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Abstract 

CD4 T cells are key for priming and regulating immune recognition of infected and 

cancer cells, but predictions of class II epitopes have limited accuracy. We combined 

unbiased Mass Spectrometry-based HLA-II peptidomics with a novel motif 

deconvolution algorithm to profile and analyze a total of 99’265 unique HLA-II ligands. 

Our work demonstrates substantial improvement in the definition of HLA-II binding 

motifs and enhanced accuracy in class II epitope predictions. 

 

Main 

Antigen presenting cells (APCs) display on their surface peptides bound to class II 

Human Leukocyte Antigen molecules (HLA-II). In the case of infections or cancer, 

presentation by APCs and recognition by CD4+ T cells of non-self-peptides or tumor-

associated antigens are key to initiate and sustain an immune response1–4. The binding 

of peptides to their cognate HLA-II alleles is thus of fundamental importance. However, 

analysis of binding specificity of HLA-II alleles is challenging due to their high 

polymorphism and the open binding groove that allows peptides of diverse sizes to bind. 

This makes alignment of HLA-II ligands difficult, especially in HLA peptidomics data 

where peptides found in a sample come from multiple alleles. Accordingly, class II 

epitope predictions display low accuracy5,6. Recent developments in HLA peptidomics7–9 

are promising to improve epitope predictions, as shown in multiple studies of HLA-I 

molecules10–14. However, similar improvements in class II epitope predictions have not 

been observed and early studies have been restricted to very few (1 to 3) HLA-II 

alleles8,15. 
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Here, we profiled the HLA-II peptidome of 13 different cell lines or tissue samples and 

identified 40’864 unique HLA-II ligands. We completed these data with our recent 

publication7 to reach a total of 77’189 unique peptides from 23 different cell lines or 

tissue samples (see Methods, Fig. 1a, Suppl. Table 1 and Suppl. Data 1), making it the 

largest dataset of HLA-II ligands available to date. To analyze these data, we developed 

MoDec, a novel Motif Deconvolution algorithm (see Methods). Unlike previous 

approaches to analyze HLA-II ligands that attempted to align the peptides16,17, MoDec is 

a fully probabilistic framework that allows motifs to be found everywhere on the 

peptide sequences and learns both the motifs as well as their respective weights and 

preferred binding core position offsets (Fig. 1b). MoDec shows conceptual similarity 

with convolutional neural networks (each motif can be thought of as a filter) but 

provides direct interpretation and visualization of the results as sequence logos (Fig. 

1b). Applying MoDec to our data, we found an abundance of motifs (Suppl. Fig. 1). HLA-II 

binding motifs identified across samples with shared HLA-II alleles displayed very high 

similarity (Fig. 1c and Suppl. Fig. 2). This demonstrates high reproducibility of our motif 

deconvolution approach and enabled us to unambiguously annotate the different motifs 

to their respective alleles.  Comparison with known motifs from databases such as 

IEDB18, or predictions from NetMHCIIpan19 showed some similarity but also some 

important differences (Suppl. Fig. 2). In particular, the motifs deconvolved from HLA-II 

peptidomics data tend to show clearer anchor residues and some motifs displayed a 

novel type of binding specificity (Suppl. Fig. 2).  

 

The clearest and most frequent motifs that we identified correspond to HLA-DR alleles. 

To further validate them, we sequentially purified first the HLA-DR molecules with anti-
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HLA-DR antibody and then the remaining HLA-II molecules with a pan-HLA-II antibody 

(42’903 and 27’692 unique peptides respectively, leading to a total of 99’265 unique 

peptides across all our samples, see Methods and Suppl. Data 2). We observed that the 

motifs deconvolved from HLA-DR peptidomes are identical to those assigned to HLA-DR 

alleles from the pan-HLA-II peptidomes (Fig. 1d and Suppl. Fig. 3). In addition, in the 

HLA-DR-depleted samples, all motifs previously predicted to correspond to HLA-DP or -

DQ alleles could be found, indicating that our motif deconvolution approach in pan-HLA-

II peptidomes is not restricted to HLA-DR motifs and that MoDec performs well in pan–

HLA-II data (Fig. 1d and Suppl. Fig. 3). Compared to other motif deconvolution 

methods17,20, MoDec shows improved resolution and is 100-10’000 times faster (Suppl. 

Fig. 4), making it particularly well suited for deconvolution in large HLA-II peptidomics 

samples. 

 

We next investigated properties of naturally presented HLA-II ligands beyond the 

binding specificity of HLA-II alleles. We first grouped all our HLA-II ligands and used 

MoDec to identify motifs occurring three amino acids upstream and downstream of the 

N- or C-terminus of the peptides (see Methods). Multiple motifs appeared (Suppl. Fig. 

5a-b), some of which had been suggested to represent different peptide processing and 

cleavage pathways21. The specificity was in general stronger for amino acids inside the 

peptide than those in flanking regions (Suppl. Fig. 5a-b). In particular, clear enrichment 

was observed for proline two residues downstream of the N-terminus and upstream of 

the C-terminus, confirming previous observations made for a limited number of 

alleles15,21. All alleles showed such a proline enrichment (Suppl. Fig. 5c-d). Binding assay 

experiments for three HLA-DRB1 alleles demonstrate that the binding affinity is similar 

between peptides containing proline or alanine at the 2nd position (Suppl. Fig. 5e), 
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validating the hypothesis that proline enrichment is due to the peptide processing and 

loading independently of the binding specificity of the HLA-II molecules. We then 

observed that the peptide length distribution was conserved between HLA-II alleles 

(Suppl. Fig. 6a), unlike for HLA-I alleles22. The distribution of binding core offsets was 

also independent of the alleles (Suppl. Fig. 6b), with a slight shift of the core towards the 

C-terminus (i.e. slightly more amino acids extend outside of the binding core on the N-

terminus than the C-terminus). 

 

We then took advantage of our deconvolved HLA-II peptidomics datasets to train a 

predictor of HLA-II ligands (MixMHC2pred, see Methods). This predictor combines 

allele-specific peptide binding motifs and allele-independent peptide N-/C-terminal 

motifs, peptide length and binding core offset preferences (see Methods). We first 

performed predictions on multiple HLA-II peptidomics datasets from independent 

studies (Suppl. Table 2) and observed improved accuracy with our predictor compared 

to NetMHCIIpan19, the state-of-the-art predictor for HLA-II ligands (Fig. 2a, Suppl. 

Fig. 7). These results also show the superiority of the full predictor combining the 

binding motifs, N-/C-terminal motifs, peptide length and binding core offset, compared 

to a predictor based only on the binding motifs or a combination of the binding motifs 

with any of the other allele-independent characteristics (Fig. 2a, Suppl. Fig. 7). To 

investigate whether MixMHC2pred was appropriate not only for HLA-II ligands but also 

for class II epitope predictions, we compiled all CD4+ T cell tetramer assays found in 

IEDB18. Receiver operating characteristic (ROC) curve analysis showed that 

MixMHC2pred was more accurate than NetMHCIIpan (Fig. 2b). We further surveyed a 

set of several known melanoma-associated antigens and viral and bacterial proteins 

(Suppl. Table 3a and Methods). Top hits from MixMHC2pred and from NetMHCIIpan for 
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tumor-associated antigens (top 30 peptides) and viral/bacterial antigens (top 30 

peptides) were tested for class II immunogenicity in two melanoma patients (Suppl. 

Table 3b and Methods). Our results show an enrichment for immunogenic epitopes 

among the predictions of MixMHC2pred versus NetMHCIIpan (Fig. 2c, Matthews 

correlation coefficients of 0.16 and 0.16 for MixMHC2pred versus -0.17 and -0.058 for 

NetMHCIIpan). The same peptides were also tested with CD4+ T cells from a healthy 

donor resulting in many correctly predicted epitopes and similar yield between the two 

predictors (Suppl. Fig. 8a). We next took advantage of a class II immunogenic mutation 

(D246N in SGOL1) that was recently identified in an ovarian cancer patient by screening 

tumor infiltrating lymphocytes (TILs) with minigenes (see Methods and Suppl. Fig. 9). 

To determine the actual epitope, we applied both MixMHC2pred and NetMHCIIpan on 

the 31-mer coded by the minigene initially used to test immunogenicity. The results 

indicate that here again our approach could accurately predict the actual epitope from 

the 31-mer (Fig. 2d, Suppl. Fig. 10 and Methods). 

 

By combining in-depth HLA-II peptidomics data of 49 different samples together with a 

novel motif deconvolution approach (MoDec), we show that we can capitalize on 

accurate and unbiased MS profiling of HLA-II ligands for class II epitope predictions. The 

very high similarity between HLA-DR motifs identified in pan-HLA-II and HLA-DR 

peptidomes shows that all HLA-DR motifs can be accurately resolved in the pan-HLA-II 

samples with MoDec. This indicates that mono-allelic samples are not needed to 

determine HLA-DR motifs, thereby greatly reducing the amount of experimental work of 

future studies. Whether increased detection efficacy could be obtained by using anti-

HLA-DP and anti-HLA-DQ antibodies remains to be seen and our motif deconvolution 

tool may prove highly valuable to analyze such data once they become available. 
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Although our approach may still not capture the full complexity of class II antigen 

presentation (e.g., differences between endocytic and phagocytic pathways1), the use of 

MS data enabled us to incorporate N- and C-terminal motifs, as well as peptide length 

and binding core offset preferences, in addition to binding specificity of HLA-II alleles. 

The large allele coverage (especially for HLA-DR alleles) makes our predictor suitable 

for a wide range of applications in infectious diseases, autoimmunity and cancer 

immunotherapy. 

 

Methods 

Methods and any associated references are available in the online version of the paper. 
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Online Methods 

Cells and patient material 

EBV-transformed human B-cell lines JY (ATCC® 77442™, Manassas, Virginia), CD165, 

PD42, CM467, RA957, BP455, GD149 (a gift from Pedro Romero, Ludwig Cancer 

Research Lausanne), were maintained in RPMI 1640 + GlutaMAX medium (Life 

Technologies, Carlsbad, California) supplemented with 10% heat-inactivated FBS 

(Dominique Dutscher, Brumath, France) and 1% Penicillin/Streptomycin Solution 

(BioConcept, San Diego, California). Cells were grown to the required cell amount, 

collected by centrifugation at 1,200 rpm for 5 min, washed twice with ice cold PBS and 

stored as dry cell pellets at -20°C until use. 

T-cells were expanded from two melanoma tumors as previously described7,11 following 

established protocols23,24. Briefly, fresh tumor samples were cut in small fragments and 

placed in 24-well plates containing RPMI CTS grade (Life Technologies), 10% Human 

serum (Valley Biomedical, Winchester, Virginia), 0.025 M HEPES (Life Technologies), 55 μmol/L 2- Mercaptoethanol (Life Technologies) and supplemented with a high 
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concentration of IL-2 (Proleukin, 6,000 IU/mL, Novartis, Basel, Switzerland) for three to 

five weeks. 25 x106 TIL were stimulated with irradiated feeder cells, anti-CD3 (OKT3, 30 

ng/mL, Miltenyi biotec) and high dose IL-2 (3,000 IU/mL) for 14 days. The cells were 

washed using a cell harvester (LoVo, Fresenius Kabi, Lake County, Illinois). Finally, the 

cells were washed with PBS on ice, aliquoted to a cell count of 1 x 108 and stored as dry 

pellets at -80°C until use. 

Snap frozen meningioma tissues from patients (3808-HMC, 3830-NJF, 3849-BR, 3865-

DM, 3869-GA, 3911-ME, 3912-BAM, 3947-GA, 3971-ORA, 3993, 4001, 4021, 4037-DC, 

4052-BA) were obtained from the Centre hospitalier universitaire vaudois (CHUV, 

Lausanne, Switzerland).  Informed consent of the participants was obtained following 

requirements of the institutional review board (Ethics Commission, CHUV). Protocol F-

25/99 has been approved by the local Ethics committee and the biobank of the Lab of 

Brain Tumor Biology and Genetics. Protocol 2017-00305 for Antigens and T cells 

discovery in tumors has been approved by the local Ethics committee. 

 

HLA typing 

Genomic DNA was extracted using DNeasy kit from Qiagen and 500 ng of gDNA were 

used to amplify HLA genes by PCR. High resolution 4-digit HLA typing was performed 

with the TruSight HLA v2 Sequencing Panel from Illumina on a MiniSeq instrument 

(Illumina). Sequencing data were analyzed with the Assign TruSight HLA v2.1 software 

(Illumina) and are provided as Suppl. Table 1. 
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Generation of antibody-crosslinked beads 

Anti-pan-HLA-II and anti-HLA-DR monoclonal antibodies were purified from the 

supernatant of HB145 (ATCC® HB-145™) and HB298 cells (ATCC® HB-298™), 

respectively, grown in CELLLine CL-1000 flasks (Sigma-Aldrich, St. Louis, Missouri) 

using Protein A-Sepharose 4B beads (Pro-A beads; Invitrogen, Carlsbad, California). 

Antibodies were cross-linked to Pro-A beads at a concentration of 5 mg of antibodies per 

1 mL volume of beads. For this purpose, the antibodies were incubated with the Pro-A 

beads for 1 hour at room temperature. Chemical cross-linking was performed by 

addition of Dimethyl pimelimidate dihydrochloride (Sigma-Aldrich) in 0.2 M Sodium 

Borate buffer pH 9 (Sigma-Aldrich) at a final concentration of 20 mM for 30 minutes. 

The reaction was quenched by incubation with 0.2 M ethanolamine pH 8 (Sigma-

Aldrich) for 2 hours. Cross-linked antibodies were kept at 4°C until use.  

 

Purification of HLA-II and HLA-DR peptides 

Cells were lysed in PBS containing 0.25% sodium deoxycholate (Sigma-Aldrich), 0.2 mM 

iodoacetamide (Sigma-Aldrich), 1 mM EDTA, 1:200 Protease Inhibitors Cocktail (Sigma-

Aldrich), 1 mM Phenylmethylsulfonylfluoride (Roche, Basel, Switzerland), 1% octyl-

beta-D glucopyranoside (Sigma-Aldrich) at 4°C for 1 hour. The lysis buffer was added to 

the cells at a concentration of 1 x 108 cells/mL. Cell lysates were cleared by 

centrifugation with a table-top centrifuge (Eppendorf Centrifuge, Hamburg, Germany) at 

4°C at 14,200 rpm for 50 min. Meningioma tissues were placed in tubes containing the 

same lysis buffer and homogenized on ice in 3-5 short intervals of 5 seconds each using 

an Ultra Turrax homogenizer (IKA, Staufen, Germany) at maximum speed. For one gram 

of tissue, 10 to 12 mL of lysis buffer was required. Cell lysis was performed at 4°C for 1 
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hour. Tissue lysates were cleared by centrifugation at 20,000 rpm in a high-speed 

centrifuge (Beckman Coulter, JSS15314, Nyon, Switzerland) at 4°C for 50 minutes. The 

cells and tissue lysates were loaded on stacked 96-well single-use micro-plates (3µm 

glass fiber, 10µm polypropylene membranes; ref number 360063, Seahorse Bioscience, 

North Billerica, Massachusetts). Purification of pan-HLA-II peptides were performed 

following depletion of HLA-I as previously described7. For the sequential purification of 

HLA-DR and HLA-II from tissues, three plates were used. The first plate contained 

protein-A sepharose 4B (Pro-A) beads (Invitrogen, Carlsbad, California) for depletion of 

antibodies (pre-clear plate), the second plate contained same beads cross-linked to the 

anti HLA-DR monoclonal antibodies and the third plate contained the beads cross-linked 

to anti HLA-II monoclonal antibodies. For the sequential purification of HLA-DR and 

HLA-II from cells, only the last two plates were used. The Waters Positive Pressure-96 

Processor (Waters, Milford, Massachusetts) was employed. The second and third plates 

were washed separately with 4 times 2 mL of 150 mM sodium chloride (NaCl) (Carlo-

Erba, Val de Reuil, France) in 20 mM Tris-HCl pH 8, 4 times 2 mL of 400 mM NaCl in 20 

mM Tris-HCl pH 8 and again with 4 times 2 mL of 150 mM NaCl in 20 mM Tris-HCl pH 8. 

Finally, the plates were washed twice with 2 mL of 20 mM Tris-HCl pH 8. Each affinity 

plate was stacked on top of a Sep-Pak tC18 100 mg Sorbent 96-well plate (ref number: 

186002321, Waters) already equilibrated with 1 mL of 80% acetonitrile (ACN) in 0.1 % 

TFA and with 2 mL of 0.1% TFA. The HLA and peptides were eluted with 500 µL 1% TFA 

into the Sep-Pak plate and then we washed this plate with 2 mL of 0.1 % TFA. 

Thereafter, HLA-II and HLA-DR peptides were eluted with 500 µL of 32% ACN in 0.1% 

TFA into a collection plate. Recovered HLA-II and HLA-DR peptides were dried using 

vacuum centrifugation (Concentrator plus Eppendorf) and stored at -20°C. 
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LC-MS/MS analyses of HLA-II peptides 

Prior to MS analysis HLA-II and HLA-DR peptide samples were re-suspended in 10 µL of 

2% ACN in 0.1 % FA and aliquots of 3 uL for each MS run were placed in the Ultra HPLC 

autosampler. HLA peptides were separated by a nanoflow HPLC (Proxeon Biosystems, 

Thermo Fisher Scientific, Odense) coupled on-line to a Q Exactive HF or HFX mass 

spectrometers (Thermo Fisher Scientific, Bremen) with a nanoelectrospray ion source 

(Proxeon Biosystems). We packed a 20 cm long, 75 μm inner diameter column with 
ReproSil-Pur C18-AQ 1.9 μm resin (Dr. Maisch GmbH, Ammerbuch-Entringen, Germany) 

in buffer A (0.5% acetic acid). Peptides were eluted with a linear gradient of 2–30% 

buffer B (80% ACN and 0.5% acetic acid) at a flow rate of 250 nl/min over 90 min. Data 

was acquired using a data-dependent ‘top 10’ method. Full scan MS spectra were 

acquired at a resolution of 70,000 at 200 m/z with an Auto gain control (AGC) target 

value of 3e6 ions. Ten most abundant ions were sequentially isolated, activated by 

Higher-energy Collisional Dissociation and accumulated to an AGC target value of 1e5 

with a maximum injection time of 120 ms. In case of assigned precursor ion charge 

states of one, and from six and above, no fragmentation was performed. MS/MS 

resolution was set to 17,500 at 200 m/z. Selected ions from Ions were dynamically 

excluded for additional fragmentation for 20 seconds. The peptide match option was 

disabled. The raw files and MaxQuant output tables will be available with the peer 

reviewed version of this manuscript. 

 

Peptide identification 

We employed the MaxQuant platform26 version 1.5.5.1 to search the peak lists against a 

fasta file containing the human proteome (Homo_sapiens_UP000005640_9606, the 

reviewed part of UniProt, with no isoforms, including 21,026 entries downloaded in 
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 14 HLA-II motif deconvolution for robust epitope predictions 

March 2017) and a  list of 247 frequently observed contaminants. Peptides with a length 

between 8 and 25 AA were allowed. The second peptide identification option in 

Andromeda was enabled. The enzyme specificity was set as unspecific. A false discovery 

rate (FDR) of 1% was required for peptides and no protein FDR was set. The initial 

allowed mass deviation of the precursor ion was set to 6 ppm and the maximum 

fragment mass deviation was set to 20 ppm. Methionine oxidation and N-terminal 

acetylation were set as variable modifications. The Peptide output files summarizing 

MaxQuant result files are provided as Supplementary Data 1 and 2.  

 

Motif deconvolution algorithm for HLA-II peptidomics 

In HLA-II peptidomics data, the HLA-II ligands are coming from different alleles, are of 

different lengths, and their binding core positions are a priori unknown. To account for 

this, and building upon the successful application of the mixture model to HLA-I 

peptidomics10, we developed a probabilistic framework able to learn multiple motifs 

anywhere on the peptides, as well as the weights and binding core offsets of these 

motifs. The log-likelihood is given by the following equation (see also Fig. 1b): 

 log(ℒ) = ��𝑊𝑊𝑛𝑛 ∙ log�� � 𝑤𝑤𝑘𝑘,𝑠𝑠�𝜃𝜃𝑙𝑙,𝑥𝑥𝑙𝑙⊕𝑠𝑠𝑛𝑛𝑘𝑘𝑓𝑓𝑥𝑥𝑙𝑙⊕𝑠𝑠𝑛𝑛
𝐿𝐿
𝑙𝑙=1

𝑆𝑆
𝑠𝑠=−𝑆𝑆

𝐾𝐾
𝑘𝑘=0 ��𝑁𝑁

𝑛𝑛=1 + log�P(𝜃𝜃)� (1) 

where N is the number of peptides; Wn is the similarity weight of nth peptide (see 

below); K is the number of motifs; S is the maximal binding core offset (𝑆𝑆 = �𝑚𝑚𝑚𝑚𝑥𝑥𝑛𝑛(𝜆𝜆𝑛𝑛)−𝐿𝐿2 �, 
where λn is the length of nth peptide); wk,s is the weight of motif k with binding core 

offset s (∑ ∑ 𝑤𝑤𝑘𝑘,𝑠𝑠𝑠𝑠𝑘𝑘 = 1); L is the binding motif length (equal to 9 here since HLA-II 

ligands are known to bind with a 9-mer core); θ kl,i represent the binding motifs (with ∑ 𝜃𝜃𝑙𝑙,𝑖𝑖𝑘𝑘𝑖𝑖 = 1; k=0 is a special case of a flat motif: 𝜃𝜃𝑙𝑙,𝑖𝑖0 ≝ ℎ𝑖𝑖 , where hi are the amino acid 
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frequencies in the human proteome (this motif is used to model potential contaminant 

peptides)); xnj indicates which amino acid is found in peptide n at the position j (when xnj 

is not defined (i.e. j<1 or j>λn), then 𝜃𝜃𝑙𝑙,𝑥𝑥𝑗𝑗𝑛𝑛𝑘𝑘 ≝ 0); fi is the expected background frequency 

in HLA-II peptidomics data for amino acid i; and P(θ) is a Dirichlet prior term (with the 

hyper-parameter equal to 0.1)27. The “𝑙𝑙 ⊕ 𝑠𝑠” in 𝑥𝑥𝑙𝑙⊕𝑠𝑠𝑛𝑛  is a “special sum” that makes that 

the binding core offsets are symmetric around 0 for each peptide (see Supplementary 

Note). A peptide similarity weight is given by 𝑊𝑊𝑛𝑛 = 1 𝑆𝑆𝑠𝑠𝑖𝑖𝑚𝑚𝑛𝑛� , where Snsim represents the 

average number of times each 9-mer from the nth peptide is observed in the full dataset. 

This is useful since multiple overlapping HLA-II ligands from the same source region are 

typically found by MS. 

 

Unlike the previous approaches for HLA class I10,11, our model does not need previous 

peptide alignment, learns the binding core offsets of the motifs and includes peptide 

similarity weights. MoDec estimates the parameters θ and w based on expectation-

maximization (see Suppl. Note for details). Although our framework is fully 

probabilistic, peptide responsibilities are derived during the expectation-maximization, 

and these can be used to predict to which motif each peptide is most likely associated 

and with which binding core offset. Multiple runs (250 in this study) are performed by 

MoDec to optimize the log-likelihood of equation (1), starting from different initial 

conditions, considering all peptides of length 12 or more. As HLA-DR ligands have 

preference for hydrophobic amino acids at position 1, we implemented the possibility to 

include such a bias in a subset of the initial conditions used in the optimization by 

MoDec. 
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 16 HLA-II motif deconvolution for robust epitope predictions 

Binding motifs determined by MoDec are visualized with ggseqlogo28. 

 

The optimal number of motifs (K) was first determined using the Akaike Information 

Criterion (AIC): 

 
AIC = 2 ∙ 𝑛𝑛params − 2 ∙ log(ℒ) 

= 2 ∙ (𝐾𝐾 ∙ (𝑛𝑛𝑚𝑚𝑚𝑚 − 1) ∙ 𝐿𝐿 + (2 ∙ 𝑆𝑆 + 1) ∙ (𝐾𝐾 + 1) − 1) − 2 ∙ log(ℒ) 
(2) 

where nparams is the number of free parameters, naa is the number of different amino 

acids (20) and the other parameters have been defined earlier. This Akaike Information 

criterion is commonly used in information theory to determine the information gained 

from using a model with more parameters over a simpler model (the smallest AIC value 

the better). However, as with HLA-I peptidomics data10 (and more generally with many 

clustering approaches), the optimal number of motifs is difficult to determine in a fully 

unsupervised way. We therefore explored additional motifs, tried further splitting 

specific motifs, and manually curated each dataset for consistency across samples. 

Comparison between the numbers of motifs manually curated or determined by the AIC 

shows that in most cases the correct number of motifs would have been found with AIC 

and in 80% of the cases the error when using this criterion would be at most of 1 motif 

(Supplementary Fig. 11), suggesting that AIC is a good starting point for the selection of 

the optimal number of motifs. 

 

Assignment of motifs to alleles 

To annotate the different motifs to their respective alleles, we used an iterative 

approach: we considered all samples that share a given allele and determined if a motif 

was shared between all these samples. To decide which motifs are shared, we used the 
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 17 HLA-II motif deconvolution for robust epitope predictions 

Kullback-Leibler divergence between the motifs (KLD(𝑘𝑘,𝑚𝑚) = −∑ ∑ 𝜃𝜃𝑙𝑙,𝑖𝑖𝑘𝑘𝑖𝑖 ∙ log �𝜃𝜃𝑙𝑙,𝑖𝑖𝑚𝑚𝜃𝜃𝑙𝑙,𝑖𝑖𝑘𝑘 �𝑙𝑙 <

 KLDthr) for a given threshold (KLDthr comprised between 1 and 1.75 depending on the 

iteration). Each iteration consists in checking for each allele, one after the other, if we 

can assign a motif to this allele. In the first 5 iterations, at least 75% of the samples 

containing the given allele had to share a motif in order to assign this motif to the given 

allele (in later iterations, the threshold of samples is decreased to 60%), with the 

additional requirement that no other allele was shared by these samples. By repeating 

these iterations multiple times, various motifs could be annotated to their respective 

allele. All annotations were further manually curated, allowing for example the 

annotation of HLA-DRB1*01:02 (that is highly similar to HLA-DRB1*01:01 but with only 

the PD42 sample expressing this allele – see Suppl. Fig. 2). 

 

For the binding motifs from IEDB18 database, we downloaded the full MHC ligand data 

(http://www.iedb.org/database_export_v3.php, version from 28.01.2018) and filtered 

this data to remove peptides obtained from mass spectrometry (since for many of them  

allele restriction information is based on predictions) and to keep only the peptides 

described as “Positive-High” binders. MoDec was run considering a single motif on the 

resulting list of peptides per allele. The corresponding motifs are shown in Suppl. Fig. 2. 

 

Binding motifs from NetMHCIIpan19 were determined in the following way: 16’000 

random human peptides (2’000 of each length between 12 and 19 amino acids) were 

inputted into NetMHCIIpan. For each allele, the peptides with a “%Rank” better than 5 

were kept and ggseqlogo28 was used to draw the motifs from the corresponding “Core” 

sequences returned by NetMHCIIpan. 
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 18 HLA-II motif deconvolution for robust epitope predictions 

 

Comparison to other motif deconvolution methods 

We compared the motifs found by MoDec with those predicted by Gibbscluster (version 

2.017)  and MEME version 4.1220 (Suppl. Fig. 4). For a comparison of the timing, the tools 

were launched on a single 3.3 GHz CPU with 2 GB of RAM, searching for 1 to 8 motifs in 

various samples. 

 

Gibbscluster was run with the recommended parameters for HLA-II (5 seeds for the 

initial conditions, an initial MC temperature of 1.5, using a trash cluster with a threshold 

of 2 for this cluster, the rest being left unchanged). Gibbscluster suggests using a 

Kullback-Leibler criterion to select the optimal number of clusters from their 

deconvolution. In some cases, manual curation allowed to find additional clusters that 

had similarity with known HLA-II motifs, and we show the results of Gibbscluster 

including these additional clusters in Suppl. Figure 4. 

 

MEME was run setting a motif width of 9, a maximum dataset size of 10’000’000 

(needed due to the size of the samples) and the rest was left at default. 

 

Investigation of properties of HLA-II ligands other than binding specificity 

Analysis of N- and C-terminal flanking motifs was done with MoDec by taking the three 

amino acids upstream and downstream of the N-/C-terminus of the peptides that could 

be assigned to alleles (i.e., the peptides were extended based on their protein of origin to 

include the three amino acids upstream of N-terminus and downstream of C-terminus). 
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 19 HLA-II motif deconvolution for robust epitope predictions 

The peptide length distributions, binding core offset distributions and frequencies of 

proline two residues downstream of the N-terminus and upstream of the C-terminus, 

were computed for all peptides associated to each allele. 

 

 

Binding affinity assays 

Peptide binding affinity (Suppl. Fig. 5e) was assessed by peptide competition assay. For 

each peptide, eight wells of a v-bottom 96-well plate (Greiner Bio-One) were filled with 100 μl of each recombinant “empty” DR1, DR4 or DR7 protein (1 μg) in a citrate saline buffer (100 mM citrate pH 6.0), with 0.2% β-octyl- glucopyranoside (Calbiochem), 

1xcomplete protease inhibitors (Roche) and 2 μM FLAG-HA307-319 peptide. Competitor 

peptides (10 mM DMSO solution) were added to each well to a final concentration of either 100, 33, 11, 3.7, 1.2, 0.4, 0.1 and 0 μM for DR1 and DR4 or 100, 33, 11, 3.7, 1.2, 0.4, 
0.1 and 0 nM for DR7. After incubation at 37 

o
C overnight, 100 μl was transferred to a plate coated with avidin (2 μg/ml) and previously blocked. After 1 h of incubation at RT 

and three washes with 1xPBS pH 7.4, 0.05% Tween 20, anti-FLAG-alkaline phosphatase 

conjugate (Sigma) was added as 1:5,000. After 1 h, the plate was washed as previously 

described and developed with pNPP SigmaFAST substrate and absorbance read with the 

405 nm filter. 

 

MixMHC2pred – a predictor of HLA-II ligands 

We trained a predictor of HLA-II ligands (MixMHC2pred) using all our HLA-II 

peptidomics data (including the pan-HLA-II, HLA-DR and HLA-DR depleted peptidomics 

data). For a given allele, a, and peptide, n, the binding score is given by: 
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 𝐵𝐵𝑛𝑛𝑚𝑚 = �� 𝑤𝑤𝑠𝑠�𝜃̅𝜃𝑙𝑙,𝑥𝑥𝑙𝑙⊕𝑠𝑠𝑛𝑛𝑚𝑚𝑓𝑓𝑥𝑥𝑙𝑙⊕𝑠𝑠𝑛𝑛
𝐿𝐿
𝑙𝑙=1

𝑆𝑆
𝑠𝑠=−𝑆𝑆 � ∙ ��𝑤𝑤𝑘𝑘𝑁𝑁�𝜈̅𝜈𝑙𝑙,𝑥𝑥𝑙𝑙𝑛𝑛𝑘𝑘𝑓𝑓𝑥𝑥𝑙𝑙𝑛𝑛3

𝑙𝑙=1
3

𝑘𝑘=0 � ∙ ��𝑤𝑤𝑘𝑘𝐶𝐶 � 𝛾̅𝛾𝑙𝑙,𝑥𝑥𝑙𝑙𝑛𝑛𝑘𝑘𝑓𝑓𝑥𝑥𝑙𝑙𝑛𝑛𝜆𝜆𝑛𝑛
𝑙𝑙=𝜆𝜆𝑛𝑛−2

3
𝑘𝑘=0 � (3) 

where ws represents the global binding core offset preference (computed combining all 

peptides associated to an allele); 𝜃̅𝜃𝑙𝑙,𝑖𝑖𝑚𝑚  is the position probability matrix for allele a 

(computed from all peptides associated to this allele with their respective binding core 

offset based on the highest responsibility value, and adding pseudocounts based on the 

BLOSUM62 substitution matrix with a parameter β=20029); 𝜈̅𝜈𝑙𝑙,𝑖𝑖𝑘𝑘  and 𝛾̅𝛾𝑙𝑙,𝑖𝑖𝑘𝑘  are similar 

matrices representing the N- and C-terminal motifs (Suppl. Fig. 5a-b; including here only 

the amino acids within the peptides); wNk and wCk represent the relative contributions of 

the N-/C-terminal motifs (i.e. the fraction of peptides assigned to each of these motifs). 

See Equation (1) for the definition of other terms. 

 

This binding score is then transformed to a percentile rank per peptide length by 

comparing it to the score of 10’000 random human peptides of the same length, and 

then further transformed to a global percentile rank by making that the top 1% random 

human peptides follow the same peptide length distribution than the global peptide 

length distribution observed in our HLA-II peptidomics data. Finally, when the score 

among multiple alleles is requested, the score from each peptide is taken as its best 

percentile rank among all the alleles. 

 

Benchmarking HLA-II ligand predictions 

The accuracy of MixMHC2pred was tested in multiple independent HLA-II peptidomics 

datasets2,8,30–34 (Suppl. Table 2). The positives were the peptides of length 12-19 amino 

acids observed in these samples (removing all the peptides that were also part of the 
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training data from MixMHC2pred for any of the alleles from a given sample). In each 

sample, we then added 4 times more negatives by randomly sampling human peptides 

of length 12-19 amino acids. 

 

Predictions with MixMHC2pred and its different variants (see Fig. 2a) were compared 

with those from NetMHCIIpan (version 3.219 with default parameters) based on the 

HLA-II typing provided in these studies (Suppl. Table 2). The area under the curve (AUC) 

of the receiver operating characteristic (ROC) curve was computed for each sample 

separately (Fig. 2a and Suppl. Fig. 7). 

 

Benchmarking predictions of epitopes from tetramer assays 

All the multimer/tetramer assay data for human CD4+ T cells from the IEDB database18 

were downloaded (as of 20.07.2018). We then filtered this data to remove peptides with 

non-standard amino acids and to keep peptides of length 12 and longer that were 

associated to a known allele based on the “Allele evidence codes”: “MHC binding assay” 

or “T cell assay -Single MHC type present”. Only interactions involving alleles available 

in MixMHC2pred were considered. 

 

Predictions with MixMHC2pred and NetMHCIIpan version 3.219 were performed for 

each peptide with its associated HLA-II allele, both for the positive (1’319 peptides) and 

the negative (1’040 peptides) cases. The corresponding ROC curve and its AUC are 

showed in Fig. 2b. 
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Selection of candidate viral, bacterial and tumor-associated epitopes 

To further benchmark MixMHC2pred, we retrieved a list of known viral, bacterial and 

melanoma-associated proteins (Suppl. Table 3a) and tested their immunogenicity in two 

HLA-DRB1*07:01 positive melanoma patients and one HLA-DRB1*07:01 positive 

healthy donor. Each protein was cut into 20-mers overlapping by 10 amino acids in 

order to cover all possible 9-mer cores. These 20-mer peptides were then ranked 

according to the predicted affinity towards HLA-DRB1*07:01 (considering the highest 

predicted affinity from the 15-mer sub-sequences in each peptide). We then selected the 

30 best scoring potential epitopes from the viral/bacterial proteins and the 30 best 

scoring potential epitopes from the tumor-associated antigens for experimental 

validation, both for the predictions from MixMHC2pred and NetMHCIIpan. 

 

Matthews correlation coefficients were computed based on the epitopes tested 

experimentally (e.g. the true negatives from MixMHC2pred are the peptides that had 

been predicted in the top 60 by NetMHCIIpan but not by MixMHC2pred and that are not 

immunogenic). 

 

Peptide synthesis 

Peptides were synthesized at the Protein and Peptide Chemistry Facility, University of 

Lausanne, Switzerland, by standard solid phase chemistry on a multiple peptide 

synthesiser (Applied Biosystem). All peptides were >90% pure as indicated by analytic 

HPLC. Lyophilised peptides were diluted in pure DMSO at 10 mg/ml and aliquots at 1 

mg/ml in 10% DMSO were prepared and stored at -80°C.  
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In vitro peptide stimulation 

Peripheral blood mononuclear cells (PBMCs) from two HLA-DRB1*07:01 positive 

malignant melanoma patients and from one healthy HLA-DRB1*07:01 positive donor 

were thawed and CD4+ T cells enriched using anti-CD4 microbeads and MiniMACS 

magnetic separation columns (Miltenyi Biotec, Bergisch Gladbach, Germany). CD4+ T 

cells were resuspended in RPMI 1640 (Gibco, Dublin, Ireland) supplemented with 2 mM glutamine, 1% (vol/vol) nonessential amino acids, 50 μM 2β-mercaepthanol, penicillin 

(50 U/ml) and streptomycin (50 µg/ml) (Gibco, Dublin, Ireland), and 8% human serum 

(Blood transfusion center, Bern) (complete medium) and seeded (0.5x106/well) in 48 

well plates to which autologous irradiated (30grey) CD4− T cells were added at a 1:1 

ratio. Pools of the selected viral/bacterial or tumor associated peptides (20-mers, Suppl. 

Table 3b) were added to the wells at a final concentration of 2 μM each. After an 
overnight period in culture, 500µl of media were replaced by fresh media containing 

100IU/ml final of hrIL-2. Every two days the media was refreshed. After 10 days of in 

vitro expansion, cultures were tested for the presence of antigen-reactive CD4+ T cells. 

Aliquots of 105 cells were transferred to individual wells of a 96-well plate and 

stimulated overnight with a mix of multiple peptides distributed in different pools 

according to a specific matrix (Suppl. Fig. 8b). Brefeldin A at 2.5µg/ml (Sigma-Aldrich, 

Missouri, USA) was added to each well. A non-stimulated control was added as well as a 

positive control where cells were stimulated with PMA (Sigma-Aldrich, Missouri, USA) 

and Ionomycine (Sigma-Aldrich, Missouri, USA) at 50ng/ml and 500ng/ml, respectively. 

The following day, cells were collected and stained using anti-CD3-APC (clone UCHT1, 

Beckman Coulter, California, USA) and anti-CD4-FITC antibodies (clone RPA-T4, 

Biolegend, California, USA), Live/dead feasible Aqua dead cell stain (Invitrogen, 

California, USA) for 20 minutes at 4°C. Cells were then washed with PBS, fixed and 
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permeabilized using the FOXP3/transcription kit (Invitrogen, California, USA) 30 

minutes at room temperature. Finally, the cells were stained for intracellular markers 

using anti-IFNγ-PE (clone 4SB3, BD, New Jersey, USA) and anti-TNFα-AF700 antibodies 

(clone Mab11, BD, New Jersey, USA) for 20 minutes at 4°C. Cells were acquired with the 

CYTOFLEX analyzer (Beckman Coulter) and data were analyzed with Flowjo, LLC software (Oregon, USA). Positive wells for IFNγ and/or TNFα were identified (Suppl. Fig. 

8 c-d). Since each individual peptide was only contained in two different pools, by 

matching the positive wells in the matrix individual immunogenic peptide were selected 

and evaluated individually. In a similar procedure that was used to evaluate multiple 

peptides in a matrix format, individual selected peptides were added to newly seeded 

CD4+ T cells and after an overnight incubation the cells were evaluated for their expression of IFNγ and TNFα using the same method as described above (Suppl. Fig. 8 e-

f). 

 

Patient and neoantigen description  

Patient CTE-0007 is a patient with recurrent ovarian cancer. Clinical data and all 

methodologies for the identification of non-synonymous somatic mutations were already 

described35. 

 

Identification and validation of neo-epitope specific CD4+ TILs 

Neoantigen (mutation D246N in SGOL1)-specific CD4+ TILs were identified in patient 

CTE-0007 upon co-culture with tandem minigene-transfected autologous B cells. TILs 

were derived from tumor single cell suspensions and expanded with high-dose IL-2 

(Proleukin, 6’000 IU/mL) for 15 days as previously reported35. In parallel, CD19+ cells 

were isolated from PBMCs using magnetic beads (Miltenyi) and expanded for 14 days 
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with multimeric-CD40L (Adipogen, Epalinges, Switzerland, 1µg/mL) and IL-4 (Miltenyi, 

200 IU/mL). CD40-activated B cells were electroporated using a Neon system 

(Invitrogen) with 1µg in vitro transcribed RNA (Ambion, Foster City, California) coding 

for 31-mers centered on the specific mutations. Following 16 hours of resting post-

electroporation, 105 cells/well of RNA-transfected B cells were co-cultured with TILs at 

a ratio of 1:1 and incubated over-night in pre-coated ELISpot plates (Mabtech, Nacka 

Strand, Sweden). Subsequently, T cell activation was validated by intracellular cytokine 

staining, as described35. Either RNA-transfected B cells or B cells loaded with peptides 

were used as APCs. Neoepitope-reactive CD4+ TILs were sorted using a FACSAria IIu, 

based on CD154 upregulation, as described36. CD154-sorted cells were expanded with 

irradiated feeder cells (PBMCs from two donors) in the presence of OKT3 (Miltenyi, 30 

ng/mL) and IL-2 and further interrogated to identify the predicted candidate epitopes 

by IFN-γ ELISpot. Additionally, HLA-DR (clone L243, in house production) blocking 

antibody was added together with cognate peptides. For HLA-restriction analysis, HLA-

matched or mismatched CD40-activated B cells were loaded with 2µM of the peptide 

SPIFKQKKNLRRS for 2 hours before co-culture. 

 

The candidate epitopes have been selected based on the top 5 predictions from 

MixMHC2pred and NetMHCIIpan among all 13- to 16-mers of the minigene 

(TDLCFLNSPIFKQKKNLRRSKKRALEVSPAK). 

 

Code availability 

MoDec and MixMHC2pred are freely available as a C++ executable 

(https://github.com/GfellerLab) for academic non-commercial research purposes. 
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Figures 

 
Figure 1. Motif deconvolution in HLA-II peptidomics data. (a) Description of our 

pipeline for MS-based HLA-II ligand isolation, motif deconvolution with MoDec and 

training of an HLA-II ligand predictor. (b) Log-likelihood optimized in MoDec (see 

Methods). Below is a graphical interpretation of the model, including multiple sliding 
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motifs of 9 amino acids (θk) and a sum pooling step over all possible positions (s) of the 

9-mer motifs. (c) Motifs identified in four samples sharing exactly one allele (HLA-

DRB1*01:01) and showing exactly one highly conserved motif. (d) Comparison of the 

motifs found in HLA-II peptidomics, HLA-DR peptidomics and HLA-DR-depleted 

peptidomics in the same tissue sample (3830 NJF). 

 

 

 
Figure 2. MixMHC2pred improves the prediction accuracy for HLA-II ligands and 

class II epitopes. (a) Comparison of prediction accuracy of MixMHC2pred (and multiple 

variants) and NetMHCIIpan for HLA-II ligands. Paired Wilcoxon signed rank test is 

performed (**: p-value < 0.01, ***: p-value < 0.001). (b) ROC curve for the predictions of 

all class II epitopes from CD4+ T cell tetramer assays in IEDB18. (c) Euler diagram 

showing the number of potential epitopes from viral, bacterial and melanoma-
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associated antigens that were tested based on MixMHC2pred and NetMHCIIpan 

predictions and how many of these were truly immunogenic (blue circles) in two 

different melanoma patients. (d) Predictions with MixMHC2pred and NetMHCIIpan of 

candidate epitopes in a minigene encoding an ovarian cancer class II immunogenic 

mutation (SGOL1D246N). The bar plot shows the resulting CD4+ T cell response towards 

these epitopes. 
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