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Background: The development of immune checkpoint inhibitors (ICIs) is a revolutionary

milestone in the field of immune-oncology. However, the low response rate is the major

problem of ICI treatment. The recent studies showed that response rate to single-agent

programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) inhibition

in unselected non-small cell lung cancer (NSCLC) patients is 25% so that researchers

defined several biomarkers to predict the response of immunotherapy in ICIs treatment.

Common biomarkers like tumor mutational burden (TMB) and PD-L1 expression have

several limitations, such as low accuracy and inadequately validated cutoff value.

Methods: Two published and an unpublished ICIs treatment NSCLC cohorts with 129

patients were collected and divided into a training cohort (n = 53), a validation cohort (n =

22), and two independent test cohorts (n = 34 and n = 20). We identified six immune-related

pathways whose mutational status was significantly associated with overall survival after

ICIs treatment. Then these pathways mutational status combined with TMB, PD-L1

expression and intratumor heterogeneity were incorporated to build a Bayesian-

regularization neural networks (BRNN) model to predict the ICIs treatment response.

Results:We firstly proved that TMB, PD-L1, andmutant-allele tumor heterogeneity (MATH)

were independent biomarkers. The survival analysis of six immune-related pathways

revealed the mutational status could distinguish overall survival after ICIs treatment. When

predicting immunotherapy efficacy, the overall accuracy of area under curve (AUC) in

validation cohort reaches 0.85, outperforming previous predictors in either sensitivity or

specificity. And the AUC in two independent test cohorts reach 0.74 and 0.80.

Conclusion: We developed a pathway-model that could predict the efficacy of ICIs in

NSCLC patients. Our study made a significant contribution to solving the low prediction

accuracy of immunotherapy of single biomarker. With the accumulation of larger data

sets, further studies are warranted to refine the predictive performance of the approach.
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INTRODUCTION

Immunotherapy is emerging as a beneficial tool for cancer

treatment by activating the immune system to produce antitumor
effects (1). Recently, themost advanced approach to therapeutically

utilize the antitumor activity is via immune checkpoint inhibitors

(ICIs) (2). Immune checkpoint inhibitors work by releasing a

natural brake on patient's immune system so that immune cells

called T cells to recognize and attack tumors (3). Among the ICIs,

programmed cell death protein 1(PD-1)/programmed cell death-
ligand 1(PD-L1) and cytotoxic T-lymphocyte-associated protein 4

(CTLA-4) inhibitors showed promising therapeutic outcomes, and

some have been approved for numerous cancer therapy, such as

melanoma, renal cell carcinoma (RCC), and non-small cell lung

cancer (NSCLC) (4, 5). However, ICIs are not universally effective

for all patients, and many patients fail to respond to ICIs due to

intrinsic resistance or have an initial response followed by disease
progression due to acquired resistance (6). For example, response

rates to single-agent PD-1/PD-L1 inhibition in unselected patients

with melanoma, NSCLC, and RCC are 40% (7, 8), 25% (8, 9), and

19% (10), respectively (11). To identify patientswho aremore likely

to respond to PD-1/PD-L1 blockade as well as other

immunotherapeutics, researchers defined several biomarkers to
predict the response of immunotherapy in cancer treatment. The

commonly used biomarkers include tumor mutational burden

(TMB) and PD-L1 expression (11, 12). Patients with a higher

TMB or higher PD-L1 expression have a higher likelihood of

immunotherapy response. Another novel statistical value,

mutant-allele tumor heterogeneity (MATH), has been

documented that is not only as a measure of intratumor genetic
heterogeneity but also can be used as a biomarker to predict the

response of treatment for patients (13–16). In addition, recent

studies have shown that some pathways, such as IFN-gamma,

NF-kb, and Wnt, are cancer-related immune-regulation pathway,

which may be potential indicators to explore the effect of

immunotherapy (17–20).
Nevertheless, it has been documented that the available

biomarkers have several limitations (21, 22), such as low

accuracy, and inadequately validated cutoff value, and previous

studies only use one or two of them independently in

immunotherapy prediction (23). Therefore, we developed a

pathway-model that included TMB, PD-L1, MATH, and
immune-related pathway to predict the efficiency of ICIs,

especially in NSCLC, which is the leading cause of cancer-

related morality worldwide (24). The pathway-model did not

only have a high accuracy in published cohorts but also be

proven to have an effective prediction ability in GloriousMed

cohort with 20 NSCLC patients. This study made a significant

contribution to solving the low prediction accuracy of
immunotherapy of single biomarker.

MATERIALS AND METHODS

GloriousMed Cohort
Twenty patients with non-small cell lung cancer treated with PD-
1/PD-L1 inhibitors in The Second Xiangya Hospital, Central

South University who had genomic profiling of whole exome

sequencing (WES) before treatment were included in our

GloriousMed cohort (Supplementary Table S1).

TMB was defined as the total number of somatic mutations

per exome in megabases. PD-L1 staining was evaluated centrally

by IHC using 22C3 antibody and an automated staining
procedure developed by Dako. The percentage of PD-L1

expression was scored by a qualified pathologist in samples

with a minimum of 100 viable tumor cells.

Objective response was assessed by investigator-assessed

RECIST 1.1 criteria every 6 weeks (two cycles of ICB

administration). The complete response (CR) or partial
response (PR) was considered as responders, whereas patients

with stable disease (SD) or progressive disease (PD) were

considered as non-responders.

All patients collection and usage were in accordance with the

principles of the Declaration of Helsinki and approved by the

Institution Review Board of The Second Xiangya Hospital,
Central South University. The written informed consent for

sample acquisition was obtained from all patients. All data

were deidentified.

Public Cohorts
Three independent public cohorts including Hellmann cohort

(25), Rizvi cohort (26), and Samstein cohort (27) were also used

in this study. The data for the three independent cohorts were
retrieved from published articles (Supplementary Table S2).

Hellmann cohort included 75 NSCLC patients treated with

combined PD-1 and CTLA-4 blockade. Rizvi cohort included

34 NSCLC patients that treated with pembrolizumab. The

Samstein cohort contained 1,662 patients received

immunotherapy from 11 different cancers.

WES Sequencing
DNA was extracted from FFPE-fixed tumor tissue using QIAamp

DNA FFPE Tissue Kit (Qiagen), and Genomic DNA (gDNA) was

extracted from white blood cells using the Blood Genomic DNA

Mini Kit (Cwbiotech). Integrated DNA Technologies's xGen Exome

Research Panel v1.0 according to the standard procedures (IDT)

were used to capture whole exome. For each sample, 200 to 500 ng
FFPE DNA or 500 ng gDNA was then used for library preparation

and quantification guided by KAPAHyper Prep protocols (KAPA).

Libraries were then purified by AMPure XP (Beckman) and

quantified by Qubit™ dsDNA HS Assay Kit (Thermo Fisher).

Final library was sequenced on the Illumina Novoseq6000 (PE150).

Sequencing adapters were trimmed by Trimmomatic from the raw

data (28). The reads after adapter trimming were then aligned with
the human reference genome hg19 by BWA (29). Duplicated reads

were removed by Picard. Mapped reads were also realigned to the

genome by Genome Analysis Tool Kit. Somatic mutations were

called by Mutect2 with a paired workflow. Variants were then

annotated by ANNOVAR and self-development code (30). An in-

house script was used to verify the human identity concordance of
paired samples. Somatic mutations were filtered with the following

rules: (1) base quality value ≥20; (2) mutation reads depth ≥10; (3)

variant allele frequency ≥5%; (4) reads supporting variation <4 and

frequency <2% in normal, tumor abundance/normal abundance ≥8;
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(5) no strand bias (GATK parameter FS > 60 for SNP and FS >200

for indel); (6) discard synonymous mutations.

Quantitative and Statistical Analyses
TMB and PD-L1 expression of Hellmann cohort and Rizvi

cohort were retrieved from published articles. MATH was

calculated through R package maftools for GloriousMed,
Hellmann and Rizvi cohorts (31). Correlation among TMB,

MATH, and PD-L1 expression (%) were examined by the

Pearson rank correlation method. Correlation between TMB or

MATH and grouped PD-L1 expression were examined by the

Wilcoxon signed-rank test.

The overall survival (OS) was defined from the start of ICIs
treatment until death due to any cause. And the progression-free

survival (PFS) was defined as the time from the start of ICIs

treatment until disease progression. Of notes, the Samstein cohort

merely published OS data and Rizvi cohort provided PFS data. The

Kaplan-Meier method was used to estimate OS or PFS, and the log-

rank test was used to compare the survival curves. All tests with a p

value ≤ 0.05 were considered statistically significant.

Immune-Related Pathway Selection
The detailed profiles of genes involved in HRR, MMR, BER, JAK,

MAPK, PI3K, NF-kB, and Wnt pathways were listed in

Supplementary Table S3. At first, mutational status of

aforementioned six immune-related pathways in every sample

was classified into two categories: the first one assigned with 0
(no non-synonymous mutation) and the second with 1 (at least

one non-synonymous mutation). Then, DDR pathway mutation

status of each sample was classified into three groups based on

the mutational status of HRR, MMR, and BER. “N” represented

no mutation in HRR, MMR, or BER, “C” was stood for co-

mutation between HRR and MMR or BER, and “S” was other

cases. In addition, the mutational status of PI3K, JAK, and NF-
kB were integrated as one variable by summing the

mutational status.

Model Construction
Three models were constructed, one model with TMB, PD-L1

expression, MATH, and immune-related pathways, called

“pathway-model”; a second with TMB, PD-L1 expression, and
MATH, called “tri-model”; the last one, called “bivariate-model”,

with TMB and PD-L1 expression (Table 1). Both TMB and

MATHwere z-score normalized. PD-L1 expression was stratified

as 0% (Z), 1%-49% (L), ≥50% (H), or unknown (N). And

immune-related pathways were processed according to

Immune-Related Pathway Selection. All of the models were

trained via Bayesian Regularized Neural Networks (BRNN)
algorithm using corresponding variables with 2 layers and

default hyperparameters from R package caret (32), and the

resampling method “boot” was used to choose the optimal

model. The cutoff value of single-factor variable, TMB, PD-L1

expression and MATH was estimated by BRNN algorithm as

well. Fifty-three patients of the Hellmann cohort were used as the
training set, and remaining 22 patients were validation set. Rizvi

cohort and GloriousMed cohort were processed as above

description and were used as testing cohort.

Model Performance Evaluation
Receiver operating characteristic (ROC) curves were constructed

with the predictor estimated from each of the previous models
and single-factor variables with roc function of R package pROC

(33). Benefit probability of each patient was extracted from

prediction results, and DCB/NDB information was provided

by the cohorts. Differences between DCB and NDB with

benefit probability were examined by the Wilcoxon signed-

rank test.

Comprehensive Analysis of TCGA LUAD
and LUSC Cohorts
The clinical information, RNA expression, mutational status and

prote in array of The Cancer Genome Atlas Lung

Adenocarcinoma (TCGA LUAD) and Lung Squamous Cell
Carcinoma (LUSC) patients were retrieved from TCGA

database. The patients with EGFR exon 18–21 mutations and

ALK gene fusions were filtered to avoid make a disturbance for

the analysis. In the signature score analysis, the expression of

genes in a signature was normalized in the form of fragments per

kilobase of exon model per million mapped fragments (FPKM).
Then, a principal component analysis (PCA) was performed, and

PC1 was extracted to serve as gene signature score (34). The 18

signatures and their gene sets were summarized from published

papers (34–38). The significantly differential expression analysis

was based on DESeq2 (39). The row counts of LUAD and LUSC

patients were used as input for DESeq2. The differential

expression genes were defined as the genes with absolutely
log2Foldchange ≥ 1 and p-value ≤ 0.05. The oncoplot of top

30 mutated genes were drawn by using R package maftools (31).

RESULTS

TMB, PD-L1 Expression, and MATH Are
Independent Variables
The previous studies documented that higher TMB or PD-L1

expression correlated with better outcomes as compared with

lower TMB or PD-L1 expression (11, 12, 25, 40). However, in
70 of 75 patients from Hellmann cohort who had all three

biomarkers data, correlation between TMB and PD-L1

expression was not significant (R=-0.14, p-value=0.24). TMB

of some patients was more than 10 but PD-L1 expression was

less than 25% (Figure 1A). The results might reveal the

biomarkers were not consistent in response prediction of ICIs

treatment. In the meantime, the novel biomarker MATH was
not significantly correlated with PD-L1 expression (R = −0.2, p-

value = 0.099) or TMB (R = 0.14, p-value = 0.24) as well

(Figures 1B, C). We further explored the correlation between

stratified PD-L1 expression and TMB or MATH by stratifying

PD-L1 expression as 0% (Z), 1% to 49% (L), ≥50% (H), and

unknown (N). Neither MATH nor TMB showed a significant
difference with any PD-L1 expression groups (Figures 1D, E).

The Rizvi and GloriousMed cohort showed the consistent

correlation results as well (Supplementary Figure 1). This

lack of correlation suggested that TMB, PD-L1 expression,
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and MATH are independent predictive measures of response to

ICIs treatment, and a robust model should be constructed to

unify these variables.

Mutational Status of Immune-Related
Pathway Can Act as Candidate
Biomarkers
A prior study has shown that co-mutation information of DNA

damage response (DDR) pathway can be used as a predictor of
response to immune checkpoint blockade, and the mutation of

the DDR solved the problem of difficulty in determining an

optimal TMB threshold (22). This finding provided a new way to

predict the response of immunotherapy. Besides DDR pathway,

we selected six pathways, homologous recombination repair

(HRR), Janus kinase (JAK), mitogen-activated protein kinase

(MAPK), phosphoinositide 3-kinase (PI3K), and nuclear factor

kappa-light-chain-enhancer of activated B cells (NF-kB), Wnt,
through literature survey, which are associated with tumor

immunity or immunotherapy escape (41, 42). We also

collected the mutational status of these pathways from

Samstein cohort treated with ICIs (27) and explored its

correlation with the overall survival (OS). The results showed

that patients with mutations in any of six pathways had better
survival than those without mutation (Figure 2). Furthermore,

the results also revealed the selected pathways could be used as

biomarkers to distinguish the prognosis for ICIs treatment.

Pathway Model Is the Best Model to
Predict the Efficiency of ICIs Treatment
We extracted 70% patients from Hellmann cohort, which totally

included 75 NSCLC patients, as training data set (25) and the rest

30% patients were used to validate the models. Three different

A B

D E

C

FIGURE 1 | Tumor mutational burden (TMB), programmed cell death-ligand 1 (PD-L1) expression and mutant-allele tumor heterogeneity (MATH) are independent

from each other in Hellmann cohort. (A) Scatterplot between TMB and PD-L1 expression (%). (B) Scatterplot between MATH and PD-L1 expression (%). (C)

Scatterplot between TMB and MATH. (D) Boxplot of TMB and PD-L1 expression. (E) Boxplot of MATH and PD-L1 expression. The R value of (A–C) represents

Pearson correlation coefficient.

TABLE 1 | Models and variables.

Model Variable

Bivariate-model TMB and PD-L1 expression

Tri-model TMB, PD-L1 expression and MATH

Pathway-model TMB, PD-L1 expression, MATH and immune-related pathways

TMB, tumormutational burden; PD-L1, programmedcell death-ligand1;MATH,mutant-allele

tumor heterogeneity.
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models were trained by using the training data set with different

variables and were adjusted with clinical benefit as outcomes

(Table 1). The pathway-model contains seven variables, including

TMB, PD-L1 expression, MATH and the mutational status of six

immune-related pathways (Figure 3). Themutational status of JAK,

MAPK, and PI3K was integrated into one variable to improve the

prediction accuracy. ROC curves based on the predictor for each of
the three models estimated on Hellmann cohort (22 patients) were

available and the results showed that the pathway-model was more

predictive than other two models (AUC is 0.87, 0.83, and 0.59 for

pathway-, tri-, and bivariate-model). The AUC of pathway-model

was higher than single-factor variables containing TMB, PD-L1

expression, and MATH as well (AUC is 0.56, 0.49, and 0.69 for
TMB, PD-L1 expression, and MATH) (Figure 4A and Table 2).

We also checked the prediction benefit probability, a quantitative

output generated from the model which represents the likelihood of

immunotherapy response, of each patient compared with real

clinical benefit information among three models. The benefit

probability generated from pathway-model and tri-model are

significantly higher in DCB group than in NDB group (p-value is
0.0024 for pathway-model and 0.0066 for tri-model), however, the

median benefit probability of pathway-model (0.70) was higher

than tri-model (0.46). The difference of benefit probability was not

significant in other models and single factors (Figure 4B).

We further tested the predictive ability of pathway-model in

Rizvi cohort (26), consisting of 34 NSCLC patients treated with

pembrolizumab, with all predictive variables and clinical benefit

information available. The results showed that pathway-model

could more accurately predict the clinical benefit of ICIs than
other two models and single-factor variables (AUC is 0.74 for

pathway-model, 0.67 for tri-model, 0.68 for bivariate-model, 0.63

for TMB, 0.72 for PD-L1 expression, and 0.55 for MATH)

(Figure 4C and Table 2). The benefit probability of patients in

DCB and NDB groups was significantly different as well (p-value

is 0.0017, Figure 4D). The survival analysis indicated that the
high benefit probability group also showed a better PFS

(Figure 4E).

Pathway Model Can Precisely Predict the
Response of ICIs Treatment in
GloriousMed Cohort
Finally, we tested pathway-model in GloriousMed cohort with 20
NSCLC patients, who were treated by PD-1/PD-L1 inhibitors

(Supplementary Table S1). The accuracy of pathway-model was

A B C

D E F

FIGURE 2 | The mutational status of selected immune-related pathways are significantly associated with overall survival (OS) in Samstein cohort. (A) Homologous

recombination repair (HRR). (B) Janus kinase (JAK). (C) Mitogen-activated protein kinase (MAPK). (D) Phosphoinositide 3-kinase (PI3K). (E) Nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-kB). (F) Wnt.
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much higher than tri-model and bivariate-model (AUC is 0.80 for
pathway-model, 0.47 for tri-model and 0.64 for bivariate-model)

(Figure 5A and Table 2). Even though, the benefit probability was

not significantly different between DCB and NDB group (p-value is

0.08 for pathway-model), all DCB patients have a predictive benefit

probability higher than 0.5 (Figure 5B). Thus, pathway-model can

be generalized in clinical to improve the prediction accuracy of the
response to immunotherapy.

Comprehensive Analysis With TCGA
NSCLC Cohort Imply that High Benefit
Probability Patients Is Associated With
Immune Response
We predicted the benefit probability of TCGA LUAD and TCGA
LUSC cohorts without EGFR exon 18-21 mutations and ALK

gene fusions patients in immunotherapy with pathway-model

and classified patients to two groups at the median cut-point.

Then, we calculated signature scores of 18 gene sets with

principle component analysis (PCA) method. In TCGA LUAD

cohort, thirteen signatures are significantly different between

high benefit probability group and low probability group
(Figure 6A). In consideration of TMB, and mutational status

of DDR and Wnt pathways are included in prediction model, the

benefit probability difference in DDR, WNT target, DNA repair–

related signatures and cell cycle were expected. The signature

score of CD 8 T effector and Immune Checkpoint were higher in

high probability group than in that of low group, while the
signature score of EMT3 and FGFR3 related was lower in high

probability group (Figure 6A). However, in LUSC cohort, we did

not find significant difference between high and low benefit

probability groups as LUAD cohort (Figure 6D).

Furthermore, we analyzed the differential expression genes

between high benefit probability groups and low group in LUAD

and LUSC respectively (Figures 6B, E, Supplementary Table

S4). There are 153 differential expression genes (106 up-

regulated) in LUAD, including AFP and G6PC, which related

to P53 downstream pathway and FOXO pathway. In LUSC,
there are 120 differential expression genes (50 up-regulated)

including FGF3 and DLK1, which related to FGFR pathway

and NOTCH pathway. Apart from that, part of the top 30

mutated genes, such as KRAS and PTPRD, have different

mutation pattern between high benefit probability group and

low group, as well as between LUAD and LUSC (Figures 6C, F).
Above all, the comprehensive analysis of TCGA LUAD and

LUSC cohorts imply that high benefit probability patients from

pathway-model is associated with immune response.

DISCUSSION

Immune checkpoints inhibitors (ICIs), such as PD-1 and PD-L1,

have revolutionized the treatment of many cancers, including
NSCLC. However, how to select patients most likely to benefit

from immunotherapy is the current leading challenge in the field.

Previous ICIs-related studies preferred to use several single

biomarkers, respectively, to predict the prognosis of

immunotherapy (25, 26). Our study constructed a robust

pathway-model based on deep learning approach, which

included two common biomarkers, TMB, PD-L1 expression, a
recent developed intratumor heterogeneity evaluation value

MATH and potential marker-immune-related pathways. To

the best of our knowledge, this is the first study to combine

mutational status of pathways and common biomarkers for

efficacy of prediction in NSCLC. Not only the ROC curves but

also the significant difference of benefit probability from our
predictor between DCB and NDB showed that our model had

high accuracy in both training and test NSCLC data sets. The

comparison among our pathway-model, tri-model, bivariate-

model, and single-factor variables showed that our pathway-

model had the highest accuracy in predicting the response to

ICIs treatment. We found that tri-model with MATH had a

lower AUC than bivariate-model without MATH in Rizvi and

FIGURE 3 | Overview of the model design. Pathway-model was constructed and trained by 70% Hellmann cohort. Then, the predictor was tested in one validation

cohort (the remaining 30% of Hellman cohort) and two independently testing cohorts (100% of Rizvi cohort and 100% of GloriousMed cohort).
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A B

C

E

D

FIGURE 4 | The performance comparison different models and single-factor variables of in validation cohort (Hellmann cohort) and independent test cohort (Rizvi

cohort). (A) Receiver operating characteristic (ROC) curves of different models. (B) Benefit probability and risk of patients in different response groups. (C) ROC

curves of different models. (D) Benefit probability and risk of patients in different response groups. (E) Survival analysis based on different models and single-factor

variables, time was progression-free survival (PFS). Patients of (A, B) were from Hellmann cohort, and patients of (C–E) were from Rizvi cohort.
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GloriousMed cohort. However, there is no denying that MATH
did not improve the efficacy in distinguishing DCB and NDB

patients in Rizvi and GloriousMed cohort in tri-model compared

with bivariate-model. And pathway-model with MATH is the

most stable model compared to other models and single factor

variables. A recent study has shown that the integration of TMB

and MATH forms a predictive marker for the response of ICIs

treatment in melanoma (16), and another study has also revealed
that intratumoral heterogeneity (MATH is an indicator of

intratumoral heterogeneity) can be used as a biomarker to

predict the response of ICIs treatment in NSCLC (15).

Moreover, we found that the common biomarkers were not

significant correlation according to the Pearson correlation

coefficient, and the accuracy of each single-factor variable was
lower than the pathway-model or tri-model. It might indicate

there was a great synergy among these biomarkers. When we

grouped the patients at the median of benefit probability

generated from pathway-model, the PFS time was significantly

different between high and low group, specifically patients with

high benefit probability were more likely to have longer PFS

time. These results suggested that besides the ability of response
prediction of ICIs treatment, benefit probability is also associated

with the prognosis of NSCLC patients. In addition to, the

prediction results of GloriousMed cohort prove that our

pathway-model can effectively predict the benefit probability of

ICIs treatment and can be generalized in clinical to provide some

reference during the treatment.
Furthermore, the enrichment analysis of 18 immune-related

gene sets in TCGA LUAD and LUSC cohort suggested that our

model might reveal the possible mechanism of the immune

phenotype of tumors. Previous studies have proven that CD8

cell play a central role in immunity to cancer through their

capacity to kill malignant cells, EMT-related genes may
contribute to tumor immune escape, and FGFR mutated cases

have a more deserted immune phenotype than the wild type (43–

46). Our immune infiltration analysis also showed that the high

benefit probability group of LUAD cohort had higher CD8 T

effector scores. However, the significant difference of signature

scores between high benefit probability group and low group

were only found in TCGA LUAD cohort, but not in TCGA
LUSC cohort. It is implied that the underlying immune response

TABLE 2 | Performance of models in three cohorts.

Pathway-

Model

Tri-

model

Bivariate-

model

TMB PD-

L1

MATH

Hellmann

cohort

0.87 0.83 0.59 0.56 0.49 0.69

Rizvi cohort 0.74 0.67 0.68 0.63 0.72 0.55

GloriousMed

cohort

0.80 0.47 0.64 0.65 0.78 0.46

TMB, tumormutational burden; PD-L1, programmedcell death-ligand1;MATH,mutant-allele

tumor heterogeneity.

A B

FIGURE 5 | The performance comparison of different models in GloriousMed cohort. (A) Receiver operating characteristic (ROC) curves of different models.

(B) Benefit probability and risk of patients in different response groups.
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mechanism may be different between LUAD and LUSC. The

differential expression genes in LUAD and LUSC are not

complete same. P53 downstream pathway and FOXO pathway

may be enriched in LUAD due to the up-regulation genes AFP

and G6PC. P53 signaling pathway has been known as an
important pathway in immune response, for example, it can

function in immune cells including myeloid and T cells (47).

Previous study has shown that FOXO pathway can be a target in

tumor drug development (48). In LUSC, two differential

expression genes, FGF3 and DLK1 are related two different

pathways, FGFR pathway and Notch pathway. The enrichment

of FGFR pathway implies a desert-immune subtype and high
tumor purity of LUSC (45). Notch pathway can control the fate

of various T cell type and myeloid cells that down-regulated

DLK1 might influence the immune cells (49). The different

regulated pathways between LUAD and LUSC may be one of

the reasons of different immune response mechanism. In LUAD

cohort, the mutation ratio of KRAS, an oncogene which leads to
immune escape in the tumor microenvironment (50), and

PTPRD, which affects the tumor proliferation (51), were higher

than LUSC also suggests the difference immune response

mechanisms. All above inference is based on naïve treatment

public cohort, the exact mechanism would still to be explored

with treatment samples. Except that, the probability of some

differential expression genes, such as MUC2, CLCA1, REG4, and

FGF3 can be used as prognostic biomarkers in NSCLC is worth

exploring because they have been reported as a biomarkers in

other cancers as well (52–55).
There were limitations in our study that should be

acknowledged. First, patients in the training cohort were treated

with Nivolumab Plus Ipilimumab, and the model generated from

which may be distracted in predicting patient in test cohort treated

with Pembrolizumab or Tislelizumab due to pharmaceutical and

medication differences. Second, the PD-L1 expression was

quantified with different antibodies in training and validation
cohort. Also, in the exploring cohort in TCGA data set, the PD-

L1 expressionwas quantified using reverse phase protein array. The

platform discordant of PD-L1 quantificationmay impair the power

of our prediction model. Besides, due to the limitation of the

training data sets, it is difficult to get a satisfactory model. Also,

there areother features that arenot incorporated intoourmodeldue
to unavailability in either training or validation cohort, such as

immune phenotype, which is known to affect the immunotherapy

efficacy. In future studies, wewill includemore patients and features

to guarantee the training process and the clinical practice of the

predicting ICIs treatment efficacy in NSCLC patients.

A B C

D E F

FIGURE 6 | The comprehensive analysis between high benefit probability group and low benefit probability group in The Cancer Genome Atlas Lung

Adenocarcinoma (TCGA-LUAD) and Lung Squamous Cell Carcinoma (LUSC) cohort. High and low group were stratified based on median of benefit probability of

the patients through pathway-model. (A) The significant signature scores of 18 gene sets in LUAD cohort. (B) Differential expression genes in LUAD cohort.

(C) Oncoplot of top 30 mutated genes in LUAD cohort. (D) The significant signature scores of 18 gene sets in LUSC cohort. (E) Differential expression genes in

LUSC cohort. (F) Oncoplot of top 30 mutated genes in LUSC cohort.
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