
Robust prediction of response to immune checkpoint blockade 
therapy in metastatic melanoma

Noam Auslander1,2, Gao Zhang3, Joo Sang Lee1,2, Dennie T. Frederick4, Benchun Miao4, 
Tabea Moll5, Tian Tian6, Zhi Wei6, Sanna Madan1,2, Ryan J. Sullivan4, Genevieve Boland5, 
Keith Flaherty4, Meenhard Herlyn3, Eytan Ruppin1,2,*

1Center for Bioinformatics and Computational Biology, Department of Computer Science, 
University of Maryland, Maryland, MD 20742, USA

2Cancer Data Science Lab (CDSL), National Cancer Institute, National Institute of health, MD 
20892, USA

3Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar 
Institute, Philadelphia, PA 19104, USA

4Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA

5Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA

6Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA

Abstract

Immune checkpoint blockade (ICB) therapy provides remarkable clinical gains, where melanoma 

is at the forefront of its success. However, only a subset of patients with advanced tumors currently 

benefit from these therapies, which at times incur considerable side-effects and costs. Constructing 

predictors of patient’s response has remained a serious challenge due to the complexity of the 

immune response and the shortage of large ICB-treated patient cohorts including both omics and 

response data. Here we build IMPRES, a predictor of ICB-response in melanoma which 

encompasses 15 pairwise transcriptomics relations between immune checkpoint genes. It is based 
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on two key conjectures: (a) immune mechanisms underlining spontaneous regression in 

neuroblastoma can predict ICB response in melanoma, and (b) key immune interactions can be 

captured via specific pairwise relations of immune checkpoint genes’ expression. IMPRES is 

validated on 9 published datasets1–6 and on a newly generated dataset with 31 patients treated with 

anti-PD-1 and 10 with anti-CTLA-4, spanning 297 samples in total. It achieves an overall accuracy 

of AUC=0.83, outperforming existing predictors, capturing almost all true responders while 

misclassifying less than half of the non-responders. Future studies are warranted to determine the 

value of the approach presented here in other cancer types.

Life Sciences Reporting Summary

Reporting Summary is available.

Melanoma, even in its metastatic form, is one of a handful of cancers in which spontaneous 

regression has been frequently observed and has been tightly linked to immune response7,8. 

This led us to conjecture that the immune components governing spontaneous tumor 

regression may be a major determinant of immune responses to ICB. To this end, we 

focused on neuroblastoma (NB), where we could take advantage of an existing cohort of 

patients with transcriptomic and clinical outcome data. Interestingly, NB in children under 

18 months of age manifests frequent spontaneous regression9 that is mediated by cellular 

immunity, including tumor-infiltrating lymphocytes, tumor-targeted T-cells and anti-neural 

antibodies10. Moreover, NB is the first pediatric cancer with an FDA-approved 

immunotherapy (Dinutuximab), a monoclonal antibody targeting the disialoganglioside GD2 

that is expressed in NB, melanoma, and other tumors11,12. We thus hypothesized that an 

immune-based predictor of NB spontaneous regression may effectively predict ICB response 

in melanoma.

To test this hypothesis we built a predictor of spontaneous regression in NB, analyzing the 

transcriptomics data of 108 patients. Those include both spontaneously regressing (patients 

considered as low risk NB and with no tumor progression) and high risk progressing patients 

(i.e., without spontaneous regression, Methods)13. We focused on 28 immune checkpoint 

genes collected from the literature that were included in all RNA-sequencing (RNA-seq) 

datasets available to us (Supp. Table 1). We based the NB predictor on pairwise relations 

between the (normalized) expression levels of these genes. Each predictive feature compares 

the expression of two checkpoint genes A and B, capturing a logical relation between their 

transcriptional levels (e.g., A > B). We performed a feature selection procedure searching for 

a subset of these features that best separates spontaneously regressing NB patients from 

those with high risk progressing disease, resulting in 15 most predictive features (Methods). 

Based on these features, the prediction of spontaneous regression of a tumor sample from its 

expression data is simply made by counting the number of predictive feature pairs that are 

fulfilled (true) in that sample given its transcriptomics data. This number, ranging from 0–

15, denotes its IMmuno-PREdictive Score (IMPRES), with higher scores predicting 

spontaneous regression (Supp. Methods; Supp. Table 2). The resulting predictor obtains an 

accuracy of 0.9 (in terms of the Area Under the Receiver Operator Curve (AUC)) in the NB 

dataset (Supp. Figure 1, Supp. Methods). Reassuringly, examining tumors derived from 

patients with melanoma who were not treated with ICB14, the IMPRES scores of patients 
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denoted as ‘high immune response’ are considerably higher than that of other subtypes 

(Figure 1A). Additionally, we find that IMPRES is significantly and positively associated 

with higher overall survival in these datasets14 (Figure 1B).

We next turned to investigate whether there are similarities between the cellular processes 

mediating spontaneous tumor regression in NB and those mediating spontaneous and ICB-

stimulated immune response in melanoma, studying 9 different melanoma datasets1–6. To 

this end we identified immune related, Consistently Differentially expressed Pathways 

(termed CDPs) in ICB responders versus non-responders (evaluated separately for patients 

treated with anti-PD-1 or anti-CTLA-4 treatments, Methods). We identified seven CDPs that 

are common across all anti-PD-1 datasets and four CDPs across all anti-CTLA-4 datasets. 

We find that these CDPs are also differentially expressed in a similar manner in the ‘high 

immune response’ melanomas compared with other subtypes14 and in spontaneously 

regressing vs high risk progressing NB tumors (Figure 1C, Supp. Table 3) (Methods; see 

Supp. Material, Supp. Table 4 and Supp. Figure 2 for a related analysis based on estimated 

immune cell abundances). We then computed the correlations between each IMPRES feature 

(using expression ratios, Methods) and the expression of each of the CDPs. As evident from 

Figure 1D, these associations are consistently maintained across the four sample groups 

studied.

We then turned to apply IMPRES to predict melanoma patients’ response to ICB, without 
any further training. To this end we analyzed 256 samples from 9 datasets derived from 6 

independent studies including patients treated with anti-CTLA-4, anti-PD1 or their 

combination1–6. We computed the IMPRES score of each melanoma sample from its 

expression data and used those and the clinical response data to generate the Receiver 

Operator Characteristic (ROC) classification curves quantifying IMPRES prediction 

performance in each of the different datasets. The resulting AUCs are in the range 0.77–0.96 

(Figure 2A).

We further tested the predictive ability of IMPRES in a newly generated RNA-seq data of 

tumor biopsies from metastatic melanoma patients treated with ICB therapies at the 

Massachusetts General Hospital. IMPRES achieves AUCs of 0.81 and 0.97 on the anti-PD-1 

and anti-CTLA-4 samples respectively (Figure 2B). It maintains its predictive accuracy 

when evaluating the aggregate collection of the datasets studied above (a total of 297 

samples, Figure 2B). Figure 2C shows the number of true/false positives (responders) and 

true/false negatives (non-responders) obtained on this aggregated data at different IMPRES 

score classification thresholds, manifesting the well-known tradeoff between precision and 

recall (Figure 2D, Supp. Figure 3A-B, Supp. Table 5). As evident, IMPRES can capture 

almost all true responders while misclassifying less than half of the non-responders (at 

threshold = 8). Higher IMPRES scores are also associated with improved overall survival 

and progression-free survival (PFS) in ICB treated melanoma patients (Methods, Figure 2E-

H, Supp. Figure 3C).

To compare the predictive accuracy of IMPRES with that of current transcriptome-based 

predictors, we generated predictors of response to ICB for each published transcriptomic 

signature (Supp. Methods). The performance of IMPRES is superior to the other predictors 
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(Figure 3A, Supp. Table 6). This observation also holds true when we compare the 

performances on each ICB-treatment group separately (Figure 3B). Overall, the predictors 

built on biologically motivated scores (cytolytic-activity15 and PDL-1 expression) generalize 

better than the machine learning based predictors constructed on transcriptomic signatures 

identified in the specific cohorts. Of note, while we find a significant correlation between 

IMPRES and CD8+ and CD4+ T cells abundances inferred via CIBERSORT, the latter are 

poor predictors of ICB response (Supp. Figure 4). IMPRES superiority is particularly 

notable because for most existing signature-based predictors (all but cytolytic-activity15 and 

PDL-1 expression) we had to re-train the latter separately for each dataset, otherwise their 

overall performance was dismal, testifying to their poor generalizability between different 

datasets (Methods). In contrast, IMPRES is constructed only once from the NB data and 

never trained on any melanoma dataset. Thus, it is markedly less prone to over-fitting, a 

paramount concern regarding standard cancer transcriptomics predictors16–18. To further 

study the importance of training on the independent NB data, we trained ICB response 

predictors based on melanoma data instead of NB, following exactly the same representation 

and training procedure as used in IMPRES. This results in markedly lower prediction 

performances on the melanoma datasets that were not used for training compared to the 

original IMPRES procedure (Supp. Figure 5). Finally, IMPRES performance remains 

superior when repeating this comparative analysis while excluding patients annotated with 

‘stable disease’ (Supp. Table 6).

The features composing IMPRES uncover a few insights that are biologically interesting. 

Reassuringly, the relatively higher expression of genes encoding immune stimulatory 

molecules (such as HVEM, CD27 and CD40) is associated with a better response to ICB, 

while the higher expression of genes encoding immune inhibitory molecules (such as 

CD276, TIM-3, CD200 and VISTA) is associated with a worse response, as expected 

(Figure 3C). Higher expression of CD40 compared to that of PD-1, PDL-1, CD80 and CD28 

is associated with a better ICB response, in line with the recent findings that agonists of 

CD40 reverse resistance to anti-PD-1 therapy, and that induced PD-1 expression mediates 

acquired resistance to antagonist CD40 treatment19. Additionally, the higher expression of 

CD27 compared to that of PD1 (but not compared to CTLA-4) is associated with improved 

response. This is in line with recent findings that the combination of a CD27 agonist plus 

anti-PD-1 recapitulates the effects of CD4+ T helper cells on tumor control, while the 

combination of a CD27 agonist plus anti-CTLA-4 did not improve tumor control20.

We further studied the individual predictive power of the IMPRES features by considering 

the expression ratio of each predictive pair (Methods). We find that some features are 

specifically more predictive for anti-PD-1 pre-treatment (CD28/CD86, Rank-sum P-value = 

0.05) or on-treatment (PD1/OX40L, CD86/OX40L and CD86/CD200, Rank-sum P-value = 

0.018 for all, Supp. Table 7C). Notably, no feature emerges as being strongly predictive of 

response to anti-CTLA-4 specifically (Figure 3D, Supp. Table 7C). Examining the 

associations between these 15 features (using their expression ratio) and the inferred 

abundance of 22 types of immune cells (Supp. Table 4) uncovers two significant 

associations, with CD40/PD-1 and PD1/OX40L (Figure 3E). Finally, a feature reduction 

analysis (Supp. Methods) shows that the overall predictive performance of IMPRES can be 
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maintained with a subset of 11 of the 15 original features, but beyond that it markedly 

decreases (Supp. Figure 6, Supp. Table 8).

In summary, IMPRES’ high predictive performance is mainly due to two key conjectures: 

(a) key immune mechanisms underlining spontaneous regression in NB are shared with 

those determining response to ICB in melanoma, and (b) those may be captured by specific 

pairwise relations of immune checkpoint genes’ expression. Building on these assumptions 

leads to a predictor of response to checkpoint therapy that is significantly superior to 

existing predictors and displays robust performance across many different melanoma 

datasets. From a translational standpoint, we show that IMPRES can correctly capture 

almost all true responders while misclassifying less than half of the non-responders. Future 

studies are warranted to further study the predictive performance of the approach presented 

here in other cancer types where ICB is approved, as sufficiently large datasets are 

accumulated.

Online Methods

Ethics statement

All clinical data and patient samples were collected following approval by the Massachusetts 

General Hospital Institutional Review Board (IRB). In all cases informed consent was 

obtained from patients.

Statistical analyses

1. Boxplots and comparisons. For all boxplots, centre lines indicate medians, box 

edges represent the interquartile range, whiskers extend to the most extreme data 

points not considered outliers, and the outliers are plotted individually using the ’

+’ symbol. Points are defined as outliers if they are greater than q3 + w × (q3 – 

q1) or less than q1 – w × (q3 – q1), where w is the maximum whisker length, and 

q1 and q3 are the 25th and 75th percentiles of the sample data, respectively. All 

differential expression and distribution comparisons P-values are obtained via 

one-sided Rank-sum test.

2. Survival analyses. All Kaplan Meier analyses are performed by comparing the 

survival of patients with high scores (> median) to those with low scores (< 

median) using a two-sided log-rank test. The patients with median score (= 

median) are grouped with the smaller-size group among the two groups 

mentioned above.

3. Bar plots. For bar plots, centre is defined by the mean of the distribution and 

error bars represents the SD of the distribution.

4. Correlation coefficients. All correlations coefficients and P-values are obtained 

via Spearman rank correlation test.

Collection of immune checkpoint molecules

To build a predictor based on pair-wise relations between checkpoint genes’ expression, we 

formed a list of 45 immune checkpoint genes with known co-stimulatory or co inhibitory 
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effects, collected from literature reports 21–24. From these, we focus on 28 genes that were 

measured in all RNA-sequencing datasets analyzed in this paper (Supp. Table 1).

Feature selection and IMPRES construction on the NB data

For feature selection, we use the quantile-normalized expression of the 28 immune 

checkpoint genes selected above in the 108 NB tumor samples studied (Supp. Methods), 

using the following expression function of pairs of checkpoint genes as features:

Fi, j x =
1, expi x < exp j x

0, otherwise,

Where expi x  and exp j x denote the expression of genesiand jin sample x.

We focus on pairs where at least one of the genes is among the six genes that are directly 

associated with anti-CTLA-4 and anti-PD1 blockade therapy, including CTLA-4, CD28, 

CD80/CD86, PD-1 and PD-L125, which together form 294 potential gene pairs. To select 

features that best separate positive from negative samples in the NB data, we performed a 

hill climbing aggregative feature selection involving 500 iterations of a five-fold cross 

validation procedure, where the features that highly scored consistently across folds were 

selected for IMPRES. A detailed description of the feature selection steps is available in the 

Supp. Methods.

Immune pathway enrichment analysis

To identify CDPs (consistently differentially expressed immune pathways in melanoma ICB 

responders), we first identified the genes that are up and down regulated in ICB responders 

vs non-responders for each of the datasets1,3,4,6 (using one sided Rank-sum P-value<0.05). 

Then, we performed a GO pathway26 enrichment analysis for immune related pathways 

(Supp. Table 3) via a hyper-geometric test, to identify (1) pathways that are consistently up 

or down regulated (hyper-geometric P-value<0.05) in responders for all anti-PD-1 

melanoma datasets, and (2) pathways that are consistently up or down regulated in 

responders for all anti-CTLA-4 melanoma datasets (Figure 1C, Supp. Table 3).

To correlate CDPs with the IMPRES features, we then evaluated the Spearman rank 

correlation coefficients (ρ) and corresponding P-values between the median pathway 

expression level of each CDP (using the median expression of all genes in a pathway) and 

each of the IMPRES expression ratios. This is done across all samples in each of the 

following datasets: (1) the anti-PD-1 treated melanoma datasets (2) the anti-CTLA-4 treated 

melanoma datasets (3) the non ICB-treated melanoma datasets and (4) the neuroblastoma 

dataset.

Computing IMPRES features’ expression ratio

To evaluate the predictive performance and functional associations of individual IMPRES 

features in a more refined manner we used the expression ratio instead of the binary 

indicators in each sample (i.e. for each feature A>B we used A/B instead). The resulting 
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AUCs obtained with each ratio feature for each ICB response data are presented in Figure 

3D and Supp. Table 7B.

CIBERSORT analysis

Using CIBERSORT27 we infer the relative abundances of 22 immune cells in NB and 

melanoma samples (analyzing each dataset for ICB treated and non-treated melanoma). 

Having estimated these cell abundances for each sample, we perform the following analyses:

1. We perform a differential abundance analysis via a one-sided Rank-sum test for 

each immune cell type between NB samples with or without spontaneous 

regression, between melanoma samples who respond or do not respond to ICB 

treatment, and between high immune response versus other subtypes in non ICB-

treated melanoma samples (Supp. Table 4).

2. To study the relation between IMPRES and major T cell types mediating the 

immune response, we correlate the CIBERSORT inferred relative abundances of 

CD8+ and CD4+ T-cells to IMPRES scores for RNA-seq melanoma ICB 

response datasets via Spearman rank-correlation (Supp. Figure 4)

3. To survey the key associations between IMPRES features and immune subtypes, 

we correlate each CIBERSORT inferred immune cell type to each IMPRES 

feature (considering expression ratios instead of binary relations), for RNA-seq 

melanoma ICB response datasets via Spearman rank-correlation (Supp. Table 4).

Applying IMPRES to predict ICB response of melanoma patients

To apply IMPRES, we calculate for each sample x, the Fi, j x over the 15 IMPRES 

checkpoint pairs (features). This leads to a binary vector of length 15 for each sample. The 

total number of ‘1’s in this vector denotes the sample’s IMPRES score (ranging between 0 

and 15). High scores predict good response. By varying the classification threshold over the 

different possible IMPRES score values we generate the ROC curves and the resulting AUCs 

presented in the main text for each melanoma dataset.

RNA-seq

RNA-sequencing of 31 anti-PD-1 pre-and on-treatment tumor specimens, and 10 anti-

CTLA-4 pre-and on-treatment metastatic tumor specimens (for which the response is 

known) derived from patients with metastatic melanoma (up to 90 days from treatment start) 

was conducted as previously described in Jenkins et al28 (Supp. Table 9). These patients 

were enrolled in clinical trials at Massachusetts General Hospital. Clinical trial registration 

numbers at ClinicalTrials.gov are NCT01714739; NCT02083484; NCT01543698; 

NCT01072175; NCT00949702; NCT01783938; NCT01006980.

Clinical response classification

Table 1 enclosed by summarizes the response annotations and criteria used for establishing 

them in the original study. The response classification of each patient in each of the publicly 

available studies and the MGH dataset (with MGH patients clinical information) is described 

in Supp. Table 9.
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Applying IMPRES to predict melanoma patients’ response to ICB treatments on the 
combined, aggregate collection of all melanoma samples

To apply IMPRES and evaluate its predictive performance on the combination of melanoma 

samples in all eleven datasets studied, we normalize the IMPRES scores for datasets in 

which not all relevant checkpoint genes were measured (Supp. Table 1). This normalization 

is done by linearly scaling the IMPRES score to compensate for the number of missing pairs 

whose expression is not available in the dataset. For example, if 13 out of the 15 IMPRES 

features are measured in a dataset, then the IMPRES score of these samples is multiplied by 

15 and divided by 13 to linearly scale it back to the original scale of 0–15. We then calculate 

the AUC in a standard manner using these normalized IMPRES scores over all samples.

Training a predictor using melanoma datasets

We use a similar training procedure as described above for IMPRES (using binary relations 

(A>B) between the 28 checkpoint genes as before), but this time training on melanoma 

datasets: (1) First we train on the combined data from Riaz et al6 and Hugo et al9 (both anti-

PD-1 datasets) and (2) we then train on the combined datasets from Hugo et al. and Van 

Allen et al.1,3 (anti-PD-1 and anti-CTLA-4 datasets, respectively). For both, we use hill 

climbing feature selection and perform similar procedure as described above in ‘Feature 

selection and IMPRES construction on the NB data’, of 500 rounds of five-fold training and 

testing. The final feature set is also selected in the same manner (using similar definition of 

score f  and selecting features with binomial p-value < 0.05).

IMPRES analysis of different melanoma subtypes

We evaluate whether IMPRES significantly differs between different melanoma subtypes by 

comparing IMPRES scores of each subtype against that of all other subtypes, when using 

pre anti-PD-1, on anti-PD-1 and all samples from Riaz et al (Supp. Figure 7) 6.

Comparing IMPRES predictive performance to that obtained by predictors based on other 
published signatures

We compare the performance of IMPRES to those obtained using other published 

transcriptomic signatures3,15,31 as well as PDL-1 expression. We additionally evaluate the 

performance of a predictor based on immune cell abundances estimated via CIBERSORT27. 

The predictors’ performance is evaluated using the nine publicly available melanoma 

datasets analyzed to evaluate IMPRES (see main text). The Cytolytic activity15 and PDL1 

expression based predictors are applied in a straightforward manner, analogous to that of 

IMPRES as they do not require additional training. However, making predictions using gene 

signatures reported in specific studies in the literature (see main text) requires training on 

every specific dataset tested (using cross validation), aiming to identify their maximal 

performance levels. Hence, we build predictors of ICB response using Support Vector 

Machines (SVMs) on each of the pertaining melanoma datasets. Each such SVM predictor is 

built using the genes in the specific signatures on which it is based as its feature set. This is 

performed with linear kernels using 100 repetitions of a five-fold cross validation process, 

where in each fold the training set and test set are randomly selected. The AUC presented for 

each predictor is the mean AUC overall repetitions (Supp. Table 6, upper panel).
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To compare IMPRES performance to that of other predictors over different treatment groups 

in a systematic manner, we aggregate the samples into four treatment groups: pre anti-

CTLA-4, pre anti-PD-1, on anti-PD-1 and all samples. To calculate an empirical P-value, we 

then perform 1000 repetition of: (1) randomly sampling 80% of the samples in a stratified 

manner (maintaining the proportion of responders vs. non-responders) from each treatment 

group and (2) evaluating the AUC resulting from each predictor on the randomly selected 

samples from each treatment group. The resulting empirical P-value (reported in Figure 3B) 

denotes the percentage of iterations in which the AUC obtained via each predictor is 

superior to that obtained using IMPRES for each treatment group.

Feature reduction analysis

As IMPRES features were selected for NB, it is possible that some are less predictive for 

melanoma response. To investigate which features may be removed, we performed a feature 

removal procedure using 5-fold cross validation on the combined data from all 5 RNAseq 

datasets 1,3,4,6 (as these cover all IMPRES features). In each fold we performed 500 rounds 

of greedy (hill climbing) feature removal on the training set, each round ended when the 

performance (AUC) has been reduced by more than 5% from the full set performance on the 

training set. The set of remaining features was applied to the test set to obtain a test-AUC. 

We find a group of 11 features that captures most of IMPRES original performance levels 

(Supp. Figure 6, Supp. Table 8). All groups with less than 11 features have reduced the test-

AUC by more than 5%.

IMPRES sensitivity analysis and random control predictors

To evaluate IMPRES sensitivity to missing features, we perform all possible removals of 

single, double, triple and quadruple features. For each removal, we examine the AUCs 

obtained with the remaining features for each of the 11 datasets. We find that while the 

results remain robust for most single and double feature removals, higher order removals are 

likely to significantly reduce the performance but not in all cases (e.g., as the reduced 

features set, Supp. Figure 6,Supp. Table 10).

To evaluate the power of predictors constructed via randomly selected relations, we generate 

1000 predictors, each based on randomly selected 15 immune gene relations (drawing from 

the same pool of features as those considered for the construction of IMPRES, Supp. Figure 

8).

Principle Component Analysis (PCA) using IMPRES features

We perform PCA of patient profiles for each melanoma ICB study and across all studies 

combined using IMPRES selected features (i.e., each sample is represented as a 15-

dimensional binary vector comprised of the 15 IMPRES logical relations). The PCA results 

are presented in Supp. Figure 9.

Comparing IMPRES scores to mutational counts across TCGA tumors

Examining pan-cancer TCGA data, we find that cancer types with high IMPRES scores tend 

to have a higher mutational burden, a well-established marker of response to immunotherapy 

(Spearman Rho = 0.79, Supp. Figure 10). To perform this analysis, the complete raw data of 
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all TCGA cancer types (n=23) which include at least 100 patients were downloaded from 

cBioPortal32. We considered samples containing somatic point mutations and gene 

expression data, relative to matched-normal samples.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Boxplots showing IMPRES of high vs low immune response in test and validation 

datasets of non-ICB treated melanoma patients14; P-values are computed via a one-sided 

Rank-sum test. Boxplots centre lines indicate medians, box edges represent the interquartile 

range, whiskers extend to the most extreme data points not considered outliers, and the 

outliers are plotted individually using the ’+’ symbol. (B) Kaplan-Meier survival curves of 

patients with high versus low IMPRES (computed over the combined test and validation 

datasets14). The median IMPRES is used to define the “Low IMPRES” and “High IMPRES” 

subgroups. The P-value is computed via a two-sided log-rank test. (C) Upper Panel: 

Heatmaps showing the enrichment P-values for CDPs that are up (orange) or down (purple) 

regulated in responders versus non-responders across the anti-PD-1 (encapsulated in the left 

rectangle) and the anti-CTLA-4 melanoma datasets1,3,4,6 (right rectangle). The lower Panel 

displays the enrichment P-values for these CDPs in high immune response vs other subtypes 

in non-ICB treated melanoma, and in spontaneous regression vs non-spontaneous regression 

in the NB dataset. (D) Heatmaps showing the rank correlation ρ between expression levels 

of each CDP (vertical axis) and each of the IMPRES features ratios (horizontal axis), 

computed separately over the anti-PD-1 datasets, the anti-CTLA-4 datasets, the non-ICB 

treated melanoma datasets and the neuroblastoma dataset. White-colored entries denote non-

statistically significant associations.
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Figure 2. 
(A) Receiver Operating Characteristic (ROC) curves quantifying IMPRES prediction AUC 

across numerous publically available ICB response datasets1–6. (B) ROC curves for the 

MGH dataset of ICB response (with 10 patients treated with anti-CTLA-4 and 31 patients 

treated with anti-PD-1) and for the aggregate datasets including all 297 samples, the 216 

samples of patients treated with anti-PD-1 and 81 with anti-CTLA-4. (C) Bar plots showing 

the prediction accuracy and error types for different IMPRES thresholds (where a positive 

label corresponds to a ‘responder’ prediction) on the aggregate compendium of 297 patients 

included in all 11 datasets studied. The dashed line represents the total number of 

responders. (D) Precision/recall evaluation of IMPRES on the same aggregate compendium. 

The Y-axis displays the precision/recall as a function of the number of ‘responder’ 

predictions made (shown on the X-axis, obtained by decreasing the classification threshold, 

whose value is also displayed in italic font). Prediction performance in terms of specificity 

and sensitivity values is provided in Supp. Table 5. (E)-(F) Kaplan Meier survival curves for 

the ICB treatment datasets1,6, with high vs. low IMPRES scores (using the median IMPRES 

as a threshold differentiating between the high and low groups). The P-values are computed 

via a two-sided log-rank test. (G)-(H) Boxplots comparing progression free survival 

between low vs. high IMPRES in the ICB1,5 datasets (using the median IMPRES as a 

differentiating threshold). P-values are computed via a one-sided Rank-sum test. Boxplots 

centre lines indicate medians, box edges represent the interquartile range, whiskers extend to 

the most extreme data points not considered outliers, and the outliers are plotted individually 

using the ’+’ symbol.
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Figure 3. 
(A) AUC of IMPRES and other published predictors across 9 publicly available ICB 

treatment datasets grouped by treatment type and stage (pre and on stands for before and 

during ICB treatment). The one-sided Rank-sum P-values comparing the performance of 

each predictor evaluated to that of IMPRES over all datasets are presented (P-value of 0.002 

is achieved when IMPRES AUC is larger than that obtained by the other predictor for all 9 

datasets, and 0.004 when it is larger for 8/9 datasets). Bar centre is defined by the mean and 

error bars via SD. (B) The empirical P-values comparing IMPRES performance to that of 

each of the other predictors in the three different ICB treatment classes and for the aggregate 

of all datasets (using n=1000 permutations, the value of ‘<1e-3’ denotes that IMPRES’ 

prediction performance was superior to that of the predictor with which it was compared in 

all 1,000 repetitions). (C) A network representation of the 15 pairwise features comprising 

IMPRES. Each node represents an immune checkpoint gene and each edge describes a 

pairwise relation (an IMPRES feature). The direction of edge A -> B denotes that the higher 

expression of A vs. that of B is associated with better patients’ response. The color of the 

outline of each node denotes if it is inhibitory or activating and its fill color denotes whether 

it belongs to the PD1 or CTLA-4 pathways. (D) Clustogram (with average linkage function) 

of the individual predictive power of the 15 IMPRES features (based on their expression 

ratios) in each of the melanoma treatment datasets studied (the color scaling denotes the 

AUC obtained using each individual ratio as a response predictor, ranging from 0 to 1). (E) 
Scatter plots showing the correlation between CIBERSORT-inferred CD8+ T cells 

abundance (X-axis) and the gene expression ratios of two IMPRES features that are 

significantly associated with it (Y-axis); CD40/PD1 (upper panel) and PD1/OX40L lower 

Auslander et al. Page 14

Nat Med. Author manuscript; available in PMC 2019 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



panel). The Spearman ρ and associated P-values are shown for each ICB response data1,3,4,6 

individually (on the right) and for all four datasets together (in the plot)
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Table 1.

Response annotations for each melanoma dataset

Van Allen
et al. Hugo et al. TCGA

SKCM Chen et al. Prat et al. Riaz et al. MGH
dataset

classified as 
“response” ‘response’,

‘Complete 
Response’, 
‘Partial 
Response’

‘Complete 
Response’, 
‘Partial 
Response’

’R’ = freedom 
from disease/ 
decreased tumor 
> 6 months

‘CR’, ‘PR’ ’CR’, ‘PR’ ’CR’, ‘PR’

classified as 
“non-
response”

‘nonresponse’,’long-
survival’

’Progressive 
Disease’

’Clinical 
Progressive 
Disease’, 
‘Stable 
Disease’

’NR’ = tumor 
growth on serial 
CT scans or a 
clinical benefit 
lasting 6 months 
or less

’PD’ ’PD’, ‘SD’ ’PD’

Protocol irRECIST29 RECIST30 RECIST30 Nan RECIST30 RECIST30 RECIST30
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