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Abstract—A power system stabilizer (PSS) design method, which aims at enhancing the damping of multiple 

electromechanical modes in a multi-machine system over a large and pre-specified set of operating conditions, is 

introduced in this paper. With the assumption of normal distribution, the statistical nature of the eigenvalues 

corresponding to different operating conditions is described by their expectations and variances. A probabilistic 

eigenvalue-based optimization problem used for determining PSS parameters is then formulated. Differential 

evolution (DE) is applied for solving this highly nonlinear optimization problem. Different strategies for control 

parameter settings of DE have been studied to verify the robustness of DE in PSS optimization problems. The 

performance of the proposed PSS, with a conventional lead/lag structure, has been demonstrated based on two test 

systems by probabilistic eigenvalue analysis and nonlinear simulation. 

I. INTRODUCTION 

With the growth of interconnected power systems and particularly the deregulation of the industry, problems 

related to low frequency oscillation have been reported, including major incidents [1]. Power system stabilizers 

(PSSs) have been widely used to suppress the low frequency oscillation and enhance the system dynamic stability 

[2-16]. The basic function of a PSS is to produce an electrical torque component in phase with the rotor speed 

variation and add damping to the rotor oscillations by controlling its excitation using an auxiliary stabilizing signal 

[2]. Many approaches have been proposed for PSS tuning such as the damping torque approach [2], eigenvalue 

sensitivity analysis [3], nonlinear optimization [4], robust H∞ controller design method [5] and some of them have 

been applied to real power systems [6, 7]. However, these conventional PSS (CPSS) designs are determined based 

only on a few specified operating conditions so they cannot guarantee the overall system performance if the 

operating conditions vary significantly. Besides, it is still questionable if some approaches for PSS coordination, 

such as the decoupled and sequential tuning method, can achieve an optimal overall performance and adequately 

handle adverse interactions among controls [8]. 
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The probabilistic approach has been successfully applied for power system dynamic research studies under 

multioperating conditions [11-13]. With nodal voltages regarded as basic random variables and determined by 

probabilistic load flow calculation, the probabilistic distribution of each eigenvalue is obtained from the 

probabilistic attributes of nodal voltages, and described by its expectation and variance under the assumption of 

normal distribution. References [14-16] extended the probabilistic eigenvalue analysis to PSS design in 

multimachine systems for the purpose of including a wide range of system load conditions. However this 

optimization problem of the probabilistic PSS design is highly nonlinear and the solution is difficult to be obtained 

based on the conventional optimization technique. 

Evolutionary Algorithms (EAs) have attracted a great deal of attention recently and have been found to be a 

robust approach for solving non-linear, non-differentiable and multi-modal optimization problems. EAs are evoked 

by an analogy with biology, in which a group or population of solutions evolves generation by generation through 

natural selection. In their implementations, a population of candidate solutions, referred to as the chromosomes, 

evolves to an optimum solution through the operation of genetic operators such as reproduction, crossover, and 

mutation. In recent years, some evolutionary methods such as Genetic Algorithm (GA) [9] and Particle Swarm 

Optimization (PSO) [10] have been applied to the problem of PSS design. Unlike the conventional methods, these 

methods can finally reach the optimal solution regardless of the initial PSS settings. The canonical PSO has been 

primarily applied to the problem of probabilistic PSS design as well [23]. Since PSO performance is affected 

significantly by the selection of the control parameters (swarm size, neighborhoods, and some coefficients), simple 

classic or canonical PSO might suffer from the problem of convergence stagnation when the optimization model is 

very complicated [24]. 

As a new branch of EAs, differential evolution (DE) has the ability to overcome some drawbacks of classic GA, 

such as non-isomorphic search strategies and susceptibility to coordinate rotation [17]. It is distinguished from 

other EAs by its reproduction operation, which drives mutation with the differences of randomly sampled pairs of 

chromosomes. This self-adjusting property of DE uses few control mechanisms when compared to other 

approaches, making DE both effective and easy to use, thus the control parameters of DE is easy to determine and 

the balance between the convergence speed and the population diversity can be reached with less effort than other 

EAs. In light of these advantages, a novel DE-based approach to probabilistic PSS design is proposed in this paper.  

The paper is organized as follows: In section II, a probabilistic eigenvalue analysis approach is first reviewed. In 

section III, the probabilistic PSS design problem is then formulated as a probabilistic eigenvalue based 
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optimization model. The DE algorithm is introduced in section IV and the procedure for solving the probabilistic 

PSS design problem is outlined. In section V, the effectiveness of the proposed probabilistic PSS design scheme is 

demonstrated on two test systems by DE robustness testing, eigenvalue analysis and nonlinear simulation. Finally, 

the paper is concluded in section VI. 

II. PROBABILISTIC EIGENVALUE ANALYSIS 

Under the multioperating conditions of a power system, all nodal injections, nodal voltages and eigenvalues are 

regarded as random variables. Statistical attributes of nodal injections are determined from system operating 

samples. Probabilistic distributions and stability probabilities of all eigenvalues can be obtained by means of the 

probabilistic eigenvalue analysis [13]. 

Under the assumption of normal distribution, the statistical nature of an eigenvalue can be described by its 

expectation and variance. For a particular eigenvalue kλ = kk jβα + , having an expectation kα and standard 

deviation
kα

σ , the distribution within },{
kk ακσα +−∞  with a distribution constant κ over [3.5, 4] has a 

probability from 0.99977 to 0.99997, which is very close to unity. To ensure the stability of kα , this distribution 

range should be located on the left-hand side in the complex plane as illustrated by the curves of probability density 

function (pdf) in Fig. 1. 

Thus, the upper limit of this distribution range kα ′  in (1) can be regarded as an extended damping coefficient 

from which the robust stability of multioperating conditions can be estimated. Correspondingly, the damping ratio 

22/ kkkk βααξ +−= with expectation kξ and standard deviation
kξ

σ has an extended value '
kξ  in (2), 

kkk ασκαα +='

                               (1) 

kkk ξσκξξ −='

                           (2) 

To ensure the system dynamic performance, all the eigenvalues need to satisfy the requirement of damping 

constant and damping ratio in (3) and (4) respectively. In other words, all the eigenvalues should be located in the 

shadowed D-shape region *S  in Fig. 2. 

Ck αα ≤'

                           (3) 

Ck ξξ ≥'

                           (4) 

where Cα  and Cξ  are acceptable limits for damping constant and damping ratio, respectively. 
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III. PROBLEM FORMULATION OF PROBABILISTIC PSS DESIGN 

A. PSS Structure 

A typical PSS structure with two lead/lag stages will be adopted in this study as follows:  
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where { }PSS,...,1 Ni∈ and PSSN is the total number of PSS to be tuned; iK  is PSS gain constant with positive value 

for speed input signal and negative value for power input signal; wT  is washout time constant; ii TT 21 /  and 

ii TT 43 /  are lead/lag time constants. It should be noted that the time constants iT2  and iT4  should not be less than 

0.04s to avoid excessive amplification of input signal noise. In this study, wT is fixed as 10s and 5s for speed and 

power input signals respectively. The ranges of the PSS parameters are set as follows: [0.1p.u., 20p.u.] for iK  of 

PSS with speed input signal and [-20p.u., -0.1p.u.] with power input signal, [0.06s-2.0s] for iT1 and iT3 , [0.04s-0.2s] 

for iT2 and iT4 [19]. 

B. Parameter Optimization 

For optimization purposes, it is more convenient to introduce the standardized expectations of the damping 

constant and damping ratio *
kα  and *

kξ , derived from (1) and (2) and termed as κσ  criteria, are defined as:  

 κσααα α ≥−−=
kCkk /)(*                          (6) 

 κσξξξ ξ ≥−=
kCkk /)(*                            (7) 

After the standardization in (6) and (7), *
kα  and *

kξ  are per-unit variables and can be directly compared. Thus, an 

optimization problem is formulated in (8) and only those “weak” eigenvalues ( κα <*
k  or κξ <*

k ) are included so 

that those unstable or poorly damped electromechanical oscillation modes are relocated to a more stable region. If 

problem (8) is solvable (i.e. a feasible solution exists), all the eigenvalues should be located in the D-shape region 

*S  in Fig. 2 and the value of the objective function will be equal to zero; otherwise, it will be greater than zero. 

 Minimize ∑∑
<<

−+−=
κξκα

κξκα
**

2*2* )()()(
kk

kkf P                              (8) 

s.t.  max,min, iii KKK ≤≤  

  max,11min,1 TTT i ≤≤  

  max,22min,2 TTT i ≤≤  
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  max,33min,3 TTT i ≤≤  

  max,44min,4 TTT i ≤≤  

where P stands for the PSS parameter vector; min,iK , min,1iT , min,2iT , min,3iT and min,4iT are the minimum limits of PSS 

parameters; max,iK , max,1iT , max,2iT , max,3iT and max,4iT are the maximum limits of PSS parameters. 

IV. PROBABILISTIC PSS DESIGN USING DIFFERENTIAL EVOLUTION 

DE is a kind of intelligent search technique suitable for optimizing nonlinear, non-differentiable and multi-modal 

continuous space functions. It has been widely studied and shown its excellent performance on a large variety of 

benchmark problems and practical problems [17]. Similar to other EAs, in DE’s implementation, a population of 

randomly generated and real-encoding candidate solutions evolves to an optimal solution through the reproduction 

operation and selection. This section describes the principal components of DE and its application in solving the 

problem of probabilistic PSS design in (8). The pseudo-code of the proposed method is given in Table I. 

A. Principal Components of DE 

The principal components of the DE algorithm are introduced as follows: 

(i) Chromosomes: A chromosome can be taken as an array holding a candidate group of PSS parameters. The 

parameters are encoded using floating-point numbers and are set as elements in the chromosomes. 

(ii) Population initialization: The initial DE population with NP (population size) candidate solutions or 

individuals is generated at random from the parameter domains according to: 

 )( minmaxmin)0(
, jjjji pprpx −⋅+=                                      (9) 

where },...,1{ NPi∈ ; },...,1{ Mj∈ and M is the total number of PSS parameters to be decided in (8); )(
,
g
jix denotes the 

value of the j-th PSS parameter of the i-th individual at the g-th generation, i.e. g = 0 for the first generation; max
jp  

and min
jp  denote the upper and lower bounds of parameter j; and r is a uniformly distributed random value over the 

range of [0, 1]. 

(iii) Reproduction operation: The classical DE operator and its derivative operators could provide tailored 

candidate schemes for solving different domain problems, in which a tradeoff between the convergence speed and 

the population diversity could be achieved [17]. Each parent ix will produce one offspring iu in every generation. 

The reproduction operator used in this study called DE/rand-to-best/1/bin, which is designed to be easy to 

understand and simple to use and with no sacrifice to effectiveness [20], is given as, 
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where },...,1{, 21 NPrr ∈ are randomly selected number with r1≠r2≠i; bestx is the up-to-date best individual; K and 

F are scale coefficient of crossover and mutation, respectively; )( )( g
ibest xxK − and )( )()(

21

g
r

g
r xxF − play a role of 

crossover and mutation operation, respectively. The impact of the scale coefficients K and F on the performance of 

DE in the probabilistic PSS design will be investigated in Section V. DE’s reproduction strategy by (10) can be 

viewed as a “greedy” reproduction since it exploits the information of the best individual to guide the search. This 

can speed up the convergence because the way the best individual being utilized here is a kind of “population 

acceleration” [21], whilst the diversity of the whole population can be held by the diffuse effect of mutation item. 

Unlike other EAs that rely on a predefined probability distribution function, the reproduction of DE is driven by the 

difference between randomly sampled pair of individuals in the current population. This reproduction scheme, 

though simple, endows DE with the features of self-tuning and rotational invariance, which are crucial for an 

efficient EA scheme and have long been pursued in the EA community. In ES, they are realized by complicated 

approaches using strategy vectors and matrices [18].  

(iv) Selection Strategy: A one-to-one replacement strategy is employed for the DE’ selection as follows: 

⎩
⎨
⎧
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)1(
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ig
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u

x                     (11) 

It is an elitist strategy because the current best vector of the population can only be replaced by a better vector. 

B. Design Procedure 

With the principle components described above, the probabilistic PSS design problem can be solved by the 

following procedure: 

Step 1 Initialization: Initialize NP individuals/chromosomes in the population according to (9), which act as the 

initial parent population. By decoding each chromosome into a group of PSS parameters, the objective function 

value of each individual in the initial population is evaluated according to (8) and thus the best individual )0(
bestx  is 

obtained. 

Step 2 Reproduction: For each parent chromosome, a child chromosome is generated by performing the 

reproduction operation in (10) so that a NP-size children population is prepared. A midway fine-tuning strategy 

[18] will be applied if the boundary limit is violated. The objective function value of the child chromosome will be 

evaluated in succession. Repeat the reproduction step until NP child chromosomes are formed. 

if )()( )()( g
i

g
i xfuf <                          

otherwise 
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Step 3 Selection: Each child will compete with its corresponding parent according to (11) and all the survivors will 

constitute the parent population of next generation. 

Step 4 Evolution: Repeating Steps 2 and 3 until the objective function becomes zero or the specified maximum 

number of generations is reached. 

V. APPLICATIONS 

In this section, two test systems will be employed to demonstrate the effectiveness of the proposed method. In the 

studies, the criteria for the damping ratio and damping constant are chosen as 1.0=Cξ and 1.0−=Cα for both 

systems. The distribution constants for the two systems are set to 4.0 and 3.5, respectively. 

A. Three-machine Power System (System I) 

The three-machine nine-bus system is shown in Fig. 3. All machines are represented as fourth-order models and 

equipped with fast-acting static exciter [19]. All dynamic parameters are given in the Appendix. The loads are 

modeled as constant impedances. Normal operation values of nodal powers and PV bus voltages shown in Fig. 3 

are regarded as their expectations. Each nodal power and PV bus voltage is assigned with standardized daily 

operating curves as shown in [13]. From these curves, 480 operating samples are created and covariances of nodal 

injections are determined. The statistical characteristics can be captured by the probabilistic eigenvalue analysis. 

480 system operating samples are created and the worst scenario is very marginally stable with 005.0<ξ . The 

probabilistic eigenvalue analysis is performed by the method in [14, 15] and the worst damped modes are listed in 

Table II. As discussed in Section III, if the standardized expectations of both *
kα  and *

kξ are larger than 4, the 

corresponding mode is regarded as adequate for robust stability, otherwise inadequate. In this case, two eigenvalues 

of the system in Table II are “inadequate” with *
1α , *

2α , *
1ξ and *

2ξ equal to 2.88, 1.67, 0.36 and 0.38, respectively. 

Modal analysis [15] on eigenvalue expectation shows that these two eigenvalues are electromechanical modes: 

eigenvalue 1 is the oscillation between G1 and G2 + G3, and eigenvalue 2 between G2 and G1 + G3. Following the 

result of probabilistic sensitivity analysis on these two modes, two speed-based PSSs are installed at G1 and G2; 

and in total 10 parameters of PSSs need to be decided. The population size (NP) and the maximum generation for 

DE in this case study are set to be 100 and 50 respectively. 

1) DE Robustness 

Studies on the selection of DE control parameters and its robustness are first conducted. It has been revealed in 

(10) that K controls the strength of the contractive pressure of the population, while F controls the strength of the 
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diffuse pressure of the population. The larger the value of K or F, the stronger the contractive or diffuse is. High 

ratio of K to F may lead to premature convergence, while low ratio of K to F may make the convergence too slow. 

So, K and F must be coordinately set in order to achieve the best performance. One strategy recommended by K. V. 

Price [18] is choosing K randomly from the range of [0, 1] for every individual at each generation, which is found to 

be frequently very effective, while setting the F to be some fixed value within [0, 1]. Another simpler strategy of 

setting K=F has been validated to be widely effective and applied to aerodynamic optimization, digital filters 

design, etc [20]. The influence of these two parameter setting strategies on the performance of the proposed method 

will be investigated thoroughly in two experiments: (1) Setting K randomly for every individual of each generation; 

and then increasing the F from 0.1 to 0.9; (2) Setting K=F and then increasing them from 0.1 to 0.9. Based on 50 

trial simulations, the average convergence curves of two cases are presented in Figs. 4 (a)-(b). From Fig. 4 (a), it is 

shown that the algorithm is nearly insensitive to F control parameter over the ranges [0.5, 0.9] when K is randomly 

determined. Fig. 4 (b) shows that keeping K=F has the similar characteristics; however, setting K=F between 0.5 

and 0.9 performs prominently. These observations indicate that DE is not remarkably sensitive to its control 

parameters over specified ranges. Thus, their values are relatively easy to choose, which is consistent with the 

experimental conclusions in [18]. Hence the setting K=F=0.85 will be kept for DE in the remaining study. 

2) Tuning Results 

Based on the proposed method in Section IV, the final PSS settings are determined in the DE-PPSS portion of 

Table III, and the probabilistic eigenvalues as shown in Table IV are adequate for robust stability. When 

compared with the original values in Table II, the system stability is much improved. The eigenvalue distribution 

of the closed-loop system under 480 operating conditions is also plotted in Fig. 5, in which all eigenvalues have 

been shifted into the area with Cξξ >  and Cαα < , compared with the original open-loop eigenvalues. 

3) Effectiveness Validation 

The performance of the proposed PSS design approach is evaluated and compared with that of the conventional 

PSS (CPSS) [4], which is designed under the worst scenario of the 480 operating conditions by pushing all the 

eigenvalues into the stability region. In addition, the same damping criteria are used in CPSS design for fair 

comparison. The results of CPSS parameters are listed in the CPSS portion of Table III. 

To simulate a large disturbance imposed on the system, a six-cycle three-phase-to-earth fault happens near bus 6 

at t = 0.2 s as shown in Fig. 3. The fault is then cleared by line isolation without reclosure. The study system with 

the large disturbance impulsion will be tested under 480 sampled operation conditions with DE-PPSS (probabilistic 
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PSS design with DE) and CPSS independently installed. A nonlinear time domain simulation will be conducted for 

each case. The output limits of field voltage are set to ±5 p.u. respectively. The output limits of PSSs are set to ±0.1 

p.u. Investigation on the following physical variables is performed: 

(i) Rotor angle of G1, G2 (relative to G3) in degree 

(ii) Field voltage of G1, G2 and G3 in p.u. 

(iii) Terminal voltage of G1, G2 and G3 in p.u. 

Following the techniques employed in the automatic control theory, the quality of transient process, such as the 

settling time and overshoots, can quantitatively be estimated by its deviation characteristics and therefore this idea 

is now adopted in evaluating the transient stability performance of the obtained PSSs under wide operation 

conditions. Two performance indices (PI) on the basis of multi-operating conditions are defined here in this study 

to measure the averaged total variation (ATV) of signal [22], 

∑∫
=

=

=
Δ=

N

n

tt

t

sim dtt
N

PI
1

01 )(1 ε                  (13) 

∑∫
=

=

=
Δ⋅=

N

n
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t

sim dttt
N

PI
1

0

2
2 )(1 ε                  (14) 

where )(tε represents all the time response of the selected physical variables and )1()()( −−=Δ ttt εεε ; N is the 

total number of samples; and simt is the total simulation time. It is obvious that the lower the values of these indices, 

the smaller deviation of the signal will present in response to disturbance. 

The ATV values for DE-PPSS and CPSS are listed in Table V, where PID and PIC denote the corresponding 

scenarios respectively. Most of ATV values of DE-PPSS are less than those of CPSS. Indeed, it is well expected 

that DE-PPSS outperforms CPSS because the proposed DE-PPSS method is derived from probabilistic eigenvalue 

analysis; and multi-operating conditions and certain nonlinear characteristic of the system have been taken into 

account in the PSS design. However, CPSS is designed based only on a linearized model under a stressed operating 

condition and its performance may be unsatisfactory when the operating environment varies significantly due to 

large disturbances. 

Due to space limit, only transient response curves at light, medium and heavy load conditions of the daily 

operating curve are shown in Fig. 6, Fig. 7 and Fig. 8 respectively. Although CPSS stabilizes the system, DE-PPSS 

exhibits better damping properties generally and this result is consistent with the performance index analysis. 
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B. Eight-machine Power System (System II) 

The test system showed in Fig. 9 is a three-area system consisting of 8 machines and 24 buses. All generators are 

represented as fifth-order models and equipped with speed governors and IEEE-Type I exciters [19], with exciter 

parameters given in the Appendix. System loads are represented by constant impedance models. Details of network 

parameters, nodal powers and generator parameters can be referred to in [14]. 

Similarly, the statistical characteristics of the system can be captured by the probabilistic eigenvalue analysis 

based on sampled 480 operating conditions. Modal analysis shows that an inter-area mode involving machines in 

different areas is a lightly damping mode. There are seven unsatisfactory electro-mechanical oscillation modes and 

the details of these modes are listed in Table VI. By means of probabilistic sensitivity analysis [15, 16], a scheme of 

installing PSSs at G1, G2, G3, G5, G6, and G7 is tentatively developed. Besides, the probabilistic sensitivity 

analysis shows that these oscillation modes are much more sensitive to PSSs with electrical power input than with 

speed signal input. So for this system, power input PSS will be adopted hereinafter. Totally, 30 parameters of PSSs 

need to be decided. The population size and the maximum generation for DE in this case study are set to be 200 and 

100 respectively. With the proposed DE-PPSS approach, the resulting PSS parameters are listed in the DE-PPSS 

portion of Table VII and compared with the CPSS parameters in the CPSS portion of Table VII. The 

electro-mechanical modes are listed in Table VIII, with the system damping effectively enhanced. Based on 15 

simulation trials, the average evaluation number (i.e. population size x average generation number) of the DE 

method is 2730 and each DE process lasts 60.35 minutes on average in an Intel P4 2.66 GHz CPU and 1G RAM 

computer; while the values for the canonical PSO in [23] is 3240 and 71.6 minutes. From these simple 

comparisons, the DE can converge faster than the canonical PSO in [23]. Besides, the performance and the 

convergence of PSO are significantly affected by the control parameters in PSO [24]. In larger-scale power 

systems, DE’s convergence performance mainly depends on the number of PSSs considered in the optimization 

problem, which should be limited to those most effective generators or areas in power systems. It is expected that 

the computing time of DE will increase with the increment of PSS number. Fortunately, DE is very amenable to 

parallel implementation by nature so that computation time can be greatly reduced. The same case study has been 

performed on a master-slave PC-cluster, which consists of one control node and 30 working nodes with 61 

processors. Each processor is configured with 1G RAM and dual Intel Xeon 2.66GHz CPUs. It has been found 

that the time consumption of the DE for this eight-machine test system is reduced to less than 2 minutes. 

For transient performance checking, a six-cycle three-phase fault is applied to the tie-line 8-15 near bus 15 at t = 
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0.2 s as shown in Fig. 9. The fault is then cleared by line isolation without reclosure, making the tie-line out of 

operation. The system responses are simulated under typical wide operating conditions, which are composed of one 

operating condition of every hour (totally 24 operating conditions) in the operating curve. The maximum and 

minimum limits of field voltage are set to 12 p.u. and −10 p.u. respectively. The deviations of generators’ electrical 

power in p.u. are investigated and the performance indices are presented in Table IX; and the electrical power 

responses of generators with PSS under different operating conditions are plotted in Fig. 10. Again, DE-PPSS is 

superior to CPSS in terms of damping ability under a wide range of operating conditions. 

VI. CONCLUSIONS 

A probabilistic PSS design for multi-machine system under multi-operating conditions using DE is proposed in 

this paper. A comprehensive comparison between the probabilistic PSS and a CPSS is conducted on two test 

systems and the results have indicated that the probabilistic PSS is more robust than the CPSS, which is partly 

because the probabilistic PSS design has considered a wide range of operation conditions in the design process and 

the DE is able to tune the PSS parameters in a coordinated way. The studies have also showed that DE is not 

remarkably sensitive to its control parameters over specified ranges. This makes it easy to select its parameters for 

the probabilistic PSS design problem. 
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IX. APPENDIX 

 
Table A-1 

Dynamic parameters of three-machine system 
Machine Parameters 

G1 G2 G3 
Capacity 
(MVA) 250 250 1200 

H (pu) 3.20 3.01 1.97 

D (pu) 0.01 0.01 0.01 

dx (pu) 1.796 1.9688 1.752 

qx (pu) 1.725 1.8867 1.1628 

dx′ (pu) 0.2396 0.272 0.7296 

qx′ (pu) 0.2396 0.272 0.7296 

doT ′ (s) 6.00 5.89 8.96 

qoT ′ (s) 0.535 0.6 0.31 

aK (pu) 100 100 100 

aT (s) 0.05 0.05 0.05 

rT (s) 0.02 0.02 0.02 

      * Generator’s per unit data are on its capacity base 
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Table A-2  

Parameters of exciters in eight-machine system 
Machine 

 
G1 G2 G3 G4 G5 G6 G7 G8 

aK (pu) 50 50 50 20 20 50 50 50 

aT (s) 0.05 0.03 0.01 0.02 0.02 0.04 0.03 0.03

fK (pu) 0.023 0.04 0.05 0.0 0.0 0.04 0.1 0.2 

fT (pu) 0.8 0.715 0.715 0.0 0.0 0.715 0.715 0.715

eT (s) 0.5 0.5 0.5 0.05 0.05 0.5 0.5 0.5 

rT (s) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
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Fig. 1. Probabilistic eigenvalue distribution 
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Fig. 5. Electromechanical modes distribution under 480 operating conditions 
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Fig. 9. Single line diagram of eight-machine system 
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Fig. 6. System response at light load condition (solid lines for DE-PPSS and dotted lines for CPSS) 
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Fig. 7. System response at medium load condition (solid lines for DE-PPSS and dotted lines for CPSS) 
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Fig. 8. System response at heavy load condition (solid lines for DE-PPSS and dotted lines for CPSS) 
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Fig. 10. Transient responses of generator G1, G2, G3, G5, G6 and G7 (solid lines for DE-PPSS and dotted lines for CPSS) 
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TABLE I Pseudo-code of the DE-based probabilistic PSS design 

Set the iteration or generation counter g to 0; 
Initialize population of chromosomes P(g) at generation g; 
Evaluate the objective function values of chromosomes in P(g); 
While (not terminate) { 

Generate the child population C(g) from the parent population 
P(g) by reproduction operation; 
Evaluate the objective function values of C(g); 
Perform the one-to-one selection and reproduce the P(g+1); 
g =g + 1; 

} 

 
 

TABLE II Electromechanical modes of the open-loop system I 
No. α  β  ασ  *α  αP  ξ  ξσ  *ξ  ξP  

1 -1.298 9.905 0.778 1.54 0.938 0.1299 0.0783 0.38 0.649 

2 -0.910 7.895 0.316 2.56 0.995 0.1145 0.0402 0.36 0.641 
 

 

 

 

TABLE III PSS parameters for system I 

PSS KPSS T1 T2 T3 T4 

G1 1.732 0.186 0.098 0.692 0.127
DE-PPSS 

G2 2.931 0.226 0.045 0.406 0.158

G1 0.655 1.00 0.08 1.10 0.08 
CPSS 

G2 0.272 1.00 0.08 1.10 0.08 
 
 

TABLE IV Electromechanical modes of the closed-loop system I 
No. α  β  ασ  *α  αP  ξ  ξσ  *ξ  ξP  

1 -4.912 5.801 0.186 25.91 1.00 0.6462 0.0228 23.92 1.00 
2 -1.886 7.175 0.155 11.50 1.00 0.2542 0.0148 10.40 1.00 

 
 
 

TABLE V Performance indices of system I 
 1δ  2δ  1fv  2fv  3fv  1tv  2tv  3tv  

1PIC  0.1226 0.1235 0.0565 0.0421 0.0253 0.0024 0.0032 0.0033 

1PID  0.0492 0.0586 0.0390 0.0291 0.0206 0.0022 0.0030 0.0033 

2PIC  0.0202 0.0231 0.0024 0.00164 0.00059 0.00005 0.00012 0.00016 

2PID  0.0018 0.0032 0.0014 0.00069 0.00045 0.00005 0.00012 0.00016 
 
 

Expectations: βαλ j±= andξ ;  
Standard deviation:σ  
Standardized expectation: ασαα /* −= and ξσξξ /)1.0(* −=  
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TABLE VI Electromechanical modes of the open-loop system II 
No. α  β  ασ  

*α  αP  ξ  ξσ  
*ξ  ξP  

1 -1.925 15.40 0.080 22.95 1.00 0.124 0.007 3.40 0.9997 
2 -0.773 10.75 0.070 9.61 1.00 0.072 0.006 -4.59 0.00  
3 -0.590 9.705 0.039 12.50 1.00 0.061 0.003 -12.65 0.00  
4 -0.604 7.888 0.024 20.80 1.00 0.076 0.004 -5.42 0.00  
5 -0.600 7.381 0.083 6.00 1.00 0.081 0.010 -1.93 0.0268 
6 -0.365 6.420 0.046 5.72 1.00 0.057 0.007 -6.05 0.00  
7 -0.033 3.854 0.007 -9.76 0.00 0.009 0.002 -49.55 0.00  

 
 

TABLE VII PSS parameters for system II 
PSS KPSS T1 T2 T3 T4 

G1 -0.086 0.107 0.192 0.194 0.199 
G2 -0.014 1.276 0.044 1.420 0.144 
G3 -0.824 0.169 0.121 0.135 0.054 
G5 -0.030 1.273 0.049 0.106 0.185 
G6 -0.019 0.951 0.064 0.612 0.110 

DE-PPSS 

G7 -0.739 0.286 0.141 0.061 0.162 
G1 -0.063  0.091  0.165  1.621  0.041  
G2 -0.195  1.492  0.194  0.293  0.077  
G3 -0.064  1.827  0.066  1.132  0.192  
G5 -0.099  1.560  0.042  0.117  0.200  
G6 -0.226  0.593  0.044  0.624  0.087  

CPSS 

G7 -1.346  1.773  0.153  0.074  0.167  
 
 

TABLE VIII Electromechanical modes of the closed-loop system II 
No. α  β  ασ  

*α  αP  ξ  ξσ  *ξ  ξP  
1 -2.020 15.07 0.094 20.54 1.00 0.133 0.007 4.44 1.00  

2 -1.682 12.81 0.120 13.22 1.00 0.130 0.008 3.97 1.00  

3 -1.546 11.31 0.073 19.73 1.00 0.135 0.003 11.06 1.00  

4 -0.846 7.495 0.019 40.10 1.00 0.112 0.003 4.02 1.00  

5 -4.498 4.931 0.252 17.47 1.00 0.674 0.023 25.08 1.00  

6 -1.600 3.939 0.285 5.27 1.00 0.376 0.059 4.71 1.00  

7 -0.853 3.028 0.153 4.91 1.00 0.271 0.038 4.57 1.00  
 
 

TABLE IX Performance indices of system II 
 1eP  2eP  3eP  4eP  5eP  6eP  7eP  8eP  

1PIC  0.0770 0.0571 0.1414 0.0845 0.1208 0.0678 0.2051 0.4106 

1PID  0.0759 0.0428 0.0765 0.0607 0.0777 0.0519 0.1087 0.1385 

2PIC  0.0066 0.0023 0.0146 0.0058 0.0124 0.0033 0.0175 0.1069 

2PID  0.0068 0.0020 0.0096 0.0047 0.0093 0.0029 0.0051 0.0121 

 


