. Using a similar approach, we can also assume π belongs to an ellipsoid and trans-
form the minimization of RCVaR into a second-order cone program.

3.6 Size and shape of the uncertain set

While there is a large body of literature concerned with the formulation of robust portfolio
selection, the discussion in the literature that focuses specifically on how to specify the size
and shape of the set of the uncertain parameter in an attractive manner is sparse; the size of
the set ensures the probability that the uncertain parameter takes on a value in the set, while
the shape of the set determines the complexity of the robust optimization problem.

In practice, a distribution is often completely determined by its parameters. In this sense,
we may write p(·) as p(·|θ). To identify θ , two approaches have been employed in both
theoretical studies and practice. One is estimating them by data: collecting a set of historical
data to estimate the parameters of the likelihood distribution. For example, if we consider
the returns following a joint normal distribution, the corresponding mean and covariance of
the portfolio returns can be estimated immediately from historical returns. However, due to
estimation errors, we can only obtain a confidence region � of the parameters θ , and we
believe with certainty that the real parameters θ belong to �, i.e., θ ∈ �. Thus, we may
choose proper θ in � to construct the likelihood distribution.

The other approach is expert prediction: all the different distributions predicted by a
group of experts can be regarded as the likelihood distributions (Lutgens and Schotman
2006). Actually, the success of quantitative approaches to portfolio selection relies on the
return model employed. While each alternative return model supplies the portfolio manager
with a specific set of parameters such as the mean and covariance of the returns, there is
no consensus among the experts on which return model is most appropriate, and hence they
will recommend different parameters for the portfolio return distribution. Apart from relying
on one particular expert, we may combine the information from a number of experts and
consider each of their predictions as a likelihood distribution. The Bayesian model averaging
approach reviewed later will be useful for this purpose.

3.6.1 Specification for factor model

In Sect. 3.3.1, we assume that the return vector r is given by the linear model,

r = μ + V �f + ε, (24)

where ε is the residual return. With robust technique for portfolio selection, in addition to
the least squares estimates (μ̂, V̂ ) of (μ,V ), we need to specify the uncertain structures PD̂ ,
PV̂ , and Pμ̂ by choosing the proper matrix G for the elliptic norm ‖ · ‖g and the bounds dj ,
ρj , δj , j = 1, . . . , n.

We present here the specifications developed by Goldfarb and Iyengar (2003b). Suppose
we have historical data on asset returns, {r t , t = 1, . . . , T }, for T periods and the corre-
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sponding factor returns {f t , t = 1, . . . , T }. According to (24), we have

rt
i = μt

i +
n∑

j=1

Vjif
t
j + εt

i , i = 1, . . . , n, t = 1, . . . , T .

In the regression analysis, we assume {εt
i , i = 1, . . . , n, t = 1, . . . , T } are all independent

normal random variables and εt
i ∼ N (0, σ 2

i ) for all t = 1, . . . , T .
Let RT = [r1, r2 . . . , rT ] ∈ �n×T be the matrix of asset returns and Q =

[f 1,f 2, . . . ,f T ] ∈ �m×T be the matrix of factor returns. Then we can write the regres-
sion equation for asset i as

r i = Hzi + εi ,

where r i = (r1
i , . . . , rT

i )�, H = (1T ,Q�), zi = (μi,V1i , V2i , . . . , Vmi)
�, and εi =

(ε1
i , . . . , ε

T
i )�. With the least-squares regression, we can estimate (μi,V1i , V2i , . . . , Vmi)

�
as

(μ̂i, V̂1i , V̂2i , . . . , V̂mi)
� = ẑi = (H�H)−1H�r i .

In what follows, we describe how to estimate G,ρi, δi, and di .
Denote

Y = (zi − ẑi )
�(H�H)(zi − ẑi )

(m + 1)s2
i

,

where s2
i = ‖r i−Aẑi‖2

T −m−1 . With the normal assumption on εi , Anderson (1984) shows that Y
follows an F(m + 1, T − m − 1) distribution.

Let qm+1(β) be the β quantile of Y, i.e.,

P

{
(zi − ẑi )

�(H�H)(zi − ẑi )

(m + 1)s2
i

≤ qm+1(β)

}
= β.

Then, we can set

G = QQ� − 1

T
(Q1T )(Q1T )�,

δi =
√

(m + 1)(H�H)−1
11 qm+1(β)s2

i ,

ρi =
√

(m + 1)qm+1(β)s2
i ,

to ensure (μ,V ) ∈ Pμ̂ × PV̂ with at least βn certainty.
Up to now, there is no realistic method for the determination of di since we cannot find a

confidence interval for di although s2
i is an unbiased estimator of d2

i . Goldfarb and Iyengar
(2003b) suggest a possible solution by using the bootstrap technique.

3.6.2 Specification for mean and covariance

Next, we show how one can directly define a confidence region for mean and covariance
statistics such that it is assured with high probability to contain the given statistics of the
distribution that generated (μ,�).
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Given T samples from r and an empirical estimate of the mean μ̂ and covariance matrix
�̂, Delage and Ye (2008) show that with probability greater than or equal to β , the true
parameter (μ,�) belongs to the following set

(μ,�) ∈ P(μ̂,�̂) =
{
(μ,�) : (μ̂ − μ)��̂−1(μ̂ − μ) ≤ χ,

1

1 − q
�̂ � � � 1

1 − q − χ
�̂

}
,

if

T > max

{
(R̂2 + 2)2

(
2 + √

2 ln(4/(1 − β))
)2

,

(
(8 + √

32 ln(4/(1 − β)))
)2

(
√

R̂ + 4 − R̂)4

}
,

q = (R̄2/
√

T )
(√

1 − n/R̄4 + √
ln(4/(1 − β))

)
,

χ = (R̄2/T )
(
2 + √

2 ln(2/(1 − β))
)2

,

R̄ = R̂

(
1 − (R̂2 + 2)

2 + √
2 ln(4/(1 − β))√

T

)−1/2

,

R̂ = max
t∈{1,...,T }

{
(r t − μ̂)��̂−1/2(r t − μ̂)

}
.

3.7 Hansen and Sargent approach

Hansen and Sargent (2008) summarize a series of their papers and those in the area of their
robust approach, which was developed based on robust control theory (Whittle 1990, 1996).
In contrast to the robust approaches reviewed in previous sections, the deviations from the
true model are captured by their framework. To see how this works, consider an investor
who uses an approximate model,

y t+1 = Ay t + But + Cε̃t+1, (25)

where y t+1 is a state vector, ut a vector of controls, A, B and C are constant matrices, and
ε̃t is a vector of standardized Gaussian noises. Unsure about the validity of (25), the investor
entertains a set of approximate models represented by

y t+1 = Ay t + But + C(εt+1 + wt+1), (26)

where εt+1 is another vector of noises and wt+1 can be a very general stochastic process that
represents the deviations of those models from (25). One of their key innovations is to study
the impact of the discounted future deviations of (26) from (25),

R(w) = 2E0

∞∑
t=0

βt+1I (wt+2),

where E0 is the expectation under (26), β is a discount parameter, and I (wt+2) is the entropy
measure of the deviations each period. Under suitable conditions, the maxmin problem of an
objective with an upper bound on R(w) can be transferred into a standard problem without
misspecification by adding a suitable penalty function into the original objective function,
as demonstrated below.
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In the mean-variance framework with unknown mean, let δ = μ̂−μ with μ̂ as the sample
mean and μ the unknown true mean. Then the entropy measure can be written as

I (δ) = 1

2
δ��−1δ.

The investor solves the maxmin problem

max
x

min
δ

{
λ

2
δ��−1δ + (μ̂ − δ)x − γ

2
x��x

}
,

where λ is the coefficient of the penalty function determined by a given upper bound on
I (δ). The solution to the maxmin problem is the same as

max
x

{
μ̂

�
x − 1

2λ
x��x − γ

2
x��x

}
.

This says that introducing model uncertainty is observationally equivalent to increasing risk
aversion.

There is a large and growing application of the Hansen and Sargent approach to a number
of financial issues. For example, Uppal and Wang (2003) use it to show model uncertainty is
an important explanation of the underdiversification puzzle, Maenhout (2004) applies it to
explain the risk premium puzzle, and Kleshchelskiy and Vincentz (2007) adapt it to derive
an equilibrium model of both bond and equity markets and show that the model fits well
the key empirical regularities of the data. Theoretically, Maccheroni et al. (2006) provide
a variational representation of preferences that unifies both the earlier multi-prior approach
and the Hansen and Sargent one into one coherent decision-making framework. Strzalecki
(2008) introduces the axiomatic foundation for choosing entropy in penalizing deviations
between models.

4 Optimal estimation

The operations research literature often takes the parameter estimation as given, and then ex-
plore robustness to various uncertainties. In contrast, there is a vast literature in finance that
focuses on developing the best estimators of the unknown mean and variance for the purpose
of portfolio selection. While most of them are developed under normality assumption for the
asset returns, the resulting estimators may be robust to certain distributional assumptions,
but not so to others. From a statistical point of view, there are various estimation procedures
that are robust to outliers and general distributional assumptions (see Huber 2003; Maronna
et al. 2006). In contrast to the robust control and the statistics literature, the methods devel-
oped in finance that are described below do not treat estimation and optimization separately.
The estimation is designed to maximize the objective function at hand.

Recall that, in practice, the optimal portfolio x∗ is not computable because μ and � are
unknown. To implement the mean-variance framework of Markowitz (1952), the optimal
portfolio weights are usually chosen using a two-step procedure. Suppose an investor has T

periods of observed return data RT = {r1, r2, . . . , rT } and would like to form a portfolio for
period T + 1. First, the mean and covariance matrix of the asset returns are estimated based
on the observed data. Under the assumption that r t is i.i.d. normal, the standard estimates
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are

μ̂ = 1

T

T∑
t=1

r t , �̂ = 1

T

T∑
t=1

(r t − μ̂)(r t − μ̂)�.

Second, these sample estimates are then treated as if they were the true parameters, and then
used to compute the optimal portfolio weights. We call such a portfolio rule the plug-in rule,
whose optimal portfolio weights are

x̂ = 1

γ
�̂−1μ̂.

Statistically, the estimator is efficient, and is usually regarded as very good. However, as will
be clear, the estimator is far from being good in terms of maximizing the expected utility.

In general, an estimated portfolio rule can be defined as a function of the historical returns
data RT ,

x̂ = f (r1, r2, . . . , rT ).

Intuitively, an investor who uses x̂ should be worse off than another investor who knows the
true parameters. How do we assess the utility loss from using a given portfolio rule? Based
on standard statistical decision theory, we define the loss function of using x̂ as

L(x∗, x̂) = u(x∗) − u(x̂),

where u(x) = μ�x − γ

2 x��x. Because x̂ is not equal to x∗ in general, the utility loss is
strictly positive. However, x̂ is a function of RT , so the loss depends on the realizations
of the historical returns data. It is important for decision purposes to consider the average
losses involving actions taken under all possible outcomes of RT . This calls for the use of
the expected loss function, also known as the risk function, which is defined as

ρ(x∗, x̂) = E[L(x∗, x̂)] = u(x∗) − E[u(x̂)],
where the expectation is taken with respect to the true distribution of RT . Thus, for a given
μ and � (or a given x∗), ρ(x∗, x̂) represents the expected loss over RT that is incurred in
using the portfolio rule x̂.

The risk function provides a criterion for ranking various portfolio rules and the rule that
has the lowest risk is the most preferred. Instead, we can equivalently rank portfolios by
their expected utility E[u(x̂)]. In general, one portfolio rule may generate higher expected
utility than another over some parameter values of (μ,�), but lower over some other values.
In this case, the two portfolio rules do not uniformly dominate each other, and which one
of them is preferable depends on the actual value of μ and �. However, there are portfolio
rules that are inadmissible in the sense that there exists another portfolio rule that generates
higher expected utility for every possible choice of (μ,�). Clearly, inadmissible portfolio
rules should be eliminated from consideration.

As a major alternative to the standard maximum likelihood estimator, the plug-in rule,
Jorion (1986, 1991) develops an estimator of μ motivated by both a shrinkage consideration
and a Bayesian analysis. Jorion’s Bayes-Stein shrinkage portfolio rule, known as shrinkage
estimators pioneered by Stein (1956), of μ is

μ̂
BS = (1 − v)μ̂ + vμ̂g1n,
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where v is the weight given to the shrinkage target μ̂g , and 1−v is the weight on the sample
mean. The target used by Jorion (1986) is the average excess return of the sample global
minimum-variance portfolio,

μ̂g = 1�
n �̃−1μ̂

1�
n �̃−11n

= 1�
n �̂−1μ̂

1�
n �̂−11n

,

and the weight is

v = n + 2

(n + 2) + T (μ̂ − μ̂g1n)��̃−1(μ̂ − μ̂g1n)
,

where �̃ is defined as T
T −n−2 �̂. From a shrinkage point of view, combining μ̂BS with �̃

gives an estimator of the optimal portfolio weights. The new estimator is in general much
better than the plug-in rule.

Jobson et al. (1979) and Jobson and Korkie (1980) also analyze shrinkage estimators for
the mean-variance frontier. Ledoit and Wolf (2003) develop shrinkage covariance matrix
estimators that are useful for a large number of assets. Lutgens (2004) summarizes some
of the literature. Mori (2004), Ter Horst et al. (2006), and Kan and Zhou (2007) analyze
both analytically and numerically the performance of various estimators. In addition, Kan
and Zhou (2007) propose a new three-fund strategy, with investments in the risk-free asset,
sample tangent portfolio, and sample global minimum variance portfolio,

x̂
KZ = T − n − 2

γ c1T

[
η̂�̂−1μ̂ + (1 − η̂)μ̂g�̂

−11n

]
,

where η̂ = ψ̂2/(ψ̂2 + n/T ), ψ̂2 = (μ̂ − μ̂g1n)
��̂−1(μ̂ − μ̂g1n), μ̂g = μ̂

�
�̂−11n/1�

n �̂−11n

and c1 = (T − 2)(T − n − 2)/((T − n − 1)(T − n − 4)). Economically, the rule adds the
sample global minimum variance portfolio as an investable fund to diversify the estimation
risk. Mathematically, the rule is analytically obtained by maximizing the expected utility
function in the choice set of convex combinations of the sample tangent and sample global
minimum variance portfolios. Zhou (2008) applies the result to analyze the fundamental law
of active management in the presence of estimation errors.

Despite the innovations in new rules, DeMiguel et al. (2008) and Duchin and Levy (2009)
show that, due to estimation errors, existing theory-based portfolio strategies are not as good
as we once thought, and the estimation window needed for them to beat the naive 1/n rule
(that invests equally across n risky assets) is too long to be of practical use. Tu and Zhou
(2008) explain that the better performance of the 1/n rule is because the capital asset pricing
model (CAPM) is a good model, and because it holds the market portfolio when the sum
of the betas being equal to one and when the CAPM holds. Although the 1/n rule has zero
variance, it is biased. Tu and Zhou (2008) further combine it with the Kan and Zhou three-
fund rule,

x̂s = (1 − v)
1

n
1n + vx̂

KZ
.

This rule makes an optimal tradeoff between bias and variance. As it turns out, this seems
to be the best rule to date, and is the only theory-based investment strategy that works well
across models and real data sets. In contrast, existing rules, as reported in Tu and Zhou
(2008), can lose money on a risk-adjusted basis when applied to real data sets.
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5 Bayesian approach

Zellner and Chetty (1965) provide a general framework for handling the parameter uncer-
tainty problem in the Bayesian set-up. Brown (1976, 1978), Klein and Bawa (1976), and
Jorion (1986) are earlier Bayesian studies on the portfolio selection problem that account
for parameter uncertainty. Bawa et al. (1979) provide an extensive survey of the related re-
search in the 1970s. In the Bayesian framework, the unknown parameters, such as x∗, are
regarded as random variables. Given a prior on the distribution of μ and �, uncertainty about
the parameters is summarized by the posterior distribution of the parameters conditional on
the observed data. Integrating out the parameters over the posterior distribution gives the
so-called predictive distribution for future asset returns. The optimal portfolio weights are
then obtained by maximizing the expected utility under the predictive distribution, i.e.,

x̂
Bayes = argmaxx

∫
rT +1

u(x)p(rT +1|RT )drT +1

= argmaxx

∫
rT +1

∫
μ

∫
�

u(x)p(rT +1,μ,�|RT ) dμd� drT +1,

where u(x) is the utility of holding a portfolio x at time T + 1, p(rT +1|RT ) is the predictive
density, and

p(rT +1,μ,�|RT ) = p(rT +1|μ,�,RT )p(μ,�|RT ),

where p(μ,�|RT ) is the posterior density of μ and �. Thus the Bayesian approach maxi-
mizes the average expected utility over the distribution of the parameters. It is worth men-
tioning that the Bayesian framework handles non-quadratic objectives, of which Harvey et
al. (2003) provide an excellent example of a utility with higher moments. For a complete un-
derstanding of Bayesian decision making, Berger (1985) and Rachev et al. (2008b) provide
an introduction.

Brown (1976), Klein and Bawa (1976), and Stambaugh (1997) show that, under the dif-
fuse prior on μ and �,

p0(μ,�) ∝ |�|− n+1
2 ,

the predictive distribution of the asset return follows a multivariate t -distribution if the re-
turns are normal. It then follows that the Bayesian solution to the optimal portfolio weights
has the same formula as for x∗, except that now the parameters have to be replaced by their
predictive moments, yielding

x̂
Bayes = 1

γ

(
T − n − 2

T + 1

)
�̂−1μ̂.

The Bayesian weights differ from the unbiased estimator of the weights only by a small
factor of T/(T + 1).

The real advantage of the Bayesian approach is its ability to utilize an investor’s prior.
Kandel and Stambaugh (1996) show that incorporating return predictability plays an im-
portant role in portfolio decisions. In particular, they show that a statistically insignificant
predictability can be economically significant. To see how the idea works, consider the case
in which one predictive variable, say the dividend yield denoted as DY, is used in the pre-
dictive regression such that

r t = μ0 + μ1DYt−1 + ν t .
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To reflect a certain degree of predictability, we use a simple normal prior for μ1,

p0(μ1) ∝ N
[
μ

p

1 , σ 2
P

(
1

s2
RR

�RR

)]
,

where μ
p

1 is the prior mean on μ1, σ 2
P measures the uncertainty about predictability, and

s2
RR is the average of the diagonal elements of �RR (the asset covariance matrix). Assum-

ing a suitable prior on all other parameters, we have a complete prior that is informative on
predictability. Xia (2001) adapts this framework in continuous time, while Barberis (2000)
extends this framework for long-run investment. Avramov (2004) generalizes it further to
account for both parameter and predictability uncertainties, in addition to the model mis-
pricing below.

Pástor (2000) and Pástor and Stambaugh (2000) introduce a class of interesting priors
that reflect an investor’s degree of belief in an asset pricing model. To see how this class of
priors is formed, consider the market model regression

r t = α + Brmt + ut ,

where ut are the residuals with zero means and a non-singular covariance matrix �. To
allow for mispricing uncertainty, Pástor (2000) and Pástor and Stambaugh (2000) specify
the prior distribution of α as a normal distribution conditional on �,

α|� ∼ N

[
0, σ 2

α

(
1

s2
�

�

)]
,

where s2
� is a suitable prior estimate for the average diagonal elements of �. The above

alpha-sigma link is also explored by MacKinlay and Pástor (2000) in the classical frame-
work. The magnitude of σα represents an investor’s level of uncertainty about the pricing
ability of a given model. When σα = 0, the investor believes dogmatically in the model and
there is no mispricing uncertainty. On the other hand, when σα = ∞, the investor believes
that the pricing model is entirely useless. Therefore, the framework provides a useful tool to
assess the value of an asset pricing model. They find that asset pricing models can serve as
useful priors for making much better investment decisions.

The well-known Black and Litterman (1992) model is an ad hoc Bayesian approach that
is based on an equilibrium asset pricing relation. While this model has many applications
(e.g., Fabozzi et al. (2006) incorporate various trading strategies into the model), it differs
from the usual Bayesian analysis by ignoring the data-generating process. However, Zhou
(2009) shows that this problem can be fixed, so that allowing Bayesian learning to exploit
all available information—the market views, the investor’s proprietary views as well as the
data. In this way, practitioners can combine insights from the Black-Litterman model with
the data to generate potentially more reliable trading strategies and more robust portfolios.

Tu and Zhou (2009) explore yet another class of priors based on economic objectives.
Intuitively, an investor should have some idea about the range of the optimal solution (though
it can be wide). Combining this with the first-order conditions of the utility maximization
problem, the associated prior on the parameters can be formed, which is objective-based. As
it turns out, this type of priors perform very well as compared with other priors.

Finally, it should be pointed out that, although the above studies assume a true data-
generating process, the Bayesian framework is well suited to address portfolio strategies
robust to models and data-generating processes. Wang (2004) analyzes Bayesian shrink-
age estimators. Tu and Zhou (2004) and Kacperczyk (2007) demonstrate how uncertainties
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about data-generating processes can be incorporated to make robust Bayesian investment
decisions. The Bayesian model averaging is a quite general decision tool under various
uncertainties, of which the parameter and model uncertainties are special cases. Cremers
(2002) and Avramov (2004) apply it to aggregate predictive information across non-nested
models.

6 Open issues

We conclude the paper by asking some of the important open questions. While the literature
on robust portfolios from operations research is abundant and insightful, there is in general
a lack of empirical studies on how the methods work with real world applications. Under
practical constraints on positions, leverage, factor exposures and the like, the well under-
stood mean-variance portfolio theory is widely applied as part of the quantitative strategies
by portfolio managers (see quantitative investment books, Grinold and Kahn 2000; Chincar-
ini and Kim 2006; Qian et al. 2007; and Fabozzi et al. 2007). As more studies focus on the
empirical aspects, it will be a matter of time before the robust portfolios reviewed here will
become as indispensable as the mean-variance framework.

There should also be more interactions between the operations research and finance liter-
atures. Most of the financial studies focus on the underlying data-generating processes and
their estimations, and often ignore the important ideas and methods from operations research
from which they can benefit greatly. On the other hand, much of the operations research lit-
erature takes as given the estimates in applications, without modeling or taking into account
of the economic forces that drive the data-generating process. In addition, it rarely stud-
ies simultaneously both the optimal estimation and the associated robust strategies. That is,
rather than estimate the parameters first and then compute the optimal portfolio, we can re-
alize this in one step by estimating the portfolio weights directly (see Aït-Sahalia and Brandt
2001 and DeMiguel and Nogales 2008 for example). Moreover, the literature seldom makes
full use of available asset pricing models. By reviewing both strands of literature together,
we hope there will be more future studies that can combine insights from both areas.

A final issue is that existing studies from both operations research and finance are pri-
marily focused on the one-period model. In practice, the multi-period decision has to be
considered for time-varying investment opportunities and business cycles. There are virtu-
ally no robust portfolio studies in the multi-period set-up with a large number of assets. This
is another important direction waiting for future research.
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