Robust Position and Velocity Estimation Methods in Integrated Navigation Systems for Inland Water Applications

D. Arias-Medina, M. Romanovas, I. Herrera-Pinzón, R. Ziebold

German Aerospace Centre (DLR)

IEEE/ION PLANS 2016

Integrated Inertial Navigation

13. April 2016

- **♦** Introduction
 - Motivation
 - Objectives
- ♦ Methods
 - Robust Estimation
 - Sensor Fusion
- ♦ Tests and Results
- ♦ Summary and Outlook

source: www.waterways-forward.eu

- **♦** Introduction
 - Motivation
 - Objectives
- ♦ Methods
 - Robust Estimation
 - Sensor Fusion
- ♦ Tests and Results
- ♦ Summary and Outlook

source: www.waterways-forward.eu

- Maritime transport is the backbone of international trade and the global economy:
 - ∼80% global trade by volume is made by sea
 - Around 400 Mio. passengers move through European ports each year

Nautical Transport Systems are essential for the global economic development, competitiveness and prosperity

Unfortunately...

The number of shipping accidents is not decaying over the years

source: www.maritimearticsegurity.ca

source: www.fyens.dk

source: www.abc.es

source: www.marinetraffic.com

- Kiel Canal: world busiest artificial waterway
- Collision of two medium-sized vessels at night
- Positioning systems on both vessels showed a safe passing-distance
- RADAR was not used

Global Navigation Satellite Systems (GNSS) are the cornerstone and main information supplier for Positioning, Navigation and Timing (PNT) in maritime systems.

- The performance of satellite based navigation can be easily disturbed due to space weather events, jamming, reflection of the signals, ...
- Classical positioning is solved applying a Least Squares (LS) method → single contaminated signal induce large errors in the position
- Receiver Autonomous Integrity Monitoring (RAIM) is the standard for GNSS fault detection but... it cannot handle multiple simultaneous faults!

source: www.nasa.gov

Satellite – based navigation lacks robustness:
 capability of a system to continue operating despite abnormalities

Objectives

What do we want?

Provide a reliable navigation solution mitigating GNSS faulty signals

What is the problem?

- ★ Multiple simultaneous faulty signals, specially in urban canyons or <u>waterways</u>
- Standard RAIM is not sufficient.

What is our solution?

- Implementation of <u>robust estimators</u> for the positioning problem
- Integration of these algorithms within an inertial + satellite based navigation

- ♦ Introduction
 - Motivation
 - Objectives
- ♦ Methods
 - Robust Estimation
 - Sensor Fusion
- ♦ Tests and Results
- ♦ Summary and Outlook

source: www.waterways-forward.eu

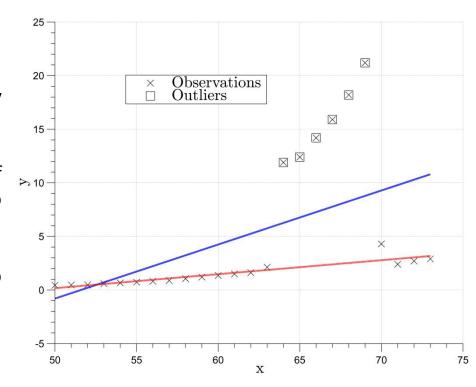
Robust Estimation

- GNSS positioning problems are generally solved → LS estimator
- In a LS, it is assumed that the noises are Gaussian...

But this is often not the case!

Clue definitions

- Outliers observations that appear unusually large or small and "out of place"
- Breakdown Point ϵ^* smallest percentage of contaminated data that can cause the estimator to take arbitrarily large values
- Gaussian Efficiency similarity of a method to classical LS under Gaussian conditions



Robust Estimation

 Overpassing the limitations of LS for regression has concerned mathematicians and engineers for years...

Iteratively Reweighted Least Squares (IRLS)

- Full set approach and observations are used to compute solution, observations with large residuals are downweighted
- Appealing implementation for its similarity to regular LS $\frac{1}{min} \sum_{i=1}^{n} w(x_i) \rho\left(\frac{r_i}{w(x_i)\hat{\sigma}}\right), \qquad \epsilon^* = \frac{1}{n+1}$ Gaussian efficient
- Breakdown point ϵ^* not very high $\min s(r_1, \dots, r_n)$, $\epsilon^* = (\frac{1}{2} p + 2)/n$

Best Subset Selection

- Bottom up approach \rightarrow from nobservations, $\binom{n}{p}$ subsets are made \blacktriangleright Least Median of Squares (LMS)
- The solution is checked using the observations not taking part in the solution

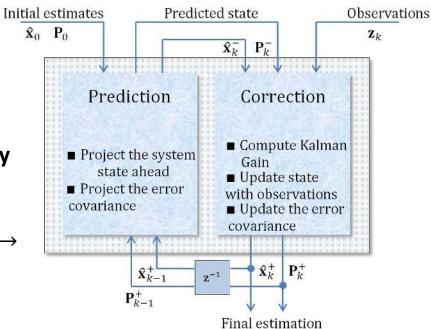
 Least Trimmed of Squares (LTS)
- The best subset is the one to min (r) and the cost function minimize maximize the cost function
- Breakdown point ϵ^* up to 50%
- Low Gaussian efficiency

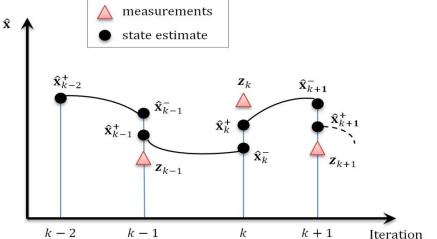
There are also other approaches...

Receiver Autonomous Integrity Monitoring (RAIM)

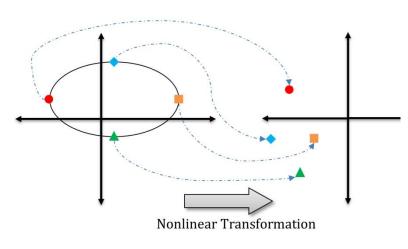
Kalman Filtering for Sensor Fusion

- Standard approach for multi-sensor fusion and navigation
- Incorporate of all the available information (uncertainties, noise statistics, dynamical models, kinematic constraints) in a statistically consistent way
- Kalman Filter (KF) is valid for linear problems →
 Extended & Unscented KF (UKF, EKF)

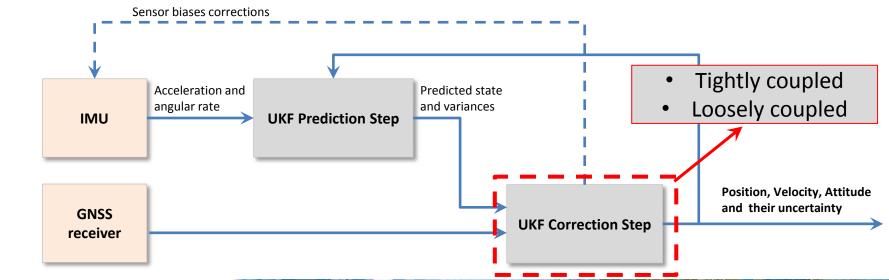




UKF for IMU/GNSS Navigation



- The state is represented by a set of sigma points → propagated through the nonlinear functions
- The mean and covariance of the solution are reconstructed back from the sigma points
- Attention: this is not a Monte Carlo method!



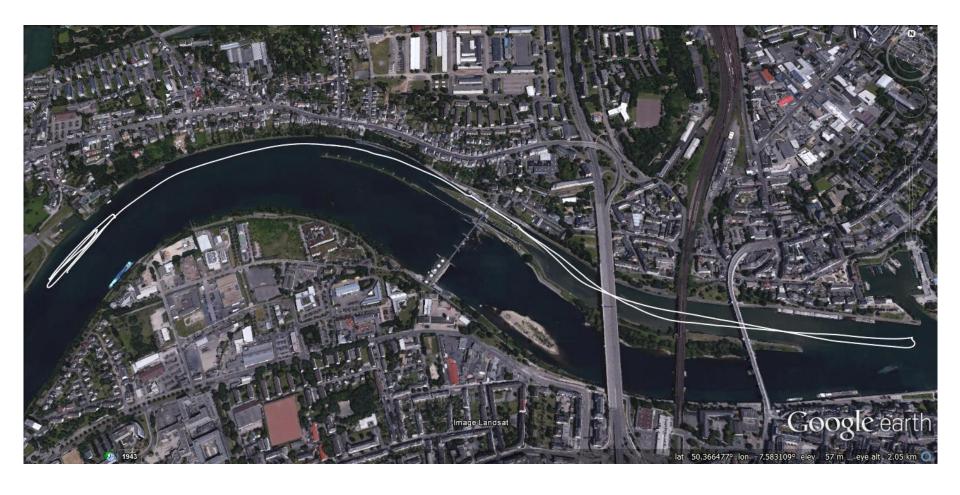
- ♦ Introduction
 - Motivation
 - Objectives
- ♦ Methods
 - Robust Estimation
 - Sensor Fusion
- ♦ Tests and Results
- ♦ Summary and Outlook

source: www.waterways-forward.eu

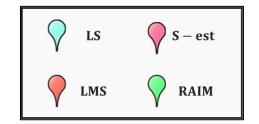
Experiment Setup

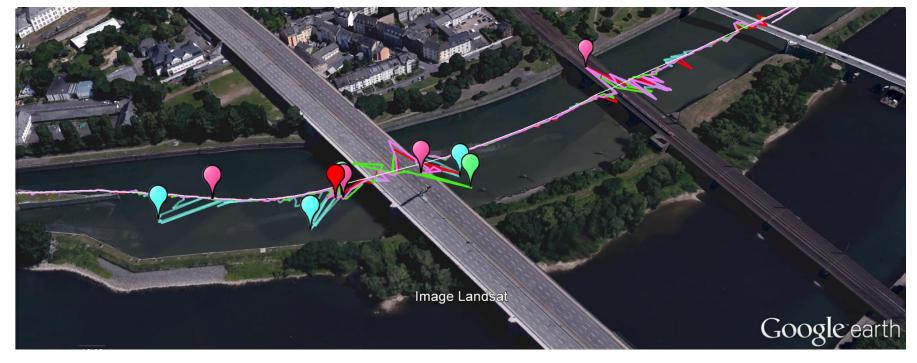
- The test scenario is the Moselle River in Koblenz (Germany)
- Vessel "MS BINGEN" performed 8 shaped trajectory passing under the bridges Equipment of vessel:
 - 3x GNSS antennas, update rate 1 Hz
 - 1x inertial sensors: gyroscope and accelerometer, update rate 200 Hz

Moselle River Scenario



Robust Method Comparison





Discussion on Robust Estimation

Statistics on the Robust Methods performance

Method	Mean [m]	RMS [m]	Max [m]
SPP	2.9	4.5	50.7
S	2.4	3.4	34.0
LMS	2.4	3.4	34.9
RAIM	2.3	3.0	45.4

- ✓ Robust techniques perform better than regular Single Point Positioning (SPP)
- ✓ The mean error is reduced and the maximum error is 15 m smaller

- LMS and S estimator have a similar performance but...
 - LMS requires higher computation
 - LMS has a low Gaussian efficiency

UKF Performance

- Comparison of the different UKF designs:
 - > Tightly Coupled UKF

State for the Tightly Coupled Architecture UKF

State	Covariance	Variable	Symbol	Coordinate System
1:4	1:3	Attitude Quaternion	q	From B-frame to ECEF
5:7	4:6	Velocity	v	ECEF
8:10	7:9	Position	p	ECEF
11:13	10:12	Gyroscope Offset	b_{ω}	B-frame
14:16	13:15	Accelerometer Offset	b_a	B-frame
17	16	Clock offset	$c\delta t$	-
18	17	Clock rate	$c\dot{\delta}t$	-

> Loosely Coupled UKF + a) classical LS b) robust scheme

State for the Loosely Coupled Architecture UKF

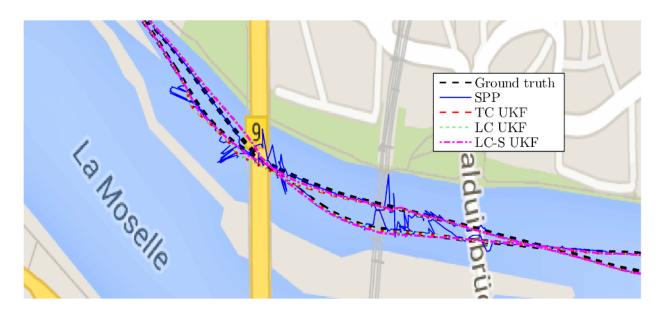
State	Covariance	Variable	Symbol	Coordinate System
1:4	1:3	Attitude Quaternion	q	From B-frame to ECEF
5:7	4:6	Velocity	v	ECEF
8:10	7:9	Position	p	ECEF
11:13	10:12	Gyroscope Offset	b_{ω}	B-frame
14:16	13:15	Accelerometer Offset	b_a	B-frame

UKF Performance Discussion

Statistics on the KF performance

Method	Mean [m]	RMS [m]	Max [m]
SPP	2.9	4.5	50.7
TC UKF	3.0	3.8	18.3
LC UKF	3.0	3.70	17.0
LC-S UKF	2.3	2.6	9.1

- ✓ Kalman filtering provides a smooth position solution → largest errors are eliminated
- ✓ The inclusion of robust estimator →
 significant improvement in the position
 error



- ♦ Introduction
 - Motivation
 - Objectives
- ♦ Methods
 - Robust Estimation
 - Sensor Fusion
- ♦ Tests and Results
- ♦ Summary and Outlook

source: www.waterways-forward.eu

Conclusions

- Review on the techniques for GNSS fault mitigation
- Integrated navigation fusing IMU+GNSS sensors using UKF
- Evaluation of the algorithms using real data
 - Promising performance improvement vs. classical LS
 - ✓ Great benefits of the use of robust schemes + KF

Future Work

- Extension to Multi antenna, Multi constellation, Multi frequency (MMM)
- Robust schemes lack any kind of integrity monitoring → user gets warned if position estimation is not reliable
- Implementation of the robust estimation in the tightly coupled UKF

