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Abstract—This paper presents a Bayesian approach to the de-
sign of transmit prefiltering matrices in closed-loop schemes ro-
bust to channel estimation errors. The algorithms are derived for
a multiple-input multiple-output (MIMO) orthogonal frequency
division multiplexing (OFDM) system. Two different optimization
criteria are analyzed: the minimization of the mean square error
and the minimization of the bit error rate. In both cases, the trans-
mitter design is based on the singular value decomposition (SVD)
of the conditional mean of the channel response, given the channel
estimate. The performance of the proposed algorithms is analyzed,
and their relationship with existing algorithms is indicated. As with
other previously proposed solutions, the minimum bit error rate al-
gorithm converges to the open-loop transmission scheme for very
poor CSI estimates.

Index Terms—Channel state information, diversity, fading
channels, feedback, joint transceiver optimization, linear pre-
coding, MIMO channels, OFDM, power allocations, wireless
communications.

I. INTRODUCTION

I T is well known that the knowledge of the channel response
at the transmitter can be used to improve the performance of

digital communications systems, both in the case of single an-
tenna [1] or multiple antenna transmission [2]. This has lead to
the design of closed-loop schemes where the receiver predicts
and estimates the channel response and feeds back this infor-
mation to the transmitter (e.g., [3]) so that one can adapt the
modulation and the channel code of the transmitted signal ac-
cording to the channel response. In this context, the application
of orthogonal frequency division multiplexing (OFDM) mod-
ulation and the design of the transmitter based on the singular
value decomposition (SVD) of the channel is particularly con-
venient since it can allocate power or bits on a subcarrier basis.

The problem of power allocation for single and multiple an-
tenna transmission in fading channels has been widely studied in
the literature under a variety of criteria, including zero-forcing
(ZF) and minimum mean square error (MMSE) schemes [4],
[5], maximum information rate [6], and minimum bit error rate
(BER) [7], [8], providing, in all cases, a design based on the
SVD of the channel estimate. However, all these algorithms, as-
sume that the channel is perfectly known at the transmitter. This
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hypothesis does not hold in real systems since neither the trans-
mitter nor the receiver have access to ideal channel state infor-
mation (CSI). The errors in the channel estimates can be orig-
inated from several sources, including the estimation variance
due to noise, the time lag between channel estimation/predic-
tion and its use for transmitter design, and the quantization error
in the feedback channel. While the first one is common to the
transmitter and the receiver, the second and third ones only ap-
pear in the transmitter. Thus, depending on the pace of channel
variation and depending on the dimensioning of the feedback
channel, the channel uncertainty at the transmitter can be larger
than that one at the receiver, but in any case, none of them will
have perfect CSI.

If the errors in the CSI are not taken into account in the
transmitter design, the performance of the closed-loop algo-
rithm will degrade and, eventually, may get worse than that
one of open-loop transmission. Thus, the potential of linear pre-
coding can only be fulfilled when the reliability of the channel
estimates is considered in the cost function [9]. The design of
algorithms that take into account partial knowledge of the CSI
is still an open question. The previous contributions to this topic
can be grouped into two categories: a first group that considers
imperfect estimates of the channel impulse response to design
the transmitter [7], [10] and a second group that designs op-
timal transmitter schemes based only on the knowledge of the
channel statistics [7], [11]. The major contribution in [7] was the
design of wideband signaling schemes under a minimum BER
criterion. It was shown that when perfect CSI is available at the
transmitter, a beamformer focused to the most dominant channel
mode achieves the optimal solution, whereas a set of linearly
independent signature codes that transmit on all channel modes
are required when CSI is poor. See [10] and [11] for the design
of linear precoders for space-time coded systems.

This paper proposes a Bayesian approach to design the op-
timal linear transformation when the channel estimates at the
transmitter are noisy. Unbalanced CSI quality between the trans-
mitter and the receiver is assumed. We do this by introducing the
idea of the a priori design as the design carried out at the trans-
mitter and based on the predicted channel at this side and the
a posteriori design as the design carried out at the receiver and
based on the updated CSI from the observation of the channel
output. Two algorithms are proposed to allocate the available
power across all subcarriers and channel modes in a multiple-
input multiple-output (MIMO) OFDM channel: The first one
minimizes the mean square error (MSE), whereas the second
one follows a minimum BER criterion. As will be shown in Sec-
tions II–V, the Bayesian formulation leads to a design based on
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Fig. 1. Block diagram of the proposed MIMO OFDM system.

the SVD decomposition of the “equivalent channel,” that is, the
result of averaging the channel estimate over the channel uncer-
tainty. Both criteria lead to closed-form solutions whose com-
plexity is similar to their nonrobust counterparts, although in the
case of the BER optimization criterion, some constraints must
be introduced. Besides, the algorithm for minimum BER can
be regarded as a transmitter design that adapts automatically to
the channel knowledge, moving from the open-loop scheme (the
same power is allocated across all subcarriers and antennas) to
the closed-loop scheme, according to channel uncertainty. This
feature is in common with the results in [7], [10], and [11].

The proposed algorithms can accept different transmission
rates; therefore, they can use the space diversity to improve
channel reliability or to increase the transmission rate. The
formulation is quite general, encompassing the single antenna
transmission, the beamforming schemes, and the frequency
flat-fading channels as particular cases.

The paper compares the proposed algorithms in terms of un-
coded BER and coded BER for different degrees of CSI relia-
bility. In order to focus the comparison on the different designs
proposed for the transmitter, a maximum likelihood (ML) re-
ceiver has been always used. Note that the design of the pre-
filtering matrices does not take into account the channel coding
stage, even though, for the sake of completeness, the perfor-
mance of the proposed algorithms has been compared in terms
of coded BER for the particular channel code described in the
HIPERLAN/2 standard.

The paper is organized as follows. First, the system architec-
ture under analysis and the channel model are described in Sec-
tion II. Afterwards, the two proposed algorithms are presented
in Sections III and IV following the same structure: derivation
of the cost function, closed-form solution, and asymptotic anal-
ysis of the solution for very high and very low uncertainty. Their
performances are evaluated in Section V, and some conclusions
are drawn in Section VI. Finally, some mathematical develop-
ments are detailed in Appendixes A–C.

The following notation is used in the paper. Superscripts ,
, , and stand for matrix transpose, matrix conju-

gate transpose, matrix conjugate, and matrix pseudoinverse, re-
spectively. Uppercase and lowercase boldface denote matrices
and vectors, respectively. The scalar denotes the th ele-
ment of vector . The symbols , , , Tr , and

stand for the stacking vectorization operator, the Kro-
necker product, the Euclidean norm of a vector, the trace oper-
ator, and the determinant of a matrix, respectively.

II. PROBLEM STATEMENT

A. System Model

This section describes the signal model for an MIMO OFDM
communications system over a frequency-selective fading
channel, as shown in Fig. 1. The MIMO configuration consists
of transmit antennas and receive antennas. denotes
the number of symbols to be transmitted per subcarrier that is
bounded by , and is the total number
of subcarriers.

Let be the vector containing the symbols
that are simultaneously transmitted in the OFDM symbols
(i.e., one OFDM symbol per antenna). The data are assumed to
be i.i.d. symbols in a constellation of cardinality ,
with zero mean and variance . If the channel
keeps invariant within one OFDM symbol and the cyclic prefix
(whose length is appropriately chosen) is removed at the re-
ceiver, the system model can be written in the frequency domain
as

(1)

where is a block diagonal channel matrix con-
taining the frequency responses of the MIMO channels, is a

matrix that denotes the linear precoder matrix and
allocates the power across the subcarriers and antennas,

is a matrix that combines the signal received
at the antennas, and is the noise vector after the
FFT, which has the same Gaussian statistic as its time-domain
counterpart (i.e., zero mean and covariance ).

The frequency-selective MIMO channel can be decoupled
into MIMO frequency-flat channels by imposing a certain
structure in the transmitter and receiver matrices. As shown in
Fig. 1, the linear transformations and are split into sub-
matrices that process each subcarrier independently. Hence, ,

, matrices and , vectors involved in (1) can be structured
as

diag

diag

diag

(2)

where , , and are, respectively, , ,
and matrices processing the th subcarrier and ,
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are vectors containing the transmitted and received
symbols by the th subcarrier through the different antennas.
Following the structure in (2) the input–output relation in (1) is
rewritten as a set of equations that contains only one subcarrier
each:

(3)

The architecture proposed in (3) is the basis for the study in
this paper. Note that the block diagonal structure proposed for
the linear transformations and in (2) has the advantage
of providing a scheme where the spatial prefiltering matrix is
applied individually to each subcarrier, reducing to the classic
OFDM scheme when only one antenna is used at the transmitter.
It is worth mentioning that the receiver filtering matrix has
been included in the model for the sake of completeness and
because it is required in the design of the minimum MSE algo-
rithm, although the simulation results presented in the paper do
not implement it because a ML detector was used to make a fair
comparison of the proposed algorithms. This issue is reviewed
in Section III when the cost function for minimum MSE is ad-
dressed.

The block diagram in Fig. 1 incorporates a convolutional en-
coder and an interleaver at the transmitter, and a Viterbi decoder
at the receiver, that correspond to the channel coding stage. Al-
though this stage has not been taken into account in the design
of and matrices, it has been incorporated in the model
to evaluate the performance of the proposed algorithms in terms
of coded BER.

During subsequent developments, it will be useful to store
the complete channel response in a vector. The MIMO channel
response for the th subcarrier and for the multicarrier system
will be denoted and , respectively

vec

(4)

According to this new notation and making use of the identity
[12]

vec vec (5)

the received vector for the th subcarrier can be rewritten as

(6)

where the matrix is defined as

(7)

B. Channel Model

This section introduces the model for the channel response
and channel estimates used to design and simulate the power
allocation algorithms. The propagation channel is modeled as
a fading channel with uncorrelated coefficients for all taps in
the impulse response and identical power delay profile for all
subchannels. This model encompasses the Rayleigh fading and

Ricean fading channels as particular cases. For the sake of com-
pleteness, spatial correlation is considered in the channel model
and is also introduced into the formulation of the algorithms, al-
though the uncorrelation assumption will be required to derive
closed-form solutions for the proposed algorithms. The channel
vector is modeled as a multivariate Gaussian process with
mean and covariance

(8)

where is the antenna correlation matrix, and is the circulant
matrix built as an Hermitian Toeplitz matrix whose first row is
the DFT of the variance in the channel impulse response coeffi-
cients, which is assumed to be known.

The design of the linear precoder in the presence of channel
estimation errors requires the definition of a model for the esti-
mated channel . It will be assumed that the channel estimation
error can be modeled as an additive term

(9)

where , and .
This model includes CSI errors both at the transmitter and at

the receiver. The transmitter may update CSI based on a feed-
back link and the prediction of the future channel state from pre-
vious CSI when channel is time-varying [3]; thus, the feedback
delay and the prediction error are the most important causes of
imperfect channel estimates at this side. At the receiver side,
the degradation of channel estimate quality is mainly caused by
the additive noise. These sources of CSI degradation can be col-
lected in the channel estimation error , which is modeled as a
zero mean Gaussian process independent of the true channel
and with covariance matrix

(10)

where matrix , with the same structure as matrix in (8),
contains the DFT of the variance of the channel estimation error
for each tap, and it is also assumed to be known.

The Bayesian approach adopted in this paper relies on the
hypothesis that the channel and its estimate are jointly
Gaussian. Under this assumption, the statistics of given are
also Gaussian with mean and covariance given by [13, p. 324]:

(11)

In our case, following (8)–(10), the conditional mean becomes

(12)

where [12] has been used.
In the same way, using twice the same identity, the covariance
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matrix that gives a measure of the degree of the channel
uncertainty can be expanded as

(13)

In the particular case of uncorrelated antennas (i.e., ),
the conditional mean and conditional covariance expressions re-
duce to

(14)

(15)

Sections II-C and D will focus on the conditional covariance
for a specific subcarrier under the hypothesis of uncorrelated
antennas. In that case, matrix is given by

(16)

where subindex refers to the th element. Recalling
the circulant structure of the and matrices, all the elements
in the diagonal of are equal, and thus, the con-
ditional covariance is the same for all subcarriers:

(17)

where is an scalar whose value depends on and . The
asymptotic values when channel is perfectly known and when it
is completely unknown are

Perfect CSI at the Transmitter
No CSI at the Transmitter. (18)

C. Equivalent Channel

A detailed analysis of (14) shows that the conditional mean
can be understood as an equivalent channel that exploits the cor-
relation between subcarriers and the channel uncertainty struc-
ture to mitigate the degradation due to CSI errors. We will de-
note this equivalent channel as . Assuming uncor-
related antennas, the equivalent channel for a particular subcar-
rier can be expressed as a linear combination of the mean and
channel estimates for all subcarriers:

(19)

where and are the th elements of vectors and
, respectively

(20)

and vectors and are the th rows of and matrices,
respectively. The weighting vectors and exploit the sub-
carrier correlation structure defined by the power delay profile
to mitigate the mismatch between the real and the estimated
channels. Note that when perfect channel knowledge is avail-
able (i.e., matrix ), the coefficients are all zero, and

, leading to the equivalent channel:
. In all other cases, the coefficients and weight

vectors and for all subcarriers to reduce the uncer-
tainty in the specific th subcarrier. The asymptotic values when
channel is perfectly known and when it is completely unknown
are

Perfect CSI at the Transmitter
No CSI at the Transmitter.

(21)

Hereafter, we will refer to the equivalent channel in any of its
two forms: , and its SVD will be denoted as

(22)

D. Unbalanced CSI Between the Transmitter and the Receiver

Some algorithms, as will be the case of the minimum mean
square error criterion, allow the design, in a single step, of the
linear transformations and when the same imperfect CSI
is assumed at both sides of the link. However, when the CSI
quality is unbalanced between the transmitter and the receiver,
there is no way to introduce, into the transmitter cost function,
different levels of CSI. Alternatively, we divide the design in
two steps. A first step is carried out at the transmitter, which
we will call the a priori design, and whose aim is to design the
transmitter matrix based on the prediction of the channel
impulse response, aided from the receiver by means of the feed-
back channel link [3], before the signal is actually transmitted.
A second step carried out at the receiver and called the a poste-
riori design, whose aim is to design the optimal receiver based
on the channel knowledge at the receiver and the specific linear
transformation once the transmitted signal has been received
and the CSI has been updated.

III. MMSE DESIGN

This section aims at designing the linear transmitter that
minimizes the mean square error (MSE) at the output of the
linear receiver subject to an average power constraint across
all subcarriers and antennas when channel estimates are noisy.
The MMSE cost function requires a linear receiver that im-
plicitly assumes that the same CSI quality is available at the
transmitter and at the receiver. However, in most cases, the CSI
quality in unbalanced, and thus, the linear transformations
and cannot be designed in a single step. Hence, this sec-
tion, focusing on the a priori design, introduces into the opti-
mization problem a linear receiver that is never used at the
receiver. The a posteriori design, which designs the optimal re-
ceiver based on the ML receiver, is described in Section V.
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The optimization criterion is

subject to Tr

(23)
where the expectation in (23) is computed over the additive
Gaussian noise , the discrete-time sequence , and the true
channel impulse response given the channel estimate at the
transmitter . For the sake of generality, it is first assumed that
the transmitted symbols are known, which is a realistic assump-
tion when training sequences are used, and the purpose is to im-
prove the channel estimation [i.e., in data-aided (DA) schemes],
and the result is later averaged over the vector to extend the
solution to schemes where the transmitted sequences are not
known at the receiver.

Under the previous premises, the design of matrices and
given a transmitted sequence and a channel estimate

is done by minimizing

(24)

subject to the average power constraint. Note that this mini-
mization problem differs from those proposed in [4] and [14] on
the conditional expectation , which mitigates the im-
pact of the channel uncertainty on the algorithm performance,
providing a robust design that adapts to the channel estimation
quality.

A. Cost Function

This section expands the cost function in (24), making use of
the conditional mean and conditional covariance given in (12)
and (13). Assuming that the transmitted symbols are known, it
can be shown that the robust cost function for th subcarrier is

-

Tr Tr (25)

According to (4) and (7) and applying the identity (5), the contri-
bution of the th subcarrier to the cost function can be rewritten
as

-

Tr Tr (26)

and the optimization criterion is finally expressed as

- subject to Tr (27)

This cost function is only useful when sequence is known
at the receiver; however, in most cases, the transmitted sym-
bols are not known. Hence, when only the statistics of the trans-
mitted symbols are known at the receiver, the expectation over
the transmitted sequence allows the design of the optimal linear
transformations and independently of the specific infor-
mation symbols. Computing the expected value of (27) over the

transmitted data, the contribution to the robust cost function of
the th subcarrier becomes

Tr

Tr

Tr (28)

and the whole cost function is finally expressed as

subject to Tr (29)

It is interesting to analyze the similarities between the derived
expression and the cost function appearing in the nonrobust so-
lution in [4] and [14], where the MSE for the th subcarrier is
written as

Tr

Tr (30)

The nonrobust cost function, as shown in (30), contains two
terms: The first one is a measure of the ISI, whereas the second
one introduces into the cost function the contribution of the
noise. Note that the residual ISI and the noise also appear in
the robust cost function derived in (28), but there, the channel
estimate has been replaced by the equivalent channel .
Thus, the robust cost function exploits the correlation between
subcarriers to mitigate the channel uncertainty, improving its
performance. A second difference between the robust and the
nonrobust solutions is the third term in (28) that does not ap-
pear in (30). As the covariance matrix is a measure of
the channel estimation error, the third term introduces into the
score function the mismatch between the real and the estimated
channel due to the estimation errors.

B. Closed-Form Solution

A solution for the optimization of (28) can only be obtained
by means of numerical techniques. Unfortunately, a closed-form
solution is feasible only for uncorrelated antennas. Hence, in
this section, we will assume that the channel is spatially uncor-
related. Substituting (17) into (28), the cost function simplifies
to

Tr

Tr Tr Tr (31)

In Appendix A, it is shown that the cost function in (31) is min-
imized when the and matrices have the following struc-
ture according to the SVD of the equivalent channel matrix
(22) for each subcarrier:

(32)

where is a diagonal matrix that sets the power distribution
policy (the square of its elements define the power al-
located to each channel mode), and is also a diagonal ma-
trix applied to the symbols at the channel output. According to
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(32), the function to minimize, including the average power con-
straint, becomes

Tr

Tr

Tr Tr

Tr (33)

where is the Lagrange multiplier.
The optimum elements in the diagonal matrices and

can be found differentiating the cost function with respect to the
matrices and and equating it to zero. Thus, the following
set of equations is obtained:

Tr

Tr

(34)

In order to solve this equation with respect to the matrices
and and the Lagrange multiplier , the first step is to multiply
first equation by the matrix and second equation by the the
matrix to get the following identity:

Tr

Tr (35)

From this point, can be solved as

Tr (36)

Replacing into (35), the next relation between the diagonal
matrices and is derived:

(37)

where is a scalar that must be found. Substituting (37) in
(35), it can be seen that the identity is only accomplished when
the scalar is constant for all subcarriers, i.e., .

Introducing (36) and (37) into (34), and after some manipu-
lations, it is straightforward to verify that both equations in (34)
collapse to one:

Tr (38)

For each subcarrier, this equality provides a set of equa-
tions that are linear on the unknowns given by the el-
ements of the diagonal matrix and the scalar . Hence,
all the unknowns can be found when simultaneously solving the

sets of equations given by (38) combined with the power
constraint. Alternatively, their resolution can be simplified by
solving the problem for each subcarrier in two stages, as shown
next.

First, (38) is solved for each subcarrier, where we have (39),
shown at the bottom of the page, where is the th singular
value of matrix. If the diagonal terms of matrix are
stored in vector , and matrix is defined, the set of equations
can be written as

(40)

where vector stands for the all-ones vector. The solution to the
set of equations can be found as the summation of the particular
solution given by (40) and the kernel of matrix :

(41)

where is a vector spanning the null-space of matrix , and
the scalar is an arbitrary constant. Afterwards, the values for
the constant are found by solving a second set of equations,
including the power constraint

(42)

Notice that the power allocated to each subcarrier in vector
should satisfy . If any of the components obtained

when solving (41) were negative, the power allocated to that
subcarrier should be set to zero , and the described
procedure should be repeated for the rest of subcarriers until all
the elements in vector satisfy .

C. Asymptotic Performance

In this section, the robust MMSE algorithm is analyzed for
the extreme cases where the uncertainty is very high or very
low. When channel knowledge at the transmitter is perfect, i.e.,
when and [see (18) and (21)], the robust cost

. . .
...

...
. . .

...
...

...
...
...

(39)
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function in (28) converges to the nonrobust solution in (30), and
therefore, both coincide. When the channel uncertainty is very
high, the MMSE design is meaningless since the design is based
on the assumption that neither the transmitter nor the receiver
know the channel.

IV. MINIMUM BER DESIGN

This section proposes the a priori design for the set of
linear precoder matrices that minimize the BER in an ML
receiver subject to an average power constraint. This algorithm
considers the reliability of channel estimation in the cost
function, adapting to the channel uncertainty and providing
a solution that goes from the configuration for open-loop to
the closed-loop with perfect CSI as estimation errors diminish
(in a similar way as [7] and [10]). The filtering matrix at the
receiver is set to the identity matrix since the BER
cannot be improved by means of a linear filtering stage at this
side. The design is formulated for the general MIMO OFDM
case, including single antenna transmission and beamforming
[7], [10] as particular cases.

The cost function to be optimized is described for a general
constellation of size , even though final equa-
tions are shown for the particular case of quadrature phase
shift keying (QPSK) modulation. In order to be able to derive a
closed-form solution, two main assumptions have been made.

A1) The receiver is operating at high SNR.
A2) The function can be approximated with small

error as (see Appendix B).

(43)

For a given channel realization , the BER for the ML re-
ceiver can be written in terms of the pairwise error probability
(PEP) of detecting symbol when the symbol was trans-
mitted:

BER

(44)

where denotes the number of bits that are different
in vectors and .

The robustness of the algorithm is obtained averaging the
BER over the channel uncertainty using a Bayesian formulation.
Hence, the optimization criterion subject to an average power
constraint across all antennas and subcarriers becomes

subject to Tr (45)

A. Cost Function

The pairwise error probability in (45) can be written in terms
of the Euclidean distance between the transmitted codewords

and as they appear at the receiver and is upper bounded
by

(46)

where vector contains the distance between
the codewords at the transmitter before the prefiltering. Under
assumption A2), the pairwise probability can be approximated
by the exponential function

(47)

This equation can be rewritten in a more compact form in order
to simplify the notation in the subsequent equations

(48)

where is the matrix defined as

...

...

(49)

and , is a square all zero matrix, is
the identity matrix, both of size , and is the identity
matrix of size .

The approximation in (47) simplifies the evaluation of the ex-
pectation over channel response, as shown next. Using the re-
sults in (14) and (15) to expand the Gaussian probability density
function (pdf) , the averaged PEP becomes

(50)

where , as defined in (19), denotes the equivalent channel
over all subcarriers. This integral can be easily solved rewriting
its integrand as

(51)

where

(52)
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The solution to the integral in (51) can be found by comparing its
integrand with a complex Gaussian pdf, whose integral equals
to one. Thus, the averaged PEP in (50) becomes

(53)

The optimization of this cost function for any spatial correlation
between antennas can only be obtained by means of numerical
techniques. The derivation of a closed-form solution for (53) is
feasible only when antennas are uncorrelated. Hence, the condi-
tional covariance will be hereafter specified for the partic-
ular case of uncorrelated antennas. Replacing and
by its values in (49) and (17), the function to minimize, subject
to a power constraint, becomes

(54)

where the identity (5) has been applied.

B. Closed-Form Solution

This section derives a suboptimal solution for the minimiza-
tion of (54). As the direct optimization of (54) leads to very in-
tricate equations, the minimization of the cost function has been
obtained under the assumption that the linear transformation at
the transmitter has the following structure:

(55)

where matrix contains the right singular vectors of the
equivalent channel matrix, is a diagonal matrix, and is a

unitary matrix whose properties are described next.
This configuration has been proved to be optimal for minimum
BER in a ZF receiver with perfect CSI [8] and can also be
shown to be optimal for minimum BER in a ML receiver when
multiple transmit antennas are used for beamforming (i.e., only
a single symbol is spreaded on all antennas for each subcarrier)
[15], but it has not been proved to be optimal when multiple
symbols are transmitted at the same time. However, there are
several reasons to support its choice. It keeps the same structure
as the MMSE solution and other papers published previously.
Besides, it leads to a simple closed-form design, as will be
shown next. Finally, from the point of view of BER minimiza-
tion, it can also be argued that the introduction of matrix
alleviates the main drawback of the use of matrices and :
the loss of space diversity caused by the decomposition of the
MIMO channel into a set of parallel multiplicative subchannels.
If and matrix is selected as the left singular vectors of
the equivalent channel matrix, then the MIMO channel reduces
to a set of parallel independent flat-fading subchannels:

(56)

so that the symbols corresponding to small values of
are systematically lost. In the context of frequency

flat Rayleigh fading channels, it was shown in [16]–[18] that the
receiver could benefit from the diversity of the fading channel,
provided the transmitter used a linear transformation that spread
the symbols in time, obtaining significant performance gains
both in terms of uncoded and coded BER. Similar conclusions
would be obtained here if the Rayleigh fading channel statistics
were replaced by those of the eigenvalues of the
matrix, but to the best of the authors knowledge, the statistics of
the eigenvalues of noncentral Wishart matrices are not known.
In this paper, the unitary matrix has been set to the DFT
matrix, given that it was shown in [17, eq. 17] that the DFT or
the Walsh–Hadamard matrices could provide the desired fading
diversity with minimum complexity, and besides, the same
condition was required for the design of the optimal matrix
in the ZF receiver [8, Lemma 1] and for the minimum MSE
design in a linear receiver [16, eq. 39].

Once the structure of has been set to (55), the design of
reduces to the design of matrix . This paper derives a closed-
form solution for the cost function resulting from (54) and (55)
for high SNR replacing the true BER by an upper bound, as
shown next. The proposed solution is optimum when .
When , this closed-form solution is suboptimum; hence,
a gradient algorithm [19] has been computed as a benchmark.

As a result of the application of Jensen’s inequality to the
convex function , Appendix C shows that the following
inequality holds for high SNR:

(57)

where equality applies if and only if the product matrix
is proportional to the identity matrix (ZF solution) or .
Therefore, if the true BER depending on is re-
placed by an upper bound depending on , an ex-
pression is obtained that does not depend on matrix . This
upper bound will allow to get a simple closed-form expression
for the diagonal matrix , as shown next. Note that in the par-
ticular case of , the closed-form solution will be the op-
timum solution because the matrix reduces to one, and thus,
the equality in (57) applies.

Expanding the cost function in (54) according to the structure
of the matrix , the new cost function, including the average
power constraint, becomes

(58)
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where is the Lagrange multiplier. As the cost function depends
on , we will choose as a real positive variable. The
minimization problem follows, differentiating (58) with respect
to :

(59)

where denotes the th element in vector , and
is the th singular value of channel matrix . Under the high
SNR assumption A1), the error probability is dominated by the
minimum distance between any pairs of symbols ( , ).
Therefore, the summation in (59) can be approximated, consid-
ering the terms where , where is one of the
columns of the identity matrix, and is a scalar that refers to
the minimum distance between any two constellation symbols.
Using this approximation in (59) and setting the derivative to
zero, the following equation is obtained for QPSK constellation

:

(60)

where is a nonrelevant constant. After some manipulations,
this equality can be rewritten as

(61)

A closed-form solution for this identity cannot be derived. How-
ever, under the assumption that the channel uncertainty is low,
the following approximations can be used: , and

. Thus, (61) is simplified as

(62)

obtaining a closed-form solution for :

(63)
where is determined forcing the power constraint (45), and
the function is defined as .

C. Asymptotic Performance

In this section, the robust BER algorithm is analyzed for the
extreme cases where the uncertainty is very high or very low.

When channel knowledge at the transmitter is perfect, i.e.,
when and [see (18) and (21)], and only one
symbol is transmitted per subcarrier (i.e., ), the solution
for the robust cost function in (63) coincides with that one of
[20]. Note that the solution does not coincide with the solution
proposed in [8] since one assumes a ML receiver and the other
one a ZF receiver.

When the channel uncertainty is very high, in the extreme
case of and , the average PER function con-
verges to

(64)

which is the same one found in [11] for uncorrelated antennas.
Note that in this case, the optimization criterion is simpler, and
therefore, there is no need to resort to the high SNR approxi-
mations in order to get a closed-form solution. Indeed, it can be
seen that the power allocation tends to the open-loop solution
(i.e., the same power is allocated to all antennas and subcar-
riers), as it will be shown in Section V.

V. SIMULATION RESULTS

In order to illustrate the performance of the proposed closed-
loop algorithms in the presence of imperfect channel estimates,
several simulations are presented for different scenarios and
channel estimation errors, assuming that CSI quality is unbal-
anced between the transmitter and the receiver. To validate the
closed-form solutions in (41) and (42) and (63), uncorrelated
antennas are always assumed. Four algorithms are compared:
the proposed algorithm for MMSE (“MMSE Robust”) and for
minimum uncoded BER (“BER Robust”), and its nonrobust
counterparts that assume (“MMSE Non-Robust” and
“BER Non-Robust”). The simulations compare the performance
of these algorithms in terms of uncoded BER and coded BER.

The simulation parameters are selected according to the
HIPERLAN/2 standard [21]. As depicted in Fig. 1, the bit
stream to be transmitted is applied to the classical convolu-
tional code of rate 1/2 and generator polynomials
and .1 The encoder is initialized to the zero state and
returned to it after encoding 3456 bits (i.e., eight DLC-PDUs
of 54 bytes—according to HL/2) by appending six tail bits.
The coded bits are mapped into a QPSK constellation and
interleaved with a symbol-block interleaver of depth .
Afterwards, the symbols are multiplexed in the subcarriers
(groping symbols per subcarrier), prefiltered by the matrices

, and finally modulated in OFDM symbols (including pilot
tones and empty subcarriers according to HIPERLAN/2).

In order to have a fair comparison, all algorithms are simu-
lated using an ML detector that takes into account the channel
uncertainty at the receiver. As the channel is not perfectly known

1This channel code is not specific for HIPERLAN/2, but it is widely used in
several standards
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at the transmitter and/or the receiver, the relationship between
the transmitted and the received data (3) is not equivalent to a set
of independent flat-fading subchannels (i.e., is not di-
agonal). Therefore, the optimum receiver requires the joint esti-
mation of all bits transmitted in the same symbol . This proce-
dure is used to evaluate the uncoded BER, detecting the symbol

that maximizes (65), shown at the bottom of the page, where
refers to a nonrelevant constant, and the channel uncertainty
and the equivalent channel are computed, making use of

the channel uncertainty at the receiver.
For the evaluation of the coded BER, it is too complex to

apply (65) due to the presence of the block interleaver. Hence, as
the goal of this paper is not on the receiver architecture but on the
design of the transmitter, a simplified decoder has been imple-
mented that provides a bound on the performance achieved by
practical decoding schemes. The coded BER results presented in
this section have been obtained using a genie decoder that com-
putes the log-likelihood of a symbol , assuming that all
other symbols that were transmitted simultaneously in in vector

are known to the receiver. The BER achieved by this scheme
bounds an iterative decoder like the one proposed in [22], per-
forming an infinite number of iterations and assuming that no
decoding errors were made.

The simulated Rayleigh MIMO channel obeys an exponen-
tial power delay profile with 50 ns of delay spread (RMS delay
spread of the discrete channel 45.6 ns [23]), modeling a typ-
ical office indoor scenario. The simulations model the channel
uncertainties due to the errors in the channel estimation process
and the errors in the channel prediction when channels are time-
varying. In both cases, the variance in the channel estimation
error is assumed to be constant for all taps of the channel im-
pulse response. For the sake of clarity, we will denote in this sec-
tion and the variances in the channel estimation error
at the transmitter and at the receiver, respectively. It is assumed
that the main contribution to channel uncertainty at the trans-
mitter is the channel tracking error in fast linear time-varying
channels; hence, it is considered to be independent of the SNR,
as would be the case of a channel tracker based on a linear pre-
dictor [3]. Simulations are carried out with . This
value models a realistic scenario where a user is moving at 4
Km/h, and the channel is updated at the transmitter each 2 ms (as
would be the case of HIPERLAN/2) [3]. The degree of channel
uncertainty at the transmitter is measured by the coefficient ,
which is defined as

(66)

where denotes perfect CSI, whereas means no
channel knowledge. At the receiver, the main contribution
to channel uncertainty is the estimation variance due to the
presence of additive noise. Hence, is proportional to the
noise variance , as would be the case of a linear channel

Fig. 2. Uncoded BER comparison between different power allocation
strategies. M = 3, M = 3. Transmitter uncertainty: � = 0:12(� =
0:1) Receiver uncertainty: Perfect CSI.

estimator [24], where the factor of proportionality depends
on the training sequence length. Simulations are carried out
with , which approximately corresponds to
the estimation of the simulated channel from a linear channel
estimator when the training sequence consists of one OFDM
symbol according to HIPERLAN/2 [15].

A. Uncoded BER Performance versus Eb/No

Fig. 2 illustrates the performance of the two proposed algo-
rithms in terms of uncoded BER for the 3 3 antenna configu-
ration. In order to focus on the transmitter design when CSI is
noisy at this side, it is assumed that the receiver has perfect CSI
knowledge, whereas the channel estimate at the transmitter has
a constant variance equal to . The robust (solid
lines) and nonrobust (dotted lines) algorithms are plotted for

, which correspond to 12, 24, and 36 Mbps, re-
spectively, comparing its performance when the unitary matrix

is omitted (i.e., ) and when matrix is set to the DFT
matrix. In the particular case of , the elements of the di-
agonal matrix are obtained according to (41) and (42) for
the MMSE solution and according to (63) for the BER solution.
When matrix is set to the DFT matrix, the same solution pro-
vided by (41) and (42) is used because, as it has been proved in
Appendix A, the MMSE cost function is insensitive to any uni-
tary matrix at the right side of the linear transformation . On
the contrary, the minimum BER algorithm (54) has been min-
imized applying an iterative solution since (63) is suboptimum
when the matrix is different from the identity matrix.

The performance comparison in terms of exhibits the
tradeoff between BER and transmission rate. Observe that the
difference between the algorithms is greater as increases.
When (i.e., one symbol per subcarrier is transmitted

(65)
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Fig. 3. Example of singular values (sorted in decreasing order) of the
equivalent channel Ĥ (k = 1 . . .K) for a specific channel realization and
its associated power allocation elements (i.e., diagf��� ��� g) for the different
algorithms. M = 3, M = 3, and M = 3. Transmitter uncertainty:
� = 0:12(� = 0:1). SNR = 0 dB.

focused on the best channel mode), all algorithms have similar
performances. On the contrary, when , the algorithms
exhibit different performances, showing that the way to dis-
tribute the total power is crucial.

Some conclusions can also be drawn on the importance of the
unitary matrix when analyzing the performance losses if this
unitary matrix is omitted. As it can be shown, the performance
losses are greater as or, equivalently, the dispersion of the
channel singular values increases. This result confirms that the
unitary matrix alleviates loss of space diversity caused by the
channel diagonalization.

Finally Fig. 2 shows that the “BER Robust” algorithm has
best performance in terms of uncoded BER, as it was expected.
However, when matrix is set to the DFT, the “MMSE Ro-
bust” algorithm exhibits good performance in terms of BER.
The relative performance of the BER and MMSE algorithms
is better understood when comparing in Fig. 3 the power al-
location per subcarrier (i.e., the elements of the diagonal ma-
trix ) for each one of the four algorithms. As shown in
the figure, when matrix is omitted, the algorithms that mini-
mize the uncoded BER assign less power to the stronger channel
modes and more power to the deepest faded ones, trying to com-
pensate the fading, whereas the MMSE algorithms assign less
power to the faded subchannels. This behavior leads the MMSE
algorithms to have very high uncoded BER in some of the sub-
carriers, explaining the poor performance of the “MMSE Ro-
bust” algorithm when the unitary matrix is omitted. On the
contrary, when matrix is set to the DFT matrix, as the uni-
tary matrix combines all symbols into all channel modes, the
optimal way to distribute the power is to allocate more power to
the stronger channel modes, just as “BER Robust ” when is
the DFT matrix and “MMSE Robust” do.

B. Coded BER Performance versus Eb/No

Despite the fact the neither the MMSE algorithm nor the
minimum BER algorithm have been optimized taking into ac-
count a channel code, it is interesting to evaluate the proposed

Fig. 4. Coded BER comparison between different power allocation strategies.
M = 3, M = 3. Transmitter uncertainty: � = 0:12(� = 0:1).
Receiver uncertainty: � = 0:375� .

algorithms in terms of coded BER since most communication
schemes include this stage. The performance of the algorithms
has been compared for the specific channel code described in
HIPERLAN/2, and they have also been compared in terms of the
capacity and the cut-off rate as measures of the coded BER per-
formance, which are independent of the specific channel code.

Fig. 4 depicts the performance of the proposed algorithms
in terms of BER at the decoder output for the 3 3 antenna
configuration when the receiver has an estimation variance pro-
portional to . It can be seen that when matrix is omitted,
“MMSE Robust” algorithm achieves best performance, fol-
lowed by “MMSE Non-Robust,” “BER Robust,” and “BER
Non-Robust” solutions, whereas when matrix is set to the
DFT matrix, the “BER Robust” algorithm outperforms the
others. This behavior can be intuitively understood comparing,
in Fig. 3, the power allocation strategy followed by the different
algorithms. Note that the best algorithms in terms of coded BER
are those that allocate more power to the good subchannels and
penalize the weakest ones. This strategy, as opposed to that
one followed by the algorithms that minimize uncoded BER,
induces some systematic errors in the deepest faded channels.
However, if the amount of errors is within the correction capa-
bility of the channel code, these errors can be corrected by the
Viterbi decoder, explaining the overall increased performance
at the decoder output in terms of coded BER.

To get more insight in the performance of the proposed power
allocation algorithms in terms of coded BER, Fig. 5 evaluates
the capacity and cut-off rate for each algorithm. Both parame-
ters can be used as an indicator of the coded BER performance
that is independent of the specific channel code. While the ca-
pacity is the theoretical upper limit on data rates where arbi-
trarily small BER can be achieved with coding, from the prac-
tical point of view, it is difficult to attain this upper limit. How-
ever, the cut-off rate provides a lower bound on the capacity
and, until the proposal of turbo codes, it was considered to be
the limit for the coding techniques that had practical interest.
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Fig. 5. CCDF curves of (a) the capacity and (b) cut-off rate for different power
allocation strategies. M = 3, M = 3. Transmitter uncertainty: � =
0:12(� = 0:1). SNR = 0 dB.

Fig. 5 shows the complementary cumulative distribution func-
tion (CCDF) curves of the capacity (in bps/Hz), which are com-
puted as

(67)

and the cut-off rate (in bits/channel use), which are computed as

(68)
When the unitary matrix is omitted, the MMSE algorithms

outperform the algorithms that minimize BER in terms of ca-
pacity and in terms of cut-off rate, which explains why MMSE
solutions result in better performance than minimum BER so-
lutions. To explain the behavior of the proposed solutions when
the unitary matrix is set to the DFT, note that the capacity ex-
pression in (67) is insensitive to any unitary matrix at the right

Fig. 6. Minimum Eb/No that achieves an uncoded BER � 10 versus the
transmitter uncertainty �. Receiver uncertainty: � = 0:375� . (a) BER
algorithm comparison for different MIMO configurations: 1� 1 M = 1, 2� 2
M = 2, 3� 3 M = 3. (b) BER and MMSE algorithms comparison for 3� 3
M = f1; 3g.

side of the linear transformation , and hence, this parameter
cannot be used in our case as a measure of the coded BER per-
formance. On the contrary, the cut-off rate is sensitive to the
matrix and justifies the relevance of this matrix. As shown in
Fig. 5, when the unitary matrix is set to the DFT, the cut-off rate
is increased, which justifies that the BER at the decoder output
is decreased. Moreover, the performance of the “BER Robust”
algorithm is the DFT matrix as the best solution in terms of
coded BER is explained since this algorithm exhibits the best
cut-off rate.

C. Performance versus CSI Quality at the Transmitter

To test the performance of the proposed algorithms when
channel uncertainty increases, Fig. 6 shows the minimum Eb/No
required to achieve an uncoded BER . The required
Eb/No is plotted as a function of the channel uncertainty de-
gree at the transmitter , while keeping the receiver uncertainty



1082 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 3, MARCH 2005

proportional to the noise variance. As a reference, the point
was simulated assuming perfect CSI at both transmitter

and receiver. Two simulations are presented. A first plot ana-
lyzes the minimum BER design for different MIMO configura-
tions: 1 1, 2 2, 3 3, assuming the maximum transmission
rate (i.e., ). A second simulation evaluates the
MMSE and the minimum BER algorithms for the MIMO con-
figuration 3 3 with .

As shown in Fig. 6(a), the robustness of the proposed al-
gorithm is evidenced since the “BER Robust” solution always
outperforms the “BER Non-Robust” one. Note that when CSI
quality at the transmitter degrades (i.e., ), the “BER Ro-
bust” design tends to the open-loop solution (i.e., equally power
allocation for all subcarriers and antennas), whereas the perfor-
mance of the “BER Non-Robust” algorithm is degraded.

Comparing in Fig. 6(b) the MMSE and the minimum BER al-
gorithms, it is shown that the “MMSE Robust” algorithm only
exhibits a good performance in terms of uncoded BER for low
channel uncertainties. Note that for , the performance of
the “MMSE Robust” algorithm is very close to the “BER Ro-
bust” algorithms when the CSI quality is high (i.e., ),
but it performs worse than open-loop when the CSI quality de-
grades. When the transmission rate is decreased (i.e., ),
the difference in the performances is reduced, but still, when

, the “MMSE Robust” algorithm degrades rapidly. Ac-
cording to the previous results, and recalling that the “BER Ro-
bust” algorithm has been computed applying an iterative solu-
tion since the closed-form solution in (63) is suboptimum when

, it can be concluded that when CSI quality at the trans-
mitter is good (i.e., ), the “MMSE Robust” algorithm,
which is computed by means of the closed-form solution given
by (41) and (42), is an alternative to the “BER Robust” algo-
rithm in terms of uncoded BER. On the contrary, when the CSI
quality is decreased, the performance of the “MMSE Robust”
algorithm degrades rapidly, especially for , and thus, the
best solution is the “BER Robust” algorithm that adapts to the
channel uncertainty and tends to the open-loop solution.

VI. CONCLUSIONS

This paper has presented a Bayesian approach for the design
of linear precoding schemes that are robust to channel estima-
tion errors. The proposed linear transformations have been de-
signed according to a minimum MSE and a minimum uncoded
BER criterion, both of them subject to an average power con-
straint across all antennas and subcarriers.

Closed-form solutions that are based on the SVD of the
so-called equivalent channel have been derived for both algo-
rithms. The prefiltering matrix derived for the minimum MSE
criterion has been shown to be optimum, whereas the matrix
structure given for the minimum BER cost function is optimum
when one symbol per subcarrier is transmitted (i.e., )
and SNR is high. The algorithms converge to the results pub-
lished previously in the literature in the extreme cases of very
high or very low uncertainty in the CSI. Besides, it has been
shown that the BER design can be regarded as a reconfigurable

algorithm that adapts the transmitted signal to the available
channel knowledge, providing a solution that converges to the
open-loop design (i.e., the same power is allocated across all
antennas and subcarriers) for the case of no channel knowledge
and to the closed-loop design with perfect CSI for the case of
no uncertainty. The minimum BER design has been formulated
based on a generalized exponential bound of the function

that includes the Chernoff bound as a particular case.
The two algorithms have been compared in terms of uncoded

BER and coded BER for the specific channel code described in
the HIPERLAN/2 standard using a ML detector at the receiver.
Moreover, the capacity and the cut-off rate have also been used
as measures of the coded BER performance, which are indepen-
dent of the specific channel code. The results have shown that
the robust algorithms exhibit a lower sensitivity to channel esti-
mation errors when compared with the nonrobust techniques. In
terms of uncoded BER, it has been proved that although the al-
gorithm that minimizes the BER has the best performance, the
MMSE algorithm exhibits a good performance for low uncer-
tainty in the CSI. In terms of coded BER, it has been shown that
the robust algorithm that minimizes the BER outperforms the
rest of algorithms, which is a conclusion that has been compared
with the results given by the capacity and cut-off rate parame-
ters.

APPENDIX A
PROOF OF (32)

This Appendix proves that the structures given in (32) for the
matrices and , which are based on the SVD of the equiv-
alent channel, minimize the robust cost function (31). Denote
the SVD of , and matrices as

(69)
where the subcarrier index “ ” and the label “eq” are omitted
for the sake of clarity in the notation.

Differentiating (31) with respect to matrix and equating
the result to zero, the function to minimize is solved for to
obtain

Tr
(70)

Substituting the isolated matrix in (31), the new cost func-
tion, that only depends on the linear transformation , is

Tr

Tr

Tr (71)

where the scalar Tr . Next, the op-
timum linear transformation will be obtained differentiating
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(71) with respect to the matrix and equating the result to
zero. Isolating the matrix , we arrive at

(72)

where is a nonrelevant constant, and the underbraced ma-
trix is the projection matrix of . Substituting the SVDs
defined in (69), the projection matrix must satisfy

, and consequently, the next equality must be accom-
plished:

(73)

which only holds if where is any permutation
matrix. If the permutation matrix is set to the identity matrix,
then .

The structure for the matrix is derived substituting in (70)
the SVDs defined in (69) for the particular case of .
After some manipulations, it is straightforward to verify that

and satisfy the solution for . Note
that the MSE is independent of the unitary matrix ; hence,
for the sake of simplicity, has been selected in (32).

APPENDIX B
EXPONENTIAL EXPANSION OF THE FUNCTION

As the use of the exact function derives in complex so-
lutions [25], this paper proposes an expansion of the
function in the neighborhood of the point . By a gener-
alized exponential expansion, the function can be ex-
pressed as

(74)

where constants and can be chosen to set certain constraints.
The expressions derived in this paper can be applied for any
value of and , including the Chernoff bound as a particular
case for and . However, it is possible to
derive a lower bound for that is very tight in a wide
range of values around . This bound can be obtained rewriting

and doing a Taylor expansion of the
exponent in the neighborhood of the point :

(75)
Then, and are given by

(76)

It is straightforward to show that (76) provides a lower bound for
. As the exponential function is monotonically increasing,

the lower bound is ensured if the Taylor expansion in (75) is
always lower than : a condition that always holds
since is a concave function.

APPENDIX C
PROOF OF (57)

In this Appendix, we show that for high SNR, the following
inequality holds:

(77)

Proof: Let and bet two elements of a given constel-
lation, let denote the number of symbol pairs
that differ in bits, and let be any of the pos-
sible values of the difference between two constellation sym-
bols. Let denote the th column of the identity matrix of
size . Under the high SNR condition (assumption A1), the
average BER can be approximated taking into account only the
pairwise error probability between those pairs of symbols that
differ in one coefficient. Thus, for high SNR, the BER for the

th subcarrier can be written as follows:

BER

(78)

and reduces to the following expression for :

BER

(79)

Comparing (78) and (79), it is clear that proving the inequality
in (77) is equivalent to proving a similar expression for the
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function that appears in them. It can be shown [8], [17] that
the DFT matrix satisfies that is constant for all .
Therefore

Tr

Tr

(80)

where the equality in second line applies because is a uni-
tary matrix, and last inequality is a result of the application of
Jensen’s inequality [26] to the convex function . The
combination of (80) and (78) and (79) leads to (77).
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