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Abstract

We analyze games of incomplete information and o¤er equilibrium predictions which are valid for,

and in this sense robust to, all possible private information structures that the agents may have. The

set of outcomes that can arise in equilibrium for some information structure is equal to the set of Bayes

correlated equilibria. We completely characterize the set of Bayes correlated equilibria in a class of

games with quadratic payo¤s and normally distributed uncertainty in terms of restrictions on the �rst

and second moments of the equilibrium action-state distribution. We derive exact bounds on how prior

knowledge about the private information re�nes the set of equilibrium predictions.

We consider information sharing among �rms under demand uncertainty and �nd new optimal in-

formation policies via the Bayes correlated equilibria. We also reverse the perspective and investigate

the identi�cation problem under concerns for robustness to private information. The presence of private

information leads to set rather than point identi�cation of the structural parameters of the game.
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1 Introduction

Suppose that some economic agents each have a set of feasible actions that they can take and their payo¤s

depend on the actions that they all take and a payo¤ state with a known distribution. Call this scenario

the basic game. To analyze behavior in this setting, we also have to specify what agents believe about

the payo¤ states, about what others believe, and so on. Call this the information structure. A standard

incomplete information game consists of a combination of a basic game and an information structure.

Instead of asking what happens in a �xed incomplete information game, in this paper we will characterize

what may happen in a given basic game for any information structure. In particular, we identify which

outcomes, i.e., probability distributions over action pro�les and payo¤ states, could arise in a Bayes Nash

equilibrium for a �xed basic game and for some information structure.

There are a number of reasons why this exercise is both tractable and interesting.

The information structure will generally be very hard to observe, as it is in the agents�minds and

does not necessarily have an observable counterpart. We know that outcomes are very sensitive to the

information structure (Rubinstein (1989), Kajii and Morris (1997) and Weinstein and Yildiz (2007)). If

we can characterize equilibrium outcomes independent of the information structure, we can identify robust

predictions for a given basic game which are independent of - and in that sense robust to - the speci�cation

of the information structure.

Conversely, if we are able to identify a mapping from basic games to outcomes which does not depend

on the information structure, then we can also study the inverse of the map, seeing which basic game

parameters are consistent with an observed outcome. This mapping gives us a framework for partially

identifying the basic game without assumptions about the information structure. Thus we can carry out

robust identi�cation of the parameters of the basic game.

Characterizing the set of all equilibria for all information structures sounds daunting, but it turns out

that it is often easier to characterize what happens for all or many information structures at once than it is

for a �xed information structure. Suppose that instead of explicitly modelling the information structure,

we use the classical game theoretic metaphor of a mediator who makes private action recommendations to

the agents. In particular, suppose that a mediator was able to make private, perhaps correlated, action

recommendations to the agents as a function of the payo¤ state. If the agents have an incentive to follow

the mediator�s recommendation, we say that the resulting joint distribution of payo¤s and actions is a

Bayes correlated equilibrium. We can show that the set of Bayes correlated equilibria for a given basic

game equals the set of Bayes Nash equilibria that could arise for any information structure.

The Bayes correlated equilibrium characterization can also be used to analyze the strategic value of

information. Economists are often interested in analyzing which information structure is best for some
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welfare measure or some subset of agents in a given setting. In analyzing such problems, it is usual to

focus on a low dimensional parameterized set of information structures because working with all informa-

tion structures seems intractable. Our results suggest an alternative approach: one can �nd the Bayes

correlated equilibrium that maximizes some objective, and then reverse engineer the information structure

that generates that distribution as a Bayes Nash equilibrium.

In Bergemann and Morris (2013a), we pursue this research agenda for general games (with �nite players,

actions and states). In this paper, we examine these issues in a tractable basic game with a continuum

of players, symmetric quadratic payo¤ functions and normally distributed uncertainty. Thus the best

response is linear in the (expectations of) the state and the average action in the population. The basic

game is then one of "peer e¤ects", in which the payo¤ of each agent depends on the average action taken by

all the agents, and the payo¤state. Thus, the basic game can accommodate a large number of environments

ranging from the beauty contest, competitive markets and networks, and we relate these environments to

the present analysis in some detail in Section 2. We consider a tractable information structure, consisting

of a noisy private and a noisy public signal of the payo¤ relevant state. The combination of tractable basic

game and information structure is widely studied, see Morris and Shin (2002) and Angeletos and Pavan

(2007) among many others. The analysis in this paper provides a powerful illustration of the logic and

usefulness of the more general approach, as well as providing new results about an important economic

environment that is widely used in economic applications. Symmetry and normality assumptions are

maintained throughout the analysis, although we sometimes note how results would extend without these

assumptions.

Bayes correlated equilibria in this environment are symmetric normal distributions of the state and

the actions in the continuum population with the "obedience" property that a player with no information

beyond the action that he is to play would not have an incentive to choose a di¤erent action. We compare

Bayes correlated equilibria with Bayes Nash equilibria for every information structure in our bivariate class

of information structures. Integrating out the agents�signals, we show that each information structure and

its (unique) Bayes Nash equilibrium gives rise to a Bayes correlated equilibrium. Conversely, each Bayes

correlated equilibrium corresponds to the unique Bayes Nash equilibrium for some information structure in

the bivariate class. This result illustrates the more general equivalence in Bergemann and Morris (2013a),

within the class of symmetric normal distributions. Bayes correlated equilibria are two dimensional in

this environment, i.e. we can express them completely in terms of two correlation coe¢ cients representing

the correlation between: (i) the payo¤ state and the individual action and (ii) the individual actions of

any pair of agents, and thus a simple two dimensional class of information structures is large enough to

reach all Bayes correlated equilibria. Then to understand what is driving the structure of Bayes correlated
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equilibria, we analyze the comparative statics of the Bayes Nash equilibrium with respect to the bivariate

information structure. An increase in the precision of the public signal leads to a substantial increase in

the correlation of action across agents and only to a modest increase in the correlation between individual

action and state of the world. By contrast, an increase in the precision of the private signal increases the

correlation between action and state, but at the same time increases the dispersion across agents. Hence,

for all but high levels of the precision, it actually decreases the correlation in the actions of the agents.

We can identify robust predictions in terms of restrictions on the �rst and second moments of the joint

distribution over actions and the state. With quadratic games, the best response function of each agent is

a linear function and in consequence the conditional expectations of the agents are linked through linear

conditions which in turn permit an explicit construction of the equilibrium sets. We o¤er a characterization

of the equilibrium outcomes in terms of the moments of the equilibrium distributions. In the class of

quadratic games, we show that the mean of the individual actions (i.e., the population action) is constant

across all equilibria and provide sharp inequalities on the variance-covariance of the joint outcome state

distributions. If the underlying uncertainty about the payo¤ state and the equilibrium distribution itself

are normally distributed then the characterization of the equilibrium is completely given by the �rst and

second moments. If the distribution of uncertainty or the equilibrium distribution itself is not normally

distributed, then the characterization of �rst and second moments remains valid, but of course it is not a

complete characterization in the sense that the determination of the higher moments is incomplete.

We show how our approach can be used to analyze the strategic value of information by considering

information sharing among �rms. Clarke (1983) showed the striking result that �rms, when facing uncer-

tainty about a common parameter of demand, will never �nd it optimal to share information. The present

analysis of the Bayes correlated equilibrium allows us to modify this insight - implicitly by allowing for

richer information structures than previously considered - and we �nd that the Bayes correlated equilib-

rium that maximizes the private welfare of the �rms is not necessarily obtained with either zero or full

information disclosure.

Our benchmark analysis contrasts two extremes: either nothing is known about the information struc-

ture, or it is perfectly known. For both robust prediction and robust identi�cation results, it is natural to

consider intermediate cases where there is partial information about the information structure. In partic-

ular, we analyze how a lower bound on either the public or the private information of the agents, can be

used to further re�ne the robust predictions and impose additional moment restrictions on the equilibrium

distribution. The comparative static results with respect to the information structure described above,

now provide a hint at the emerging restrictions. For a given correlation between actions, an increase in

the precision of the public signal renders impossible equilibria with either very low or very high correlation
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between the individual action and the state, whereas an increase in the precision of the private signal

renders equilibria with either very low correlation between the individual action and the state impossible.

We use our characterization of what happens in intermediate information structures to analyze the

robust identi�cation question in depth. We are asking whether observable data about actions and states

can identify the structural parameters of the payo¤ functions without overly narrow assumptions on the

information structure. The question of identi�cation is to ask whether the observable data imposes restric-

tions on the unobservable structural parameters of the game given the equilibrium hypothesis. Similarly to

the problem of robust equilibrium prediction, the question of robust identi�cation then is which restrictions

are common to all possible information structures given a speci�c basic game. With no restrictions on

the information structure, we �nd that we can robustly identify the sign of some interaction parameters,

but have to leave the sign and size of other parameters, in particular whether the agents are playing a

game of strategic substitutes or complements, unidenti�ed. However, we also identify conditions on the

information structure under which we are able to identify the sign of the interaction parameter. Given the

peer e¤ect structure of the game, the identi�cation results also extend the in�uential analysis of Manski

(1993) to environments with incomplete rather than complete information.

The present work examines how the analysis of �xed games can be made robust to informational as-

sumptions. This work parallels work in robust mechanism design, where games are designed so that

equilibrium outcomes are robust to informational assumptions (our own work in this area beginning with

Bergemann and Morris (2005) is collected in Bergemann and Morris (2012)). While the endogeneity of

the game design makes the issues in the robust mechanism design literature quite di¤erent, in both litera-

tures informational robustness can be studied with richer, more global, perturbations of the informational

environment and more local ones. This paper is very permissive in allowing for a rich class of information

structures but less permissive in restricting attention to common prior information structures.

The remainder of the paper is organized as follows. Section 2 de�nes the basic game, a class of quadratic

games with normally distributed uncertainty, and the information structure. We also de�ne the relevant

solution concepts, namely Bayes Nash equilibrium and Bayes correlated equilibrium. Section 3 begins with

the analysis of the Bayes correlated equilibrium. We give a complete description of the equilibrium set in

terms of moment restrictions on the joint equilibrium distribution. Section 4 then contrasts the analysis

of the Bayes correlated equilibrium with the standard approach to games of incomplete information and

analyses the Bayes Nash equilibria under a bivariate information structure. Here each agent receives

a private and a public signal about the payo¤ state. In Section 5 we consider the optimal sharing of

information among �rms. In Section 6 we analyze how prior restrictions about the information structure

can further restrict the equilibrium predictions. By rephrasing the choice of information policy as a
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choice over information structures, we derive newly optimal information policies through the lens of Bayes

correlated equilibria. In Section 7, we turn from prediction to the issue of identi�cation. Section 8 discusses

some possible extensions and o¤ers concluding remarks. The Appendix collects the proofs from the main

body of the text.

2 Set-Up

2.1 Basic Game

There is a continuum of players and an individual player is indexed by i 2 [0; 1]. Each player chooses an
action ai 2 R. The average action of all players is represented by A 2 R and is the integral:

A ,
Z 1

0
ajdj. (1)

There is a payo¤ relevant state � 2 � with a prior distribution  2 �(�). All players have the same
payo¤ function

u : R� R��! R; (2)

where u (a;A; �) is a player�s payo¤ if she chooses action a, the average (or population) action is A and

the state is �. A basic game is thus parameterized by (u;  ).

The Bayes correlated equilibrium depends on the basic game alone. A Bayes correlated equilibrium is

de�ned to be a joint distribution over states and players�actions which has the property that a player who

knows only what action he is supposed to play has no incentive to choose a di¤erent action. In addition,

in this paper, we maintain the assumption of symmetry across players. Each player chooses an action

a 2 R and there will then be a realized average or population action A. There is a payo¤ relevant state
� 2 �. We are interested in probability distributions � 2 �(R� R��) with the interpretation that � is
the joint distribution of the individual, the average action and the state �. For any such �, we write � (�ja)
for the conditional probability distribution on (A; �) 2 R��.

De�nition 1 (Bayes Correlated Equilibrium )

A probability distribution � 2 �(R� R��) is a symmetric Bayes correlated equilibrium (BCE) if

E�(�ja) [u (a;A; �) ja ] � E�(�ja)
�
u
�
a0; A; �

�
ja
�
; (3)

for each a 2 R and a0 2 R; and

marg�� =  : (4)
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The condition (3) states that whenever a player is asked to choose a, he cannot pro�tably deviate by

choosing any di¤erent action a0. This is the obedience condition, analogous to the best response condition in

the de�nition of correlated equilibrium for complete information games in Aumann (1987). The condition

(4) states that the marginal of the Bayes correlated equilibrium distribution over the payo¤ state space �

has to be consistent with the common prior distribution  .

This de�nition is a special case of a concept introduced in Bergemann and Morris (2013a). The

de�nition here is written for the particular games with a continuum of player studied in this paper,

maintaining symmetry and normality, and with players conditioning on their actions only and not on

any additional information.1

2.2 Information Structure

Starting with the basic game (u;  ) described in the previous subsection, we can add a description of the

information structure, i.e., what players know about the state and others�beliefs. The basic game and the

information structure together de�ne a game of incomplete information.

Now, each player is assumed to observe a two-dimensional signal. In the �rst dimension, the signal xi

is privately observed and idiosyncratic to the player i, whereas in the second dimension, the signal y is

publicly observed and common to all the players:

xi = � + "i; y = � + ". (5)

The random variables "i and " are assumed to be normally distributed with zero mean and variance given

by �2x and �
2
y, respectively; moreover "i and " are independently distributed, with respect to each other

and the state �. The type of each player is therefore given by the pair of signals: (x; yi). In this class of

normally distributed signals, a speci�c type space is determined by the variance of the noise along each

dimension of the signal, �2x and �
2
y. This model of bivariate normally distributed signals appears frequently

in games of incomplete information, see Morris and Shin (2002) and Angeletos and Pavan (2007) among

many others.

1 In Bergemann and Morris (2013a) we state the general de�nition of Bayes correlated equilibrium for general games (with

�nite players, actions, and states). The general de�nition allows the players to have additional information about the state

beyond the common prior, an extension we allow for in this paper starting in Section 6. There is a signi�cant literature on

alternative de�nitions of correlated equilibrium in incomplete information environments, with Forges (1993) providing a classic

taxonomy. As we discuss in Bergemann and Morris (2013a), our de�nition of Bayes correlated equilibrium is weaker than

the weakest de�nition in the literature and Forges (1993), intuitively because we allow the mediator to know the payo¤ state

which no individual player knows. While this assumption seems contrived when de�ning solution concepts de novo, we will

see how it precisely delivers the solution concept that captures the entire set of possible equilibrium outcomes for all possible

information structures.
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We can now describe the standard approach to analyze games of incomplete information by means of

a �xed information structure (or type space) and the associated Bayes Nash equilibria. A symmetric pure

strategy in the game is then de�ned by s : R2 ! R.

De�nition 2 (Bayes Nash Equilibrium)

A (symmetric) pure strategy s is a Bayes Nash equilibrium (BNE) if

E [u (s (xi; y) ; A; �) jxi; y ] � E
�
u
�
a0; A; �

�
jxi; y

�
;

for all xi; y 2 R and a0 2 R.

2.3 Linear Quadratic Payo¤s

We restrict attention to a basic game with linear best responses and normally distributed uncertainty.

Thus we assume that player i sets his action equal to a linear function of his expectations of the average

action A and the payo¤ relevant state �:

ai = rEi [A] + sEi [�] + k, (6)

where r; s; k 2 R are the parameters of the best response function and are assumed to be identical across
players. The parameter r represents the strategic interaction among the players, and we therefore refer to

it as the �interaction parameter�. If r < 0, then we have a game of strategic substitutes, if r > 0, then

we have a game of strategic complementarities. The case of r = 0 represents the case of single person

decision problem where each player i simply responds the state of the world �, but is not concerned about

his interaction with the other players.

The parameter s represents the informational sensitivity of player i, the responsiveness to the state �,

and it can be either negative or positive. We shall assume that the state of the world � matters for the

decision of agent i, and hence s 6= 0. We shall assume that the interaction parameter r is bounded above,
or

r 2 (�1; 1) : (7)

Under this assumption,2 there is a unique Nash equilibrium of the game with complete information given

by:

ai (�) =
k

1� r +
s

1� r�, for all i and �. (8)

Moreover, under complete information about the state of the world �, even the correlated equilibrium is

unique; Neyman (1997) gives an elegant argument.

2 If r > 1, the Nash equilibrium is unstable and, if actions sets were bounded, there would be multiple Nash equilibria.
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The payo¤ state, or the state of the world, � is assumed to be distributed normally with

� � N
�
��; �

2
�

�
. (9)

The present environment of linear best response and normally distributed uncertainty encompasses a

wide class of interesting economic environments. The following applications are prominent examples and

we shall return to them to illustrate some of the results.

Example 1 (Beauty Contest) In Morris and Shin (2002), a continuum of agents, i 2 [0; 1], have to
choose an action under incomplete information about the state of the world �. Each agent i has a payo¤

function given by:

u (ai; A; �) = � (1� r) (ai � �)2 � r (ai �A)2 .

The weight r re�ects concern for the average action A taken in the population. Morris and Shin (2002)

analyze the Bayes Nash equilibrium for the information structure analyzed in this paper. In terms of our

notation, the beauty contest model set s = 1� r and k = 0 with 0 � r < 1.

Example 2 (Competitive and Strategic Markets) Guesnerie (1992) presents an analysis of the

stability of the competitive equilibrium by considering a continuum of producers with a quadratic cost of

production and a linear inverse demand function. If there is uncertainty about the demand intercept, we

can write the inverse demand curve as

p (A) = s� + rA+ k; (10)

with r < 0; while the cost of �rm i of output ai is c (ai) = 1
2a
2
i . Individual �rm pro�ts are now given by

aip (A)� c (ai) = (rA+ s� + k) ai �
1

2
a2i .

In an alternative interpretation, we can have a common cost shock, so the demand curve is p (A) = rA+ k

with r < 0 while the cost of �rm i is c (ai) = �s�ai + 1
2a
2
i . Such an economy can be derived as the limit

of large, but �nite, Cournot markets, as shown by Vives (1988), (2011).

Example 3 (Quadratic Economies and the Social Value of Information) Angeletos and Pavan

(2009) consider a general class of quadratic economies (games) with a continuum of agents and private

information about a common state � 2 R. There the payo¤ of agent i is given by a symmetric quadratic
utility function u (ai; A; �), which depends on the individual action ai, the average action A and the payo¤

state � 2 R:

u (ai; A; �) ,
1

2

0BB@
ai

A

�

1CCA
00BB@

Uaa UaA Ua�

UaA UAA UA�

Ua� UA� U��

1CCA
0BB@

ai

A

�

1CCA ; (11)
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where the matrix U = fUklg represents the payo¤ structure of the game. In the earlier working paper
version, Bergemann and Morris (2013b), we also represented the payo¤ structure of the game by the matrix

U . Angeletos and Pavan (2009) assume that the payo¤s are concave in the own action: Uaa < 0; and that

the interaction of the individual action and the average action (the �indirect e¤ect�) is bounded by the

own action (the �direct e¤ect�):

�UaA=Uaa < 1, Uaa + UaA < 0. (12)

The best response in the quadratic economy (with complete information) is given by:

ai = �
UaAA+ Ua��

Uaa
:

The quadratic term of the own cost, Uaa simply normalizes the terms of the strategic and informational

externality, UaA and Ua�. In terms of the present notation we have

r = �UaA
Uaa

; s = �Ua�
Uaa

.

Their restriction (12) is equivalent to the present restriction (7). The entries in the payo¤ matrix U which

do not refer to the individual action a, i.e. the entries in the lower submatrix of U , namely24 UAA UA�

UA� U��

35
are not relevant for the determination of either the Bayes Nash or the Bayes correlated equilibrium. These

entries are important in general for welfare analysis (the focus of Angeletos and Pavan (2009)). In the

one welfare analysis in this paper, these terms are anyway set equal to zero, so we set them equal to zero

throughout the paper without loss of generality for our results.

Example 4 (Quadratic Economies with a Finite Number of Agents) In the case of a �nite number

I of players, the average action of all players but i is represented by the sum:

A , 1

I � 1
X
j 6=i

aj . (13)

With the linear best response (6), the equilibrium behavior with a �nite, but large number of players

converges to the equilibrium behavior with a continuum of players. The model with a continuum of players

has the advantage that we do not need to keep track of the relative weight of the individual player i,

namely 1=I, and the weight of all the other players, namely (I � 1) =I. In consequence, the expression of
the equilibrium strategies are frequently more compact with a continuum of players. In the subsequent

analysis, we will focus on the game with a continuum of players, but report on the necessary adjustments

with a �nite player environment.
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Example 5 (Network Games) Network games often also are analyzed as noncooperative games where

each player decides how much action to exert as a function of the weighted average of the behavior of the

other players (see Jackson and Zenou (2013) for a survey). Thus in Ballester, Calvo-Armengol, and Zenou

(2006), each player chooses an e¤ort xi to maximizes his bilinear payo¤:

ui (x1; :::; xI) = �ixi +
1

2
�iix

2
i +

X
j 6=i

�ijxixj ;

and so the best response of agent i is given by a linear function:

�i + �iixi +
X
j 6=i

�ijxj = 0, xi =
�i �

P
j 6=i �ijxj

�ii
.

Thus if we considered the �nite player version of our results and allowed for asymmetry, we would tie in

with that literature. Our results would then have analogues where the strategic interaction parameter r

was replaced with a matrix of strategic interaction parameters. With the exception of a few contributions,

such as Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2010), this literature has mainly focused on

games of complete information. By contrast, recent and ongoing work by de Marti and Zenou (2011)

allows the marginal return or cost of e¤ort, �i, to be common to all agents, but only partially known by

the agents. Thus, they consider a model with common values and private information much like the present

model. Their analysis emphasizes, just as we observe in Proposition 1, that the equilibrium behavior under

either complete or incomplete information, is to a large extent determined by the characteristics of the

interaction matrix.

3 Bayes Correlated Equilibrium

We begin the analysis with the characterization of the Bayes correlated equilibria. We restrict attention to

symmetric and normally distributed correlated equilibria and discuss the extent to which these restrictions

are without loss of generality at the end of this Section. We begin the analysis with a continuum of agents

and subsequently describe how the equilibrium restrictions are modi�ed in a �nite player environment.

We can characterize the Bayes correlated equilibria in two distinct, yet related, ways. With a continuum

of agents, we can characterize the equilibria in terms of the state of the world �, the realized average action

A and the deviation of the individual action ai from the average action, ai�A. With a continuum of agents,
the distribution around the realized average action A can be taken to represent the exact distribution of

actions by the agents, conditional on the realized average action A.

Alternatively we can characterize the equilibria in terms of the state of the world � and an arbitrary pair

of individual actions, ai and aj . The �rst approach puts more emphasis on the distributional properties of
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the correlated equilibrium, and is convenient when we go beyond symmetric and normally distributed equi-

libria, whereas the second approach is closer to the (subsequent) description of the Bayes Nash equilibrium

in terms of the speci�cation of the individual actions.

3.1 Equilibrium Moment Restrictions

We consider the class of symmetric and normally distributed Bayes correlated equilibria. With the hy-

pothesis of a normally distributed Bayes correlated equilibrium, the aggregate distribution of the state of

the world � and the average action A is described by:0@ �

A

1A � N

0@0@ ��

�A

1A ;

0@ �2� �A��A��

�A��A�� �2A

1A1A :

In the continuum economy, we can describe the individual actions a as centered around the average action

A with some dispersion �2�, so that a = A+ �, for some � � N
�
0; �2�

�
. If the joint distribution (a;A; �) is

a multivariate normal distribution, then the distribution of the individual action a has to have the above

linear form, in particular, the dispersion �2� cannot depend on the realization of A. In consequence, the

joint equilibrium distribution of (�;A; a) is given by:0BB@
�

A

a

1CCA � N

0BB@
0BB@

��

�A

�a

1CCA ;

0BB@
�2� �A��A�� �A��A��

�A��A�� �2A �2A

�A��A�� �2A �2A + �
2
�

1CCA
1CCA : (14)

The analysis of the Bayes correlated equilibrium proceeds by deriving restrictions on the joint equilibrium

distribution (14). Given that we are restricting attention to a multivariate normal distribution, it is

su¢ cient to derive restrictions in terms of the �rst and second moments of the equilibrium distribution

(14). The equilibrium restrictions arise from two sources: (i) the best response conditions of the individual

agents:

ai = rE [A jai ] + sE [� jai ] + k, for all i and ai 2 R, (15)

and (ii) the consistency condition of De�nition 1, namely that the marginal distribution over � is equal to

the common prior over �, is satis�ed by construction of the joint equilibrium distribution (14). The best

response condition (15) of the Bayes correlated equilibrium allows the agent to form his expectation over

the average action A and the state of the world � by conditioning on the information that is contained in

his �recommended�equilibrium action ai.

As the best response condition (15) uses the expectation of the individual agent, it is convenient to

introduce the following change of variable for the equilibrium random variables. By hypothesis of the
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symmetric equilibrium, we have:

�a = �A and �2a = �2A + �
2
�.

The covariance between the individual action and the average action is given by �aA�a�A = �2A; and is

identical, by construction, to the covariance between the individual actions:

�a�
2
a = �2A. (16)

We can therefore express the correlation coe¢ cient between individual actions, �a, as:

�a =
�2A

�2A + �
2
�

, (17)

and the correlation coe¢ cient between individual action and the state � as:

�a� = �A�
�A
�a
. (18)

In consequence, we can rewrite the joint equilibrium distribution of (�;A; a) in terms of the moments

of the state of the world � and the individual action a as:0BB@
�

A

a

1CCA � N

0BB@
0BB@

��

�a

�a

1CCA ;

0BB@
�2� �a��a�� �a��a��

�a��a�� �a�
2
a �a�

2
a

�a��a�� �a�
2
a �2a

1CCA
1CCA : (19)

With the joint equilibrium distribution described by (19), we now use the best response property (15),

to completely characterize the moments of the equilibrium distribution.

As the best response property (15) has to hold for all ai in the support of the correlated equilibrium, it

follows that the above condition has to hold in expectation over all ai, or by the law of total expectation:

E [ai] = k + sE [E [� jai ]] + rE [E [A jai ]] . (20)

By symmetry, the expected action of each agent is equal to expected average action A, and hence we can

use (20) to solve for the mean of the individual action and the average action:

E [ai] = E [A] =
k + sE [�]
1� r =

k + s��
1� r . (21)

It follows that the mean of the individual action and the mean of the average action is uniquely determined

by the mean value �� of the state of the world and the parameters (r; s; k) across all correlated equilibria.

The characterization of the second moments of the equilibrium distribution again uses the best response

property of the individual action, see (15). But, now we use the property of the conditional expectation,

rather than the iterated expectation to derive restrictions on the covariates. The recommended action ai
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has to constitute a best response in the entire support of the equilibrium distribution. Hence the best

response has to hold for all ai 2 R, and thus the conditional expectation of the state E [� jai ] and of the
average action, E [A jai ], have to change with ai at exactly the rate required to maintain the best response
property:

1 =

�
s
dE [� jai ]
dai

+ r
dE [A jai ]

dai

�
; for all ai 2 R. (22)

Given the multivariate normal distribution (19), the conditional expectations E [� jai ] and E [A jai ] are
linear in ai and given by

E [�jai] =
�
1� �a���

�a

s

1� r

�
�� +

�a���
�a

�
ai �

k

1� r

�
; (23)

and

E [Ajai] =
k + s��
1� r (1� �a) + �aai: (24)

The optimality of the best response property can then be expressed, using (23) and (24) as

1 = s
�a���
�a

+ r�a. (25)

It follows that we can express either one of the three elements in the description of the second moments,

(�a; �a; �a�) in terms of the other two and the primitives of the game as described by (r; s). In fact, it is

convenient to solve for the standard deviation of the individual actions �a, or

�a =
��s�a�
1� �ar

. (26)

The remaining restrictions on the correlation coe¢ cients �a and �a� are coming in the form of inequalities

from the change of variables in (16)-(18), where

�2a� = �2A�
�2A
�2a

= �2A��a � �a. (27)

Finally, the standard deviation has to be positive, or �a � 0. Now, it follows from the assumption of

moderate interaction, r < 1, and the nonnegativity restriction of �a implied by (27) that 1� �ar > 0, and
thus to guarantee that �a � 0, it has to be that s�a� � 0. Thus the sign of the correlation coe¢ cient �a�
has to equal the sign of the interaction term s. We summarize these results.

Proposition 1 (First and Second Moments of BCE)

A multivariate normal distribution of (ai; A; �) is a symmetric Bayes correlated equilibrium if and only if

1. the mean of the individual action is:

E [ai] =
k

1� r + ��
s

1� r ; (28)
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2. the standard deviation of the individual action is:

�a =
s�a�
1� �ar

��; and (29)

3. the correlation coe¢ cients �a and �a� satisfy the inequalities:

�2a� � �a and s � �a� � 0. (30)

Thus the robust predictions of the linear best response model are: (i) the mean of the individual action

�a is pinned down by the parameters of the model, see (28) and (ii) there is a one dimensional restriction

on the remaining free endogenous variables (�a; �a; �a�), see (29) Notably, the robust predictions about

the correlation coe¢ cients are less stringent. The sign of �a� is pinned down by the sign of s, and

there is a statistical requirement that �2a� � �a, but beyond these restrictions, any correlation coe¢ cients

are consistent with any values of the parameters of the model and, in particular, with any value of the

interaction parameter r.

In Section 7, we analyze the issue of robust identi�cation in the model. In particular, we will argue

formally in Proposition 12 that any value of the interaction parameter r 2 (�1; 1) is consistent with any
given observed �rst and second moments of the state (��; ��) and the endogenous variables (�a; �a; �a; �a�).

The characterization of the �rst and second moments suggests that the mean �� and the variance �
2
� of

the fundamental variable � are the driving force of the moments of the equilibrium actions. The linear form

of the best response function translates into a linear relationship in the �rst and second moment of the

state of the world and the equilibrium action. In the case of the standard deviation, the linear relationship

is a¤ected by the correlation coe¢ cients �a and �a� which assign weights to the interaction parameter r

and s, respectively. The set of all correlated equilibria is graphically represented in Figure 1.

The restriction on the correlation coe¢ cients, namely �2a� � �a, emerged directly from the above change

of variable, see (16)-(18). Alternatively, but equivalently, we could have disregarded the restrictions implied

by the change of variables, and simply insisted that the matrix of second moments of (19) is indeed a

legitimate variance-covariance matrix, i.e., that it is a nonnegative de�nite matrix. A necessary condition

for the nonnegativity of the matrix is that the determinant of the variance-covariance matrix is nonnegative,

or,

�6��
4
a�s

4 (1� �a)
�a � �2a�
(1� �ar)4

� 0 ) �2a� � �a. (31)

In addition, due to the special structure of the present matrix, namely �2A = �a�
2
a, the above inequality is

also a su¢ cient condition for the nonnegative de�niteness of the matrix.

Later, we extend the analysis from the pure common value environment analyzed here, to an inter-

dependent value environment (in Section 3.3) and to prior restrictions on the private information of the
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Figure 1: Set of Bayes correlated equilibrium in terms of correlation coe¢ cients �a and j�a�j

agents (in Section 6). In these extensions, it will be convenient to extract the equilibrium restrictions in

form of the correlation inequalities, directly from the restriction of the nonnegative de�nite matrix, rather

than trace them through the relevant change of variable. These two procedures naturally establish the

same equilibrium restrictions.

If the action and state are independent (�a� = 0), the variance of the individual action �2a has to be

equal to zero by (26), and hence if the individual actions do not display any correlation with the payo¤

state �; then the individual action and hence the average actions must be constant. Thus, each agent acts

as if he were in a complete information world where the true state of the world is the expected value of

the state, E [�].

The condition on the variance of the individual action, given by (26), actually follows the same logic as

the condition on the mean of the individual action, given by (21), in the following sense. For the mean,

we used the law of total expectation to arrive at the equality restriction. Similarly, we could obtain the

above restriction (26) by using the law of total variance and covariance. More precisely, we could require,

using the equality (15), that the variance of the individual action matches the sum of the variances of

the conditional expectations. Then, by using the law of total variance and covariance, we could represent

the variance of the conditional expectation in terms of the variance of the original random variables, and

obtain the exact same condition (26). Here we chose to directly use the linear form of the conditional
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expectation given by the multivariate normal distribution. We explain towards the end of the section that

the later method, which restricts the moments via conditioning, remains valid beyond the multivariate

normal distributions.

We conclude by brie�y describing how the analysis of the Bayes correlated equilibrium would be modi-

�ed by the presence of a �nite number I of agents. We remarked in Section 2 that (given our normalization)

the best response function of the agent i is constant in the number of players. As the best response is inde-

pendent of the number of players, it follows that the equilibrium equality restrictions, namely (28) and (29),

are una¤ected by the number, in particular the �niteness, of the players. The only modi�cation arises with

the change of variable, see (16)-(18), which relied on the continuum of agents. By contrast, the inequality

restrictions with a �nite number of players can be recovered directly from the fact that variance-covariance

matrix �a1;:::;aI ;� of the equilibrium random variables (a1; :::; aI ; �) has to be a nonnegative de�nite matrix.

Corollary 1 (First and Second Moments of BCE with Finitely Many Players)

A multivariate normal distribution of (a1; :::; aI ; �) is a symmetric Bayes correlated equilibrium if and only

if it satis�es (28), (29), and the correlation coe¢ cients �a and �a� satisfy the inequalities:

�a � �
1

I � 1 , �a � �2a� � �
1� �2a�
I � 1 ; s � �a� � 0. (32)

It is immediate to verify that the restrictions of the correlation structure in (32) converge towards the

one in (30) as I !1. We observe that the restrictions in (32) are more permissive with a smaller number
of agents, and in particular allow for moderate negative correlation across individual actions with a �nite

number of agents. By contrast, with in�nitely many agents, it is a statistical impossibility that all actions

are mutually negatively correlated.

3.2 Volatility and Dispersion

Proposition 1 documents that the relationship between the correlation coe¢ cients �a and �a� depends only

on the sign of the information externality s, but not on the strength of the parameters r and s. We can

therefore focus our attention on the variance of the individual action and how it varies with the strength

of the interaction as measured by the correlation coe¢ cients (�a; �a�).

Proposition 2 (Variance of Individual Action)

1. If the game displays strategic complements, r > 0; then: (i) �a is increasing in �a and j�a�j; (ii) the
maximal �a is obtained at �a = j�a�j = 1:
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2. If the game displays strategic substitutes, r < 0, then: (i) �a is decreasing in �a and increasing in

j�a�j; (ii) the maximal �a is obtained at

�a = j�a�j2 = min
�
�1
r
; 1

�
. (33)

In particular, we �nd that as the correlation in the actions across individuals increases, the variance

in the action is ampli�ed in the case of strategic complements, but attenuated in the case of strategic

substitutes. An interesting implication of the attenuation of the individual variance is that the maximal

variance of the individual action may not be attained under minimal or maximal correlation of the individual

actions but rather at an intermediate level of correlation. In particular, if the interaction e¤ect r is large,

namely jrj > 1, then the maximal variance �a is obtained with an interior solution. Of course, in the case
of strategic complements, the positive feed-back e¤ect implies that the maximal variance is obtained when

the actions are maximally correlated.

We have described the Bayes correlated equilibrium in terms of the triple (�;A; a). An equivalent

representation can be given in terms of (�;A; a�A) : the state �, the average action A, the idiosyncratic
di¤erence, a � A. In games with a continuum of agents, we can interpret the conditional distribution of

the agents�action a around the mean A as the exact distribution of the actions in the population. The

idiosyncratic di¤erence a� A describes the dispersion around the average action, and the variance of the

average action A can be interpreted as the volatility of the game. The dispersion, a�A, measures how much
the individual action can deviate from the average action, yet be justi�ed consistently with the conditional

expectation of each agent in equilibrium. The language for volatility and dispersion in the context of this

environment was earlier suggested by Angeletos and Pavan (2007). The dispersion is described by the

variance of a�A, which is given by (1� �a)�2a whereas the aggregate volatility is given by �2A = �a�
2
a.

Proposition 3 (Volatility and Dispersion)

1. The volatility is increasing in j�a�j, and increasing in �a if and only if r � �1=�a;

2. The dispersion is increasing in j�a�j and reaches an interior maximum at:

�a = �2a� =
1

2� r .

The dispersion, a� A, measures how much the individual action can deviate from the average action.

The maximal level of dispersion occurs when the correlation with respect to the state � is largest. But

it reaches its maximum at an interior level of the correlation across the individual actions as we might

expect. We note that relative to the variance of the individual action, see Proposition 2, the volatility, is

increasing in the correlation coe¢ cient �a for a larger range of strategic interaction parameters, including

moderate strategic substitutes.
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3.3 Interdependent Value Environment

So far, we have restricted our analysis to the common value environment in which the state of the world is

the same for every agent. However, the analysis of the Bayes correlated equilibrium set easily extends to a

model with interdependent, but not necessarily common, values. Here we describe a suitable generalization

of the common value environment to an interdependent value environment: the payo¤ type of agent i is

now given by �i = �+ �i, where � is the common value component and �i is the private value component.

The distribution of the common component � is given, as before, by � � N
�
��; �

2
�

�
, and the distribution

of the private component �i is given by �i � N
�
0; �2�

�
. It follows that by increasing �2� at the expense of

�2�, we can move from a model of pure common values to a model of pure private values, and in between

we are in a canonical model of interdependent values.

The analysis of the Bayes correlated equilibrium can proceed as in Section 3.1. The earlier representa-

tion of the Bayes correlated equilibrium in terms of the variance-covariance matrix of the individual action

a, the aggregate action A and the common value � simply has to be augmented by distinguishing between

the common value component � and the private value component �:

�a;A;�;� =

2666664
�2a �a�

2
a �a��a�� �a��a��

�a�
2
a �a�

2
a �a��a�� 0

�a��a�� �a��a�� �2� 0

�a��a�� 0 0 �2�

3777775 :

The new correlation coe¢ cient �a� represents the correlation between the individual action a and the

individual value, the private component �. The set of the Bayes correlated equilibria are a¤ected by the

introduction of the private component in a systematic manner. The equilibrium conditions, in terms of

the best response, are given by:

a = rE [A ja ] + sE [� + � ja ] + k. (34)

As the private component � has zero mean, it is centered around the common value �, the private component

does not change the mean action in equilibrium. However, the addition of the private value component does

a¤ect the variance and covariance of the Bayes correlated equilibria. In fact, the best response condition

(34), restricts the variance of the individual action to:

�a =
s (���a� + ���a�)

1� �ar
;

so that the standard deviation �a of the individual action is now composed of the weighted sum of the

common and private value sources of payo¤ uncertainty. Finally, the additional restrictions that arise from

the requirement that the matrix �a;A;�;� is indeed a variance-covariance matrix, i.e. that it is a positive
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de�nite matrix, simply appear integrated in the original conditions:

�a � �2a� � 0; 1� �2a� � �a � 0. (35)

In other words, to the extent that the individual action is correlated with the private component, it imposes

a bound on how much the individual actions can be correlated, or �a � 1 � �2a� . Thus to the extent that

the individual agent�s action is correlated with the private component, it limits the extent to which the

individual action can be related with the public component, as by construction, the private and the public

component are independently distributed. In Section 6, we consider the impact of prior restrictions of the

information structures on the shape of the equilibrium set. There, a natural restriction in the context of

interdependent values is that each agent knows his own payo¤ state, �i = � + �i, but does not know the

composition of his own payo¤ state in terms of the public component � and the private component �i.

In Bergemann, Heumann, and Morris (2013) we investigate this interdependent value environment, which

encompasses both the pure private and the pure common value model, in more detail.

3.4 Beyond Normal Distributions and Symmetry

Beyond Normal Distributions The characterization of the mean and variance/covariance of the equi-

librium distribution was obtained under the assumption that the distributions of the fundamental variable

� and resulting joint distribution was a multivariate normal distribution. Now, even if the distribution of

the state of the world � is a normally distributed, the joint equilibrium distribution does not necessarily

have to be a normal distribution itself. If the equilibrium distribution is not a multivariate normal distri-

bution anymore, then the �rst and second moments alone do not completely characterize the equilibrium

distribution anymore. In other words, the �rst and second moment only impose restrictions on the higher

moments, but do not completely identify the higher moments anymore. We observe however that the

restrictions regarding the �rst and second moment remain to hold. In particular, the result regarding the

mean of the action is independent of the distribution of the equilibrium or even the normality of the funda-

mental variable �. With respect to the restrictions on the second moments, the restrictions still hold, but

outside of the class of multivariate normal distribution, the inequalities may not necessarily be achieved as

equalities for some equilibrium distributions.

The equilibrium characterization of the �rst and second moments could alternatively be obtained by

using the law of total expectation, and its second moment equivalents, the law of total variance and

covariance. These �laws�, insofar as they relate marginal probabilities to conditional probabilities, naturally

appeared in the equilibrium characterization of the best response function which introduce the conditional

expectation over the state and the average action, and hence the conditional probabilities. For higher-order
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moments, an elegant generalization of this relationship exists, see Brillinger (1969), sometimes referred to

as law of total cumulance, and as such would deliver further restrictions on higher-order moments if we

were to consider equilibrium distributions beyond the normal distribution.

Beyond Symmetry The characterization of the mean and variance of the equilibrium distribution

pertained to the symmetric equilibrium distribution. But actually, the characterization remains entirely

valid for all equilibrium distributions if we focus on the average action rather than the individual action. In

addition, the result about the mean of the individual action remains true for all equilibrium distributions,

and not only the symmetric equilibrium distribution. This later result suggests that the asymmetric

equilibria only o¤er a richer set of possible second moments distributions across agents. Interestingly, in

the �nite agent environment, the asymmetry in the second moments does not lead to joint distributions over

aggregates outcomes and state which cannot be obtain already with symmetric equilibrium distributions.

Essentially, the asymmetry vanishes in the aggregate outcome as the aggregate outcome averages over the

individual best responses, all of which are required to be balanced by the same, symmetric, interaction

condition.

4 Bayes Nash Equilibrium

We now contrast the analysis of the Bayes correlated equilibrium with the conventional solution concept

for games with incomplete information, the Bayes Nash equilibrium. Here we need to augment the descrip-

tion of the basic game with a speci�cation of an information structure. We consider a bivariate normal

information structure given by a private signal xi and a public signal y for each agent i:

xi = � + "i; y = � + ". (36)

The respective random variables "i and " are assumed to be normally distributed with zero mean and

variance given by �2x and �
2
y. It is at times convenient to express the variance of the random variables in

terms of the precision:

�x , ��2x ; �y , ��2y ; � � , ��2� and � , ��2� + ��2x + ��2y ;

and we refer to the vector (�x; �y) as the information structure of the game.

A special case of the noisy environment is the environment with zero noise, the complete information

environment, in which each agent observes the state of the world � without noise. We begin the equilibrium

analysis with the complete information environment where the best response:

ai = rA+ s� + k, (37)
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re�ects the, possibly con�icting, objectives that agent i faces. Each agent has to solve a prediction-like

problem in which he wishes to match his action with the state � and the average action A simultaneously.

The interaction parameters, s and r, determine the weight that each component, � and A, receives in

the deliberation of the agent. If there is zero strategic interaction, or r = 0, then each agent faces a pure

prediction problem. Now, we observed earlier, see (8), that the resulting Nash equilibrium strategy is given

by:

a� (�) , k

1� r +
s

1� r�. (38)

We refer to the terms in equilibrium strategy (38), k= (1� r) and s= (1� r), as the equilibrium intercept

and the equilibrium slope, respectively.

4.1 Linear Bayes Nash Equilibrium

Next, we analyze the game with incomplete information, where each agent receives a bivariate noisy signal

(xi; y). In particular, we shall compare how responsive the strategy of each agent is with incomplete

information relative to the complete information game. In the game with incomplete information, agent i

receives a pair of signals, xi and y, generated by the information structure (36). The prediction problem

now becomes more di¢ cult for the agent. First, he does not observe the state �, but rather he receives

some noisy signals, xi and y, of �. Second, since he does not observe the other agents�signals either, he

can only form an expectation about their actions, but again has to rely on the signals xi and y to form

the conditional expectation. The best response function of agent i then requires that action a is justi�ed

by the conditional expectation, given xi and y:

ai = rE [A jxi; y ] + sE [� jxi; y ] + k. (39)

In this linear quadratic environment with normal distributions, we conjecture that the equilibrium strategy

is given by a function linear in the signals xi and y: a (xi; y) = �0 + �xxi + �yy. The equilibrium is then

identi�ed by the linear coe¢ cients �0; �x; �y; which we expect to depend on the interaction terms (r; s; k)

and the information structure (�x; �y). In particular, given the normal information structure, and the

hypothesis of the linear strategies of all players but i, we can write the conditional expectation in the best

response of agent i above explicitly as

ai = r

�
�0 + �x

x�x + y�y + � ���
�x + �y + � �

+ �yy

�
+ s

�
x�x + y�y + � ���
�x + �y + � �

�
+ k;

and from here we derive the following result.
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Proposition 4 (Linear Bayes Nash Equilibrium)

The unique Bayes Nash equilibrium is a linear equilibrium: a (x; y) = ��0+�
�
xx+�

�
yy, with the coe¢ cients

given by:

��0 =
k

1� r +
s

1� r
��� �
� � r�x

; ��x = s
�x

� � r�x
; ��y =

s

1� r
�y

� � r�x
: (40)

The derivation of the linear equilibrium strategy already appeared in many contexts, e.g., in Morris

and Shin (2002) for the beauty contest model, and for the present general environment, in Angeletos and

Pavan (2007). With the normalization of the average action given by (1) and (13), the above equilibrium

strategy is independent of the number of players, and in particular independent of the �nite or continuum

version of the environment.

The Bayes Nash equilibrium shares the uniqueness property with the Nash equilibrium, its complete

information counterpart. We observe that the linear coe¢ cients ��x and �
�
y display the following relation-

ship:
��y
��x

=
�y
�x

1

1� r . (41)

Thus, if there is no strategic interaction, or r = 0, then the signals xi and y receive weights proportional

to the precision of the signals. The fact that xi is a private signal and y is a public signal does not matter

in the absence of strategic interaction, all that matters is the ability of the signal to predict the state

of the world. By contrast, if there is strategic interaction, r 6= 0, then the relative weights also re�ect

the informativeness of the signal with respect to the average action. Thus if the game displays strategic

complements, r > 0, then the public signal y receives a larger weight. The commonality of the public signal

across agents means that their decision is responding to the public signal at the same rate, and hence in

equilibrium the public signal is more informative about the average action than the private signal. By

contrast, if the game displays strategic substitutability, r < 0, then each agent would like to move away

from the average, and hence places a smaller weight on the public signal y, even though it still contains

information about the underlying state of the world.

Now, if we compare the equilibrium strategies under complete and incomplete information, (38) and

(40), we �nd that in the incomplete information environment, each agent still responds to the state of the

world �, but his response to � is noisy as both xi and y are noisy realizations of �, but centered around �:

xi = � + "i and y = � + ". Now, given that the best response, and hence the equilibrium strategy, of each

agent is linear in the expectation of �, the variation in the action is �explained�by the variation in the

true state, or more generally in the expectation of the true state.
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Proposition 5 (Attenuation)

The mean of the individual action in equilibrium is:

E [a] = ��0 + �
�
x�� + �

�
y�� =

k + s��
1� r ; (42)

and the sum of the weights, ��x + �
�
y, is:����x + ��y�� = ���� s

1� r

���� �1� � �
� � r�x

�
�
���� s

1� r

���� .
Thus, the mean of the individual action, E [a], is independent of the information structure (�x; �y). In

addition, we �nd that the linear coe¢ cients of the equilibrium strategy under incomplete information are

(weakly) less responsive to the true state � than under complete information. In particular, the sum of the

weights is strictly increasing in the precision of the noisy signals xi and y. The equilibrium response to the

state of the world � is diluted by the noisy signals, that is the response is attenuated. The residual is always

picked up by the intercept of the equilibrium response. Moreover, with a continuum of agents, by the law

of large numbers, the realized average action A always satis�es the equality (42) for every realization of

the state �, or:

A = ��0 + �
�
x� + �

�
y� =

k + s�

1� r ; 8�,

and hence the realized average action is also independent of the information structure.

Now, if we ask how the joint distribution of the Bayes Nash equilibrium varies with the information

structure, then Proposition 5 established that it is su¢ cient to consider the higher moments of the equi-

librium distribution. But given the normality of the equilibrium distribution, it follows that it is su¢ cient

to consider the second moments, that is the variance-covariance matrix. The variance-covariance matrix

of the equilibrium joint distribution over individual actions ai; aj , and state � is given by:

�ai;aj ;� =

2664
�2a �a�

2
a �a��a��

�a�
2
a �2a �a��a��

�a��a�� �a��a�� �2�

3775 : (43)

We denote the correlation coe¢ cient between action ai and aj shorthand by �a rather than �aa.

With a continuum of agents, we can describe the equilibrium distribution, after replacing the individual

action aj by the average action A, through the triple (ai; A; �). The covariance between the individual, but

symmetrically distributed, actions ai and aj , given by �a�
2
a has to be equal to the variance of the average

action, or �2A = �a�
2
a.
3 Similarly, the covariance between the individual action and the average action

3With a �nite number of agents and the de�nition of the average action given by: A = (1= (I � 1))
P

j 6=i aj , the variance

of A is given by �2A =
�

1
I�1 +

I�2
I�1�a

�
�2a and hence the variance-covariance matrix in the continuum version is only an

approximation, but not exact.
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has to be equal to the covariance of any two, symmetric, individual action pro�les, or �aA�a�A = �a�
2
a.

Likewise, the covariance between the individual (but symmetric) action ai and the state � has to equal to

the covariance between the average action and the state �, or or �a��a�� = �A��A��.

With the characterization of the unique Bayes Nash equilibrium in Proposition 4, we can express the

variance-covariance matrix of the equilibrium joint distribution over (ai; A; �) in terms of the equilibrium

coe¢ cients (�x; �y) and the variances of the underlying random variables (�; "i; "):

�ai;A;� =

2664
�2x�

2
x + �

2
y�
2
y + �

2
� (�x + �y)

2 �2y�
2
y + �

2
� (�x + �y)

2 �2� (�x + �y)

�2y�
2
y + �

2
� (�x + �y)

2 �2y�
2
y + �

2
� (�x + �y)

2 �2� (�x + �y)

�2� (�x + �y) �2� (�x + �y) �2�

3775 . (44)

Conversely, given the structure of the variance-covariance matrix, we can express the equilibrium coe¢ cients

��x and �
�
y in terms of the variance and covariance terms that they generate:

��x =
�a
��
�a� � ��y; ��y = �

�a
�y

q
�a � �2a�. (45)

Thus, we attribute to the private signal x, through the weight ��x, the residual correlation between a

and �, where the residual is obtained by removing the correlation between a and � which is due to the

public signal. In turn, the weight attributed to the public signal is proportional to the di¤erence between

the correlation across actions and across action and signal. We recall that the actions of any two agents

are correlated as they respond to the same underlying fundamental state �. Thus, even if their private

signals are independent conditional on the true state of the world �, their actions are correlated due to

the correlation with the hidden random variable �. Now, if these conditionally independent signals were

the only sources of information, and the correlation between action and the hidden state � where �a�,

then all the correlation of the agents�action would have to come through the correlation with the hidden

state, and in consequence the correlation across actions arises indirectly, in a two way passage through the

hidden state, or �a = �a� � �a�. In consequence, any correlation �a beyond this indirect path, or �a � �2a� is
generated by means of a common signal, the public signal y.

Since the correlation coe¢ cient of the actions has to be nonnegative, the above representation suggest

that as long as the correlation coe¢ cient (�a; �a�) satisfy:

0 � �a � 1, and �a � �2a� � 0; (46)

we can �nd information structures (�x; �y) such the coe¢ cients resulting from (45) are indeed the equilib-

rium coe¢ cients of the associated Bayes Nash equilibrium strategy.
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Figure 2: Bayes Nash equilibrium of beauty contest, r = 1=4, with varying degree of precision �x of private

signal.

Proposition 6 (Information and Correlation)

For every (�a; �a�) such that 0 � �a � 1, and �a � �2a� � 0; there exists a unique information structure

(�x; �y) such that the associated Bayes Nash equilibrium displays the correlation coe¢ cients (�a; �a�):

�x =
(1� �a) �2a��

(1� �a) + (1� r)
�
�a � �2a�

��2
�2�
;

and

�y =

�
�a � �2a�

�
�2a� (1� r)

2�
(1� �a) + (1� r)

�
�a � �2a�

��2
�2�
:

In the two-dimensional space of the correlation coe¢ cients
�
�a; �

2
a�

�
, the set of possible Bayes Nash

equilibria is described by the area below the 45� degree line. We illustrate how a particular Bayes Nash equi-

librium with its correlation structure (�a; �a�) is generated by a particular information structure (�x; �y). In

Figure 2, each level curve describes the correlation structure of the Bayes Nash equilibrium for a particular

precision �x of the private signal. A higher precision �x generates a higher level curve. The upward sloping

movement represents an increase in informativeness of the public signal, i.e. an increase in the precision

�y. An increase in the precision of the public signal therefore leads to an increase in the correlation of

action across agents as well as in the correlation between individual action and state of the world. For low

levels of precision in the private and the public signal, an increase in the precision of the public signal �rst

leads to an increase in the correlation of actions, and then only later into an increased correlation with the

state of the world.

In Figure 3, we remain in the unit square of the correlation coe¢ cients
�
�a; �

2
a�

�
. But this time, each

level curve is identi�ed by the precision �y of the public signal. As the precision of the private signal
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Figure 3: Bayes Nash equilibrium of beauty contest, r = 1=4, with varying degree of precision �x of public

signal.

increases, the level curve bends upward and �rst backward, and eventually forward. At low levels of the

precision of the private signal, an increase in the precision of the private signal increases the dispersion

across agents and hence decreases the correlation across agents. But as each individual receives more

information about the state �, an increase in precision always leads to an increase in the correlation with

the state of the world, this is the upward movement. As the precision improves, eventually the noise

becomes su¢ ciently small so that the underlying common value generated by � dominates the noise, and

then serves to both increase the correlation with the state and the actions of the other agents. But in

contrast to the private information, where the equilibrium sets moves mostly northwards, i.e. where the

improvement occurs mostly in the direction of an increase in the correlation between the state and the

individual agent, the public information leads the equilibrium sets to move mostly eastwards, i.e. most of

the change leads to an increase in the correlation across actions. In fact for a given correlation between

the individual actions, represented by �a, an increase in the precision of the public signal leads to the

elimination of Bayes Nash equilibria with very low and with very high correlation between the state of the

world and the individual action.

4.2 Matching Bayes Correlated and Nash Equilibria

What is the relation between the set of Bayes correlated equilibria identi�ed in this section, and the set of

Bayes Nash equilibria de�ned over di¤erent information structures in the previous section? For each �xed

information structure and Bayes Nash equilibrium, we identi�ed the implied joint distribution of actions

and the payo¤ state in Proposition 6. It is straightforward to verify directly that these distributions

satisfy the conditions characterizing Bayes correlated equilibrium. In particular, this is true for the class
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of bivariate normal information structures that we explicitly studied. However, it would also have been

true if we had taken any other symmetric normal information structure (perhaps with more than two

dimensional signals), the implied action state distributions would still correspond to some Bayes correlated

equilibria.

Here we establish the converse result as well. For every Bayes correlated equilibrium, there is an

information structure such that the Bayes Nash equilibrium for that information structure gives rise to the

Bayes correlated equilibrium action state distributions. Interestingly, it turns out to be su¢ cient to only

use the class of bivariate information structures.

This result illustrates the more general connection between Bayes correlated equilibrium and Bayes

Nash equilibrium for all information structures studied in Bergemann and Morris (2013a), where we show

that a joint distribution over actions and states is Bayes correlated equilibrium if and only if it forms a

Bayes Nash equilibrium distribution under some information structure. In particular, it shows that the

connection continues to hold when we impose normality and symmetry assumptions on the analysis. And

we get a bonus result - in this special environment - in that we can �nd a set of information structures

with low dimensionality that are su¢ cient to establish the connection.

To see the connection concretely, observe that the Bayes Nash and correlated equilibria share the

same mean. We can therefore match the respective equilibria if we can match the second moments of the

equilibria. After inserting the coe¢ cients of the linear strategies of the Bayes Nash equilibrium, we can

match the moments of the two equilibrium notions. In the process, we get two equations relating the Bayes

correlated and Nash equilibrium. The Bayes Nash equilibria are de�ned by the variance of the private and

the public signal. The correlated equilibria are de�ned by the correlation coe¢ cients of individual actions

across agents, and individual actions and state �. Moreover, from Proposition 1 and 6, we already know

that for every pair of correlation coe¢ cients (�a; �a�) that form a Bayes correlated equilibrium, see (30),

we can �nd a unique information structure (�x; �y) that generates the same second moments as a Bayes

Nash equilibrium. We therefore have the following result.

Corollary 2 (Matching BCE and BNE)

For every interaction structure (r; s; k), there is a bijection between Bayes correlated and Bayes Nash

equilibrium.

Finally we observe that for a given strictly positive and �nite precision of the information structure,

i.e. 0 < (�x; �y) < 1, the associated Bayes Nash equilibrium is an interior point relative to the set of

correlated equilibria. As the set of correlated equilibria is described by �a � �2a� � 0, and since we know
that �a = (�aA)

2 we have �aA > j�a�j. It follows that every Bayes Nash equilibrium with �nite precision

is an interior equilibrium relative to the correlated equilibria in terms of the correlation coe¢ cients, and
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certainly in terms of the variance of individual and average action. To put it di¤erently, the equality

�a = �2a� is obtained in the Bayes Nash equilibrium if and only if the precision of the public signal �y is

zero, i.e., in the limit as the public signal is uninformative.

There is a twist to the matching of Bayes correlated and Bayes Nash equilibrium in the �nite player

version of the model. In this case, it is possible for the individual actions to become negatively correlated.

This cannot arise with the bivariate information structure. To match Bayes correlated equilibria in the

�nite player version of the model, we would have to allow for negatively correlated (and thus conditionally

dependent) private signals.

5 The Strategic Value of Information

We are often interested in analyzing what is the best information structure in a strategic setting, either for

the players in the game or for an outside observer who cares about choices in the game. For example, recent

work by Rayo and Segal (2010) and Kamenica and Gentzkow (2011) have considered this problem in the

context of single person games, i.e., decision problems; Bergemann and Pesendorfer (2007) characterizes the

revenue-maximizing information structure in an auction with many bidders; and a large literature reviewed

below has examined the incentives of competing �rms to share cost and demand information. Directly

maximizing over all possible information structures, especially with many players, sounds intractable. Our

compact representation of the Bayes correlated equilibria allows us to assess the private and/or social

welfare across the entire set of possible information structures (and induced equilibrium distributions). In

this section, we show how results developed in earlier sections allows us to easily do this and deliver novel

economic insights. In particular, we identify settings where the information structure that turns out to be

optimal was excluded from the parametric domain of information structures analyzed in earlier work. In

the context of the application of information sharing among �rms, we show that it is optimal to have �rms

observe a conditionally independent noisy signal of the aggregate of the others�information.

The problem of information sharing among �rms was pioneered in work by Novshek and Sonnenschein

(1982), Clarke (1983) and Vives (1984), who examined to what extent competing �rms have an incentive

to share information in an uncertain environment. In this strand of literature, which is surveyed in Vives

(1990) and embedded in a very general framework by Raith (1996), each �rm receives a private signal about

a source of uncertainty, say a demand or cost shock. The central question then is under which conditions

the �rms have an incentive to commit ex-ante to an agreement to share information in some form. Clarke

(1983) shows the stark result that in a Cournot oligopoly with uncertainty about a common parameter

of demand, the �rms will never �nd it optimal to share information. The complete lack of information

sharing, independent of the precision of the private signal and the number of competing �rms, is surprising.

29



After all, it would be socially optimal to reduce the uncertainty about demand and a reasonable conjecture

would be that the �rms could at least partially appropriate the social gains of information. The result of

Clarke (1983) appeared in the context of a linear inverse demand with normally distributed uncertainty,

and a constant marginal cost. In subsequent work, the strong result of zero information sharing was shown

to rely on constant marginal cost, and with a quadratic cost of production, it was shown that either zero

or complete information sharing can be optimal, where the information sharing result appears when the

cost of production is su¢ ciently convex for each �rm, and hence information becomes more valuable, see

Kirby (1988) and Raith (1996).

In the above cited work, the individual �rms receive a private, idiosyncratic and noisy signal xi about

the state of demand �. Each �rm can commit to transmit the information, noisy or noiseless, to an interme-

diary, such as a trade association, which aggregates the information. The intermediary then discloses the

aggregate information to the �rms. Importantly, while the literature did consider the possibility of noisy or

noiseless transmission of the private information, it a priori restricted the disclosure policy to be noiseless,

which implicitly restricted the information policy to disclose the same, common signal to all the �rms.

In the present perspective an information policy is a pair of information transmission and information

disclosure policies. The analysis of the Bayes correlated equilibria now allows us to substantially modify

the earlier insights. Interestingly, Proposition 7 establishes that it is with substantial loss in generality to

restrict attention to a common and hence perfectly correlated disclosure policy.

We described the payo¤s of the quantity setting �rms with uncertainty about demand in Example 2,

where s > 0 represents the positive informational e¤ect of a higher state � of demand and r < 0 represents

the fact the �rms are producing (homogeneous) substitutes, so that the inverse demand function was de�ned

by (10) , where A is average action, and in the present context equals the average quantity supplied, q = A :

p (A) = s� + rA+ k:

We �rst ask what information structure maximizes �rms�pro�ts, by �nding the �rm optimal Bayes cor-

related equilibrium. We will then consider how to attain that information structure through information

sharing.

Correlation of output with demand (�a�) increases pro�ts but correlation between �rms�output (�a)

decreases pro�t. Thus it is always optimal to set �a� as high as possible consistent with BCE, and thus

�a� =
p
�a. If the demand curve is su¢ ciently steep, it is optimal to have complete information but

otherwise there is an interior solution.
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Proposition 7 (Information Sharing and Pro�t)

1. If demand is insensitive to price (r � �1), then the �rm optimal BCE is achieved with perfect

correlation of actions and the state, �a = �a� = 1.

2. If demand is sensitive to price (r < �1), then the �rm optimal BCE occurs with less than perfect

correlation across actions:

��a = �
1

r
< 1 and ��a� =

p
��a < 1. (47)

We can now translate the structure of the pro�t maximizing Bayes correlated equilibrium into the

corresponding Bayes Nash equilibrium and its associated information policy and information structure.

Suppose that each of the continuum of �rms receives only a private signal xi with precision �x. If all the

information were to be publicly shared, then we would reach the complete information equilibrium with

�a = �a� = 1. The �rst part of Proposition implies that full public disclosure is the optimal information

policy if the slope of the inverse demand curve, jrj, is su¢ ciently small. But the second part of the

Proposition indicates that the optimal disclosure policy may require noisy and idiosyncratic disclosure of

the transmitted information, rather than noiseless disclosure as previously analyzed in the literature. In

fact, if the slope of the inverse demand curve, jrj, is su¢ ciently large, then the pro�t maximizing Bayes
correlated equilibrium arises under the correlation coe¢ cient of the actions strictly less than one:

�a = �2a� = �
1

r
< 1:

As we learned from Proposition 2, these are the correlation coe¢ cients which maximize the variance of

the individual action, i.e. the individual supply decisions. Now if the initial private signals are su¢ ciently

accurate in terms of �x, then the induced �a would already be too high even without any information

transmission. But if private signals are not too accurate, then it will be possible to attain the �rm optimal

BCE. From Proposition 1, we know that �a = �2a� forms the boundary of the set of Bayes correlated

equilibrium and that the boundary can only be reached with idiosyncratic information, i.e. information

which is conditionally independent across agents, given the state �. Thus the optimal disclosure policy

requires noisy and idiosyncratic disclosure of the transmitted information, rather than noiseless disclosure

as previously assumed in the literature.
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Proposition 8

1. If r � �1, then full disclosure is �rm optimal.

2. If r < �1 and

(a) if �1
r > �x= (�x + � �), then the �rm optimal disclosure policy is to have each �rm observe a

noisy signal of the average of their private signals (which equals the true state).

(b) if �1
r � �x= (�x + � �), then no disclosure is �rm optimal.

The sharing of the private information impacts the pro�t of the �rms through two channels. First,

shared information about the level of demand improves the supply decision of the �rms, and unambiguously

increases the pro�ts. Second, shared information increases the correlation in the strategies of the actions.

In an environment with strategic substitutes, this second aspect is undesirable from the point of view

of each individual �rm. Now, the literature only considered noiseless disclosure. In the context of our

analysis, this represents a public signal; after all a noiseless disclosure means that all the �rms receive the

same information. Thus, the choice of the optimal disclosure regime can be interpreted as the choice of

the precision �y of the public signal, and hence a point along a level curve for a given �x, see Figure 2.

But now we realize that the disclosure in form of a public signal requires a particular trade-o¤ between

the correlation coe¢ cient �a across actions and the correlation �a� of action and state. In particular,

an increase in the correlation coe¢ cient �a� is achieved only at the cost of substantially increasing the

undesirable correlation across actions. This trade-o¤, necessitated by the public information disclosure,

meant that the optimal disclosure is either to not disclose any information or disclose all information. The

present analysis suggests a more subtle result which is to disclose some information, so that the private

information of all the �rms is improved, but to do so in way that does not increase the correlation across

actions more than necessary. This is achieved by an idiosyncratic, that is private and noisy, disclosure

policy, which does not reveal all the aggregate information of the agents, as they would otherwise achieve

complete correlation in their actions.

The very last result of Proposition 8 rea¢ rms the earlier result of Clarke (1983), which presented

conditions under which zero information transmission was optimal. The necessary and su¢ cient condition

for zero information transmission:

��a = �
1

r
< �x= (�x + � �) ; (48)

says that if the pro�t maximizing level of correlation ��a is below the level already induced by the private

information conveyed through the signal x with precision �x, then, but only then, do the �rms prefer zero

information transmission and disclosure.
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We should mention that in contrast to the literature, we present and establish the above results, in line

with rest of the present analysis, for the environment with a continuum of �rms. However, the results carry

over to the environment with a �nite number of �rms as the only relevant determinant is the structure of

the best response as discussed in Section 2. One modi�cation that arises in the analysis with �nite number

of �rms is the extent of the correlation �a� with respect to the state �. If there are only a �nite number

of �rms, and hence only a �nite number of signals about the true state of the world, then even complete

sharing of the available information will not allow the �rms to achieve �a� = 1, even though their actions

will be completely correlated or �a = 1. The �nite information then acts as a constraint on the amount

of information shared, but does not a¤ect the preference for or against information sharing. Another

modi�cation is that with a continuum of �rms, the correlation of individual actions cannot be negative.

But with �nite �rms, we noted in Corollary 1 that the correlation can go negative. In this case, when r is

su¢ ciently negative, the optimal information structure requires negative correlation in the �rms�actions

generated by negatively correlated private signals.

6 Prior Restrictions on the Information Structure

The description of the Bayes correlated equilibria displayed a rich set of possible equilibrium outcomes.

In particular, the variance of the individual and the average action showed a wide range across equilibria.

The analysis of the Bayes Nash equilibrium shed light on the source of the variation. If the noisy signals of

each agent contain little information about the state of the world, then the action of each agent does not

vary much in the realization of the signal. On the other hand, with precise signals about the state of the

world, the best response of each agent does vary substantially with the realized signal and hence displays

a larger variance in equilibrium. We began, in the spirit of the robust analysis, without any assumptions

about the private information that the agents may have. But in many circumstances, the analyst may

have prior knowledge about some aspects of the private information of the agents, which would allow the

analyst to impose prior restrictions on the information structure. In this context, a natural restriction

is a lower bound on the precision of the private information of the agents. In other words, the analyst

knows that the agent have at least as much information as given by the lower bound, but possibly their

information is even more precise. We can then ask how the prediction of the equilibrium behavior can be

re�ned in the presence of these prior restrictions on the private information of the agents. Thus we are

interested how the equilibrium set and the equilibrium predictions are a¤ected by intermediate restrictions

on the information structure. By intermediate restrictions, we mean restrictions which are in between

the extremes where the analyst is either assumed to have zero or to have perfect information about the

information structure.
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Given the su¢ ciency of a bivariate information structure to support the entire equilibrium set, we

present the lower bounds on the private information here in terms of a private and a public information

source, each one given in terms of a normally distributed noisy signal. We maintain the notation of Section

4 and denote the private signal that each agent i observes by xi = � + "i, and the public signal that all

agents observe by y = � + ", as de�ned earlier in (36).

The exogenous data on the payo¤and information structure of the game is now given by the multivariate

normal distribution of the triple (�; xi; y). The information contained in the private signal xi and the public

signal y represent the lower bound on the private information of the agents. Correspondingly, we can de�ne

a Bayes correlated equilibrium with a given private information as a joint distribution over the exogenous

data (�; x; y) and the endogenous data (a;A). We use the symmetry and the relationship between the

individual action and the average action to obtain a compact representation of the variance-covariance

matrix ��;x;y;a;A:2666666664

�2� �2� �2� �a��a�� �a��a��

�2� �2� + �
2
x �2� �a�x�ax + �a���a� �a���a�

�2� �2� �2� + �
2
y �a�y�ay + �a���a� �a�y�ay + �a���a�

�a��a�� �a�x�ax + �a���a� �a�y�ay + �a���a� �2a �a�
2
a

�a��a�� �a���a� �a�y�ay + �a���a� �a�
2
a �a�

2
a

3777777775
: (49)

The newly appearing correlation coe¢ cients �ax and �ay represent the correlation between the individual

action and the random terms, "i and ", in the private and public signals, xi and y, respectively. We can

analyze the correlated equilibrium conditions as before. The best response function must satisfy:

a = rE [A ja; x; y ] + sE [� ja; x; y ] + k; 8a; x; y: (50)

In contrast to the analysis of the Bayes correlated equilibrium without prior restrictions, the recommended

action now has to form a best response conditional on the recommendation a and the realization of the

private and public signals, xi and y, respectively. In particular, the conditional expectation induced jointly

by (a; x; y) has to vary at a speci�c rate with the realization of a; x; y so as to maintain the best response

property (50) for all realizations of a; x; y. The complete characterization of the set of Bayes correlated

equilibria with prior restrictions requires the determination of a larger set of second moments, namely�
�a; �a; �ax; �ay; �a�

�
than in the earlier analysis. As we gather the equilibrium restrictions from (50), we

�nd that we also have a corresponding increase in the number of equality constraints on the equilibrium

conditions, from one to three. Indeed, we can determine
�
�ay; �ax; �a

�
uniquely:

�a =
��s�a�
1� �ar

; �ax =
��
�
(1� �ar)� �2a� (1� r)

�
�x�a�

; �ay =
��

�y�a�

�
1� �ar
1� r � �2a�

�
. (51)
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The characterization of the standard deviation of the individual action has not changed relative to the

initial analysis. The novel restrictions on the correlation coe¢ cients �ax and �ay only involve r, but the

informational externality s does not appear.

Consequently, the relation between the correlation coe¢ cients �ax and �ay can be written, using the

conditions (51) as �ax�x = �ay�y (1� r), where the factor 1� r corrects for the fact that the public signal
receives a di¤erent weight than the private signal due to the interaction structure.

The additional inequality restrictions arise as the variance-covariance matrix of the multivariate normal

distribution has to form a nonnegative de�nite matrix. As before in the absence of a priori restrictions,

see (31), a necessary but with the structure of the interaction also su¢ cient condition is that the matrix

has a nonnegative determinant or:

�4a�
2
y�
2
x�
2
�

�
1� �a � �2ax

� �
�a � �2a� � �2ay

�
� 0.

The additional inequalities which completely describe the set of correlated equilibria are given by:

1� �a � �2ax � 0; (52)

�a � �2a� � �2ay � 0: (53)

We encountered the above inequalities before, see Proposition 1.3, but without the additional entries of

�ax and �ay. The �rst inequality re�ects the equilibrium restriction between �a and �ax. As �ax represents

the correlation between the individual action a and the idiosyncratic signal x, it imposes an upper bound

on the correlation coe¢ cient �a among individual actions. If each of the individual actions are highly

correlated with their private signal, then the correlation of the individual actions cannot be too high in

equilibrium. Conversely, the second inequality states that either the correlation between individual action

and public signal, or individual action and state of the world naturally force an increase in the correlation

across individual actions. The correlation coe¢ cients �a� and �ay therefore impose a lower bound on the

correlation coe¢ cient �a.

The equilibrium restrictions imposed by the private and public signal are separable. We can hence

combine (51) with (52), or with (53), respectively, to analyze how the private or the public signal restrict

the set of Bayes correlated equilibria. Given that the mean action is constant across the Bayes correlated

equilibria and that the variance �2a of the action is determined by the correlation coe¢ cients (�a; �a�), see

(51), we can describe the set of Bayes correlated equilibria exclusively in terms of correlation coe¢ cients

(�a; �a�).

We de�ne the set of all Bayes correlated equilibria which are consistent with prior restriction �x on the

private signal as the private equilibrium set Cx (�x; r):

Cx (�x; r) , f(�a; �a�) 2 [0; 1]� [�1; 1] j(�a; �a�; �ax) satisfy (30), (51), (52)g .
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Figure 4: Set of BCE with given public and private information

Similarly, we de�ne the set of all Bayes correlated equilibria which are consistent with prior restriction �y

on the public signal as the public equilibrium set Cy (�y; r):

Cy (�y; r) ,
�
(�a; �a�) 2 [0; 1]� [�1; 1]

����a; �a�; �ay� satisfy (30), (51), (53)	 .
The intersection of the private and the public equilibrium sets de�nes the Bayes correlated equilibria

consistent with the prior restrictions � = (�x; �y):

C (� ; r) , Cx (�x; r) \ Cy (�y; r) � [0; 1]� [�1; 1] .

The above description of the Bayes correlated equilibria in terms of the correlation coe¢ cients suggests

that we might be interested in the comparative statics of the equilibrium set with respect to the prior

restrictions � = (�x; �y) and with respect to the nature of the strategic interaction r. The �rst exercise in

comparative statics is central for the robustness of equilibrium predictions, whereas the second is central

for robust identi�cation of the structural parameters of the game to which we turn in the next section.

The shape of the Bayes correlated equilibrium set is illustrated in Figure 4. Each forward bending curve

describes the set of correlation coe¢ cients (�a; �a�) which solve (51) and (52) as an equality, given a lower

bound on the precision �x of the private information. Similarly, each backward bending curve traces out

the set of correlation coe¢ cients (�a; �a�) which solve (51) and (53) as an equality, given a lower bound on

the precision �y of the public information. A lens formed by the intersection of a forward and a backward

bending curve represents the Bayes correlated equilibria consistent with a lower bound on the precision of

the private and the public signal.

As suggested by the behavior of the equilibrium set, any additional correlation device cannot undo the

given private and public information, but rather provides additional correlation opportunities over and

above those contained in (�x; �y).
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Proposition 9 (Prior Restrictions and Equilibrium Set)

For all r 2 (�1; 1) :

1. The equilibrium set C (� ; r) is decreasing in � ;

2. The lowest correlation coe¢ cient (�a�; �) 2 C (� ; r), is increasing in � ;

3. The lowest correlation coe¢ cient (�a; �) 2 C (� ; r), is increasing in � .

Thus, as the precision of the prior restriction increases, the set of Bayes correlated equilibria shrinks.

As the precision of the signal increases, the equilibrium set, as represented by the correlation coe¢ cients

becomes smaller. In particular, the lowest possible correlation coe¢ cients of �a and �a� that may emerge

in any Bayes correlated equilibrium increase as the given precision of private information increases.

As the preceding discussion suggests, we can relate the set of Bayes correlated equilibria under the prior

restriction with a corresponding set of Bayes Nash equilibria. If the correlated equilibrium contains no

additional information in the conditioning through the recommended action a over and above the private

and public signal, x and y, then the correlated equilibrium is simply equal to the Bayes Nash equilibrium

with the speci�c information structure (�x; �y). This suggests that we identify the unique Bayes Nash

equilibrium with information structure (�x; �y) and interaction term r in terms of the correlation coe¢ cients

(�a; �a�) as B ((�x; �y) ; r) � [0; 1]� [�1; 1].

Corollary 3 (BCE and BNE with Prior Information)

For all (�x; �y), we have:

C ((�x; �y) ; r) =
[

� 0x��x;� 0y��y

B
��
� 0x; �

0
y

�
; r
�
.

In Proposition 9 we described the set of possible equilibrium coe¢ cients (�a; �a�) as a function of the

prior restrictions � and the interaction parameter r. Now, suppose we observe the equilibrium outcomes,

and in particular the equilibrium correlation coe¢ cients (�a; �a�), and then ask which values of the inter-

action parameter r could be consistent with the observed data. To this end we need to know the set of

possible equilibrium correlation coe¢ cients (�a; �a�) varies with the interaction parameter r of the game.

Proposition 10 (Interaction and Equilibrium Set)

For all � 2 R2+:

1. Cx (�x; r) is increasing in r;

2. Cy (�y; r) is decreasing in r:
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Figure 5: Bayes correlated equilibrium set with precision �x of prior private information

The comparative static results in the interaction parameter r are straightforward. The information in

the private signal x leads each agent to choose an action which is less correlated with the average action

than the same information contained in the public signal y. Now, as the interaction in the game tends

towards strategic substitutability, each agent tends to rely more heavily on the private signal relative to

the public signal. Thus, for every level of correlation with the state �, expressed in terms of �a�, there will

be less correlation across actions, expressed in terms of �a. The behavior of the equilibrium set Cx (�x; r)

with respect to the interaction parameter r is illustrated in Figure 5.

Conversely, the restrictions imposed by the public information, represented by the set Cy (�y; r) become

weaker as the game is moving from strategic complements to strategic substitutes. After all, the public

information correlates the agent�s action because they rely on the same information. If we decrease the

propensity to coordinate, and hence correlate, then all equilibria will display less correlation across actions,

for a given correlation with respect to the state �. The behavior of the equilibrium set Cy (�y; r) with respect

to the interaction parameter r is illustrated in Figure 6.

We thus �nd that the comparative static results with respect to the strategic interaction are pointing

in the opposite direction for the equilibrium sets Cx (�x; r) and Cy (�y; r), respectively. In consequence,

the equilibrium set C (� ; r) formed by the intersection of the private and public equilibrium sets, C (� ; r) =

Cx (�x; r) \ Cy (�y; r), does not display a monotone behavior in r in terms of set inclusion.
Finally, we note that we extended the analysis of the Bayes correlated equilibrium from an environment

with pure common values to an environment with interdependent values in Section 3.3. Similarly, we

could extend the present analysis of the impact of prior restrictions, pursued here in some detail for the

environment with pure common values to the one with interdependent values.
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7 Robust Identi�cation

So far, our analysis has been concerned with the predictive implications of Bayes correlated and Bayes

Nash equilibrium. In particular, we have been asking what are the restrictions imposed by the structural

model on the observed endogenous statistics about the actions of the agents. In this section we pursue

the converse question, namely the issue of identi�cation. We ask what restrictions can be imposed on the

parameters of interest, the structural parameters of the game (r; s; k), by the observed variables? We are

particularly interested in how the identi�cation of the structural parameters is in�uenced by the solution

concept, and hence the speci�cation of the private information of the agents as known to the analyst.

Now, identi�cation depends critically on what types of data are available. Here, we consider the

possibility of identi�cation with individual data and assume that the econometrician observes the realized

individual actions ai and the realized state �.4 In other words, the econometrician learns the �rst and

second moments of the joint equilibrium distribution over actions and state: m , (�a; �a; �a; ��; �a�). We
begin the identi�cation analysis under the hypothesis of Bayes Nash equilibrium and a given information

structure � = (�x; �y) of the agents.

For a given information structure and observed moments of the Bayes Nash equilibrium distribution we

can identify the weights on the private signal and the public signal, ��x and �
�
y, directly from the variance

4 In Bergemann and Morris (2013b), we also analyze the robust identi�cation with aggregate data. As a leading example we

consider the canonical problem of demand and supply identi�cation. The identi�cation in the linear demand and supply model

relies on the aggregate data, namely market quantity and market price. In contrast to the received work on identi�cation in

the demand and supply model we allow for incomplete information by the market participants about the cost and demand

factors.
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of the (aggregate) action and the covariance of the (aggregate) action with the state, see (45). Now, we

can use the property of the equilibrium strategy, namely that the ratio of the weights is exactly equal the

precision of the private and public signal, de�ated by their (strategic) weight, see (41):

��x
��y
=
�x
�y
(1� r) :

Thus given the knowledge of the information structure, we can infer the sign of the strategic interaction

term r from the ratio of the linear weights, ��x and �
�
y. In particular, we can determine how much of

the variance in the action, individual or aggregate, is attributable to the private and the public signal

respectively. Given the known strength of the signals, the covariance of action and state identify the slope

of the equilibrium response. We thus �nd that the parameters of equilibrium response and the sign of the

interaction parameters are identi�ed for every possible information structure of the game, provided that

the analyst observes (or knows) the information structure of the agents.

Proposition 11 (Point Identi�cation in BNE)

The Bayes Nash equilibrium outcomes with information structure (�x; �y),

1. identify the informational externality s;

2. identify the strategic interaction r if 0 < �x; �y <1; and

3. identify the equilibrium slope and equilibrium intercept, the ratios s= (1� r) and k= (1� r).

The identi�cation problem that we are analyzing here related to the "linear in means" model of peer

interaction pioneered by Manski (1993) and discussed in more detail in the �nal chapter of Manski (1995).

Manski (1993) considers a linear model, where the scalar outcome y is assumed to be a linear function of

the attributes x characterizing a peer group, and attributes (z; u) that directly a¤ect the outcome y, with

(y; x; z; u) 2 R� RJ � RK � R. The outcome y is supposed to be generated by

y = �+ �E [y jx ] + E [z jx ]  + z0� + u (54)

with the restriction that

E [u jx; z ] = x0�, (55)

where (�; �; ; �; �) is the parameter vector of interest. It follows from (54) and (55) that the mean

regression of y on (x; z) has the linear form:

E [y jx; z ] = �+ �E [y jx ] + E [z jx ]  + z0� + x0�. (56)
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Manski (1993) refers to � 6= 0 as expressing an endogenous e¤ect,  6= 0 as expressing an exogenous e¤ect,
and � 6= 0 as expressing a correlated e¤ect, respectively. A central observation of Manski (1993), stated

as Proposition 1, is that generally endogenous e¤ects cannot be distinguished from exogenous e¤ects or

correlated e¤ects, and that only certain composite parameters can be identi�ed. However, he also observes

that the outlook for identi�cation improves if there are additional restrictions on some parameter values.

In particular, he refers to the pure endogenous e¤ect model as one where � =  = 0, and indeed Proposition

2 of Manski (1993) states the remaining parameters, �; �; and � can then be point identi�ed.

As Manski (1993) considers an environment with complete information, the relationship between his

linear interaction model and the present one, is most directly established by considering for a moment the

complete information version of our model, as represented by the best response, see (37):

ai = rA+ s� + k;

Thus, we can directly relate the key variables in Manski (1993) to the variables in the present analysis.

The outcome y is naturally interpreted as the individual action ai, the group attribute x as the aggregate

action A, and the attribute z is the payo¤ relevant state � that directly a¤ects the individual outcome.

It is now immediate that we can relate his positive identi�cation result, Proposition 2, to the present

analysis. If, for the moment, we restrict attention to the complete information version of our game,

then indeed our model is a pure endogenous e¤ect model, and the identi�cation result in Proposition 11

demonstrates that the positive identi�cation under complete information (Proposition 2 of Manski (1993))

extends to the model with incomplete information if the analyst indeed observes the information structure.

We now contrast the point identi�cation for any speci�c, but observed (or known) information structure

with the set identi�cation in the Bayes correlated equilibrium. Here we do not have to make a speci�c

hypothesis regarding the information structure of the agents, i.e. the analyst is not required to have any

knowledge of the information structure. Rather, we ask what can the analyst learn from the observed data

on outcomes, namely actions and payo¤ states, in the absence of speci�c knowledge about the information

structure. Now, from the observation of the covariance �a��a�� and the observation of the aggregate

variance �a�
2
a, we can identify the values of �a� and �a. The equilibrium conditions which tie the data to

the structural parameters are given by the following conditions on mean and variance:

�a =
k + ��s

1� r ; �a =
��s�a�
1� �ar

: (57)

We thus have two restrictions to identify the three unknown structural parameters (r; s; k). We can solve

for two of the unknowns in terms of the remaining unknowns. In particular, when we solve for (s; k) in

terms of the remaining unknown r, we obtain expressions for the equilibrium intercept and the equilibrium
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slope in terms of the moments and the remaining unknown structural parameters:

k

1� r = �a �
�a�� (1� �ar)
�� (1� r) �a�

;
s

1� r =
�a

�a���

1� �ar
1� r : (58)

Now, except for the case of �a = 1, in which the actions of the agents are perfectly correlated, we �nd that

the ratio on the left hand side is not uniquely determined. As the strategic interaction parameter r can

vary, or r 2 (�1; 1), it follows that we can only partially identify the above ratios, namely,

k

1� r 2

8<:
�
�1; �a �

���a�a
�a���

�
if ��
�a�

> 0;�
�a �

���a�a
�a���

;1
�

if ��
�a�

< 0;
(59)

and the above ratio is point-identi�ed if �� = 0. Similarly,

s

1� r 2

8<:
�
�a�a
�a���

;1
�

if �a� > 0;�
�1; �a�a�a���

�
if �a� < 0:

(60)

which describes the respective sets into which each ratio can be identi�ed.

Proposition 12 (Partial Identi�cation in BCE)

The Bayes correlated equilibrium outcomes:

1. identify the sign of the informational externality s;

2. do not identify the sign of the strategic interaction r;

3. identify a set of equilibrium slopes, given by (60), if �a < 1.

With respect to the identi�cation of endogenous social e¤ects as analyzed by Manski (1993), our partial

identi�cation result, Proposition 12, then indicates that even under favorable conditions, as identi�ed by

the pure endogenous e¤ect model, we cannot even identify a basic property of the interaction structure

unless, as we establish shortly in Proposition 13 and 14, we have su¢ ciently strong prior restrictions on

the private information of the agents that can narrow the range of models which could have generated the

empirically observed variance-covariance of the observables.

Thus, in comparison to the Bayes Nash equilibrium, the Bayes correlated equilibrium, weakens the

possibility of identi�cation in two respects. First, we fail to identify the sign of the strategic interaction

r; second, we can identify only a set of possible interaction ratios. Given the sharp di¤erences in the

identi�cation under Bayes Nash and Bayes correlated equilibrium, we now try to provide some intuition as

to the source of the contrasting results. In the identi�cation under the hypothesis of the Bayes correlated
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equilibrium, the econometrician observes and uses the same data as under the Bayes Nash equilibrium,

but does not know anymore how precise or noisy the information of the agents is.5

At the center of the identi�cation question, the econometrician now faces an attribution problem as

the observed covariance between the action and the state could be large either because the individual

preferences are very responsive to the state, i.e. s is large, or because the agents have very precise

information about the state and hence respond strongly to the precise information, even though they

are only moderately sensitive to the state, i.e. s is small.

This attribution problem, which is present when the agent�s information structure is not known, is

often referred to as �attenuation bias�in the context of individual decision making. The basic question is

how much we can learn from the observed data when the analyst cannot be certain about the information

that the agent has when he chooses his action. In the single agent context, the noisy signal x that

the agent receives about the state of world � leads to noise in the predictor variable. The noise in the

predictor variable introduces a bias, the �attenuation bias�. Yet in the single agent model, the sign

of the parameter of interest, the informational externality s remains correctly identi�ed, even though the

information externality is set-identi�ed rather than point-identi�ed. Importantly, as we extend the analysis

to strategic interaction, the �attenuation bias� critically a¤ects the ability to identify the nature of the

strategic interaction. In particular, the set-identi�ed information externality �covers�the size of strategic

externality to the extent that we may not even identify the sign of the strategic interaction, i.e. whether

the agents are playing a game of strategic substitutes or complements.

Given the lack of identi�cation in the absence of knowledge regarding the information structure, it

is natural to ask whether prior restrictions can improve the identi�cation of the structural parameters,

just as prior restrictions could improve the equilibrium prediction. In Section 6, we showed that the prior

restriction (�x; �y) on the information structure systematically restricted the equilibrium predictions. Now,

as we consider the identi�cation of the structural parameters, we might use the knowledge of the prior

restrictions (�x; �y) together with the data to identify the set of structural parameters consistent with

the data and the prior restrictions. The content of the subsequent propositions indeed establishes that

the set-identi�cation improves with the prior restrictions. In particular, we ask how the identi�cation of

the sign of r and the set identi�cation of the equilibrium slope s
1�r is a¤ected by the nature of the prior

5The identi�cation results here, in particular the contrast between Bayes Nash equilibrium and Bayes correlated equilibrium,

are related to, but distinct from the results presented in Aradillas-Lopez and Tamer (2008). In their analysis of an entry game

with incomplete information, they document the loss in identi�cation power that arises with a more permissive solution

concept, i.e. level k-rationalizability. As we compare Bayes Nash and Bayes correlated equilibrium, we show that the lack of

identi�cation is not necessarily due to the lack of a common prior, as associated with rationalizability, but rather the richness

of the possible private information structures (but all with a common prior).
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restrictions � = (�x; �y). We denote the lower and upper bound of the identi�ed set for the equilibrium

slope s
1�r by s (� ;m) and s (� ;m), respectively. The bounds depend naturally on the prior restrictions and

the observed data. Similarly, we denote the lower and upper bound of the identi�ed set for the strategic

interaction r by r (� ;m) and r (� ;m), respectively.

We observed earlier that the identi�cation of the equilibrium slope in the Bayes correlated equilibrium,

see (58):

� s

1� r =
�a

�a���

1� �ar
1� r ; (61)

relies on a ratio of the observed data �a=�a��� and a ratio

1� �ar
1� r ; (62)

which involves the unknown structural parameters and the data. For the set identi�cation of the equilibrium

slope, s= (1� r) 2 [s (� ;m) ; s (� ;m)], we have to ask what is the range of the ratio (1� �ar) = (1� r)
consistent with data. For �a < 1, the value of this ratio is increasing in r, and hence the greatest

possible value of r, consistent with the data, provides the upper bound for the above ratio. Now, as a

consequence of Proposition 10 the upper bound on r is given by the restrictions of the public equilibrium

set, and similarly the lower bound is given by the restrictions of the private equilibrium set. To wit, as we

increase the interaction parameter r, the set of correlation coe¢ cients (�a; �a�) consistent with a given prior

restriction � is shrinking in the public equilibrium set, and hence any given data represented by (�a; �a�)

is eventually eliminated. We therefore improve the identi�cation with an increase in the precision of the

prior restrictions.

Proposition 13 (Slope Identi�cation and Prior Restrictions)

1. The lower bound s (� ;m) is increasing in �x and the upper bound s (� ;m) is decreasing in �y;

2. The lower bound and the upper bound converge as the prior restriction becomes tighter:

lim
�x"1

s ((�x; �y) ;m) = lim
�y"1

s ((�x; �y) ;m) =
�a��a
��

.

The above statement shows that the identi�cation improves monotonically with the prior restriction.

Figure 7 illustrates how prior restriction improves the set identi�cation. The x�axis represents the possible
values of the slope of the equilibrium response (multiplied by the mean �� of the state �), whereas the

y-axis represents the intercept of the equilibrium response. The observed mean of the equilibrium action

restricts the relationship between the slope and the intercept parameter to a one-dimensional line with

slope �1. The shaded blue lines indicate the possible pair of intercept and slope as a function of the
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observed data. As we improve the restriction and increase �y, the precision of the public signal, the length

of the blue line shrinks (from below), which indicates that the identi�ed set shrinks with an improvement

in the prior restriction.

Conversely, if we were to increase the lower bound �x on the private signal, then we would impose

additional restrictions on the linear relationship from above. We can establish a similar improvement with

respect to the sign of the strategic interaction r, namely the set [r (� ;m) ; r (� ;m)].

Proposition 14 (Sign Identi�cation and Prior Restrictions)

If �a� < 1 and r 6= 0, then either there exists �x such that for all 0 < �x < �x:

0 < r ((�x; �y) ;m) < r ((�x; �y) ;m) ,

or there exists �y such that for all 0 < �y < �y:

r ((�x; �y) ;m) < r ((�x; �y) ;m) < 0.

Thus, as the lower bound on the private and the public signal increases, eventually the sign of the

strategic interaction can be identi�ed as well. Hence, su¢ ciently precise restrictions on the information

structure reestablish the possibility of identi�cation in case of the strategic interaction as well.

We should emphasize that the current basic game describes a common value environment, i.e. the

state of the world is the same for all the agents. In contrast, much of the small, but growing literature on

identi�cation in games with incomplete information is concerned with a private value environment, in which

the private information of agent i only a¤ects the utility of agent i, as for example in Sweeting (2009), Bajari,

Hong, Krainer, and Nekipelov (2010) or Paula and Tang (2012). A second important distinction is that in

the above mentioned papers, the identi�cation is about some partial aspect of the utility functions and the
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distribution of the (idiosyncratic) states of the world, whereas the present identi�cation seeks to identify

the entire utility function but assumes that the states of the world are observed by the econometrician.

An interesting extension in the present setting would be to limit the identi�cation to a certain subset of

parameters, say the interaction term r, but then identify the distribution of the states of the world rather

than assuming the observability of the states. For example, Bajari, Hong, Krainer, and Nekipelov (2010)

estimate the peer e¤ect in the recommendation of stocks among stock market analysts in a private value

environment. There, the observables are the recommendations of the stock analysts and analyst speci�c

information about the relationship of the analyst to the recommended �rm. The present analysis suggest

that a similar exercise could be pursued in a common value environment, much like a beauty contest.

A natural, and feasible, extension in this context would be to use the actual performance data of the

recommended stocks to identify the information structure of the stock analysts.

Finally, in many of the recent contributions the assumption of conditional independence of the private

information, relative to the public observables, is maintained. For example, in Paula and Tang (2012), the

conditional independence assumption is used to characterize the joint action equilibrium distribution in

terms of the marginal probabilities of every action. Paula and Tang (2012) uses the idea that if private

signals are i.i.d. across individuals, then the players actions must be independent in a single equilibrium,

�but correlated when there are multiple equilibria�to provide a test for multiple equilibria. In contrast, in

our model, we have uniqueness of the Bayes Nash equilibrium, but the unobserved information structure

of the agents could lead to correlation, which would then be interpreted in the above test as evidence

of multiple equilibria, but could simply be due to the unobserved correlation rather than multiplicity of

equilibria.

8 Conclusion

It was the objective of this paper to derive robust equilibrium predictions for a large class of games.

Within a class of quadratic payo¤ environments, we gave a full characterization of the equilibria in terms

of moment restrictions on the equilibrium distributions. The robust analysis allowed us to make equilibrium

predictions independent of the information structure, the nature of the private information that the agents

have access to.

We then reversed the point of view and considered the problem of identi�cation rather than the problem

of prediction. We asked what are the implication of a robust point of view for identi�cation, namely the

ability to infer the unobservable structural parameters of the game from the observable data. Here we

showed that in the presence of robustness concerns, the ability to identify the underlying parameters

of the game is weakened in important ways, yet does not completely eliminate the possibility of partial
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identi�cation. The current perspective, namely to analyze the set of Bayes correlated equilibria rather

than the Bayes Nash equilibria under a speci�c information structure, is potentially useful in the emerging

econometric analysis of games of incomplete information. There the identi�cation question is typically

pursued for a given information structure, say independently distributed payo¤ types, and it is of interest to

know how sensitive the identi�cation results are to the structure of the private information. In this context,

the robust identi�cation might be particularly important as we rarely observe data about the nature of

the information structure directly. In games with incomplete information, we (partially) identi�ed the

preferences of the agents for a class of information structures. But if we were to have (partial) information

about the preferences, then the present framework may allows us to (partially) identify the information

structure, and hence the conditional expectations of the agents, a open problem that has received some

attention recently, see Manski (2004).

In the present analysis, we use the structure of the quadratic payo¤s, in particular the linear best

response property to derive the �rst and second moments of the set of correlated equilibria. The linear

best response property is a common feature in models of interaction in networks. An interesting and

open issue is the extent to which the structure of the network ampli�es or dampens the variance of the

aggregate outcome, see Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) for an analysis with

complete information. The current analysis suggests that the structure of the network and the structure

of private information of the agents leads to interesting result already in the common value environment,

and hence may lead to novel results in more general environments. A natural next step would be to

bring the present analysis to Bayesian games without linear best responses, possibly even discontinuous

payo¤s. For example, it would be of considerable interest to ask how the allocations and the revenues

di¤er across information structures and auction formats. A �rst step in this direction appears in ongoing

work in Bergemann, Brooks, and Morris (2012) which considers a private value environment in �rst price

auction format, similarly Abraham, Athey, Babaio¤, and Grubb (2011) trace the implications of di¤erent

information structures in a common value environment in a second price auction format. In related

work, Bergemann, Brooks, and Morris (2013) analyze the classic problem of price discrimination under

incomplete information. They derive exact bounds on the distribution of the surplus between buyer and

seller, and hence the e¢ ciency of the allocation, across all possible information structures for given prior

over valuations.

Finally, we could use the equilibrium predictions to o¤er robust versions of policy and welfare analysis.

In many incomplete information environments, a second best or otherwise welfare improving policy typically

relies on and is sensitive to the speci�cation of the information structure. With the current analysis, we

might be able to recommend robust taxation or information disclosure policies which are welfare improving
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across a wide range of information structures. In particular, we might ask how the nature of the policy

depends on the prior restrictions of the policy maker about the information structure of the agents.
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9 Appendix

Proof of Proposition 4. The derivation of the linear equilibrium strategy already appeared in many

contexts, e.g., in Morris and Shin (2002) for the beauty contest model, and for the present general envi-

ronment, in Angeletos and Pavan (2007). The uniqueness of the Bayes Nash equilibrium for the present

general environment is established in Ui and Yoshizawa (2012).

Proof of Proposition 6. The correlation coe¢ cients �a and �a� of the Bayes Nash equilibrium can

be expressed in terms of the equilibrium coe¢ cients �x and �y and variances �2�; �
2
x and �

2
y as:

�a� = �
�� (�x + �y)q

�2x�
2
x + �

2
y�
2
y + �

2
� (�x + �y)

2
; (63)

and

�a =
�2y�

2
y + �

2
� (�x + �y)

2

�2x�
2
x + �

2
y�
2
y + �

2
� (�x + �y)

2 . (64)

It now follows immediately from (63) - (64), and the formulae of ��x and �
�
y, see (40), that we can recover

the corresponding information structure (�x; �y) of the Bayes Nash equilibrium as

�x =

�
(1� �ar)� �2a� (1� r)

�
��p

1� �a j�a�j
;

and

�y =

�
(1� �ar)� �2a� (1� r)

�
��q

�a � �2a� j�a�j (1� r)
;

which completes the proof.

Proof of Proposition 2. The variance �2a is given by (26), and inserting �a = �2a� we obtain

��s�a�=
�
1� �2a�r

�
, which is maximized at j�a�j =

p
�1=r, or �a = �1=r.

Proof of Proposition 3. (1.) The volatility �2A, which is given by:

�a�
2
a = �a

�
��s�a�
1� �ar

�2
;

is increasing in the correlation coe¢ cients �a and j�a�j. The partial derivatives with respect to �a and j�a�j
are, respectively:

�2��
2
a�s

2

(1� �ar)3
(1 + �ar) ,

where the later is positive if and only if

(1 + �ar) � 0, r � � 1
�a
,
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and
2�a j�a�j�2�s2

(1� �ar)2
> 0.

(2.) The dispersion, using (29), is given by:

(1� �a)�2a = (1� �a)
�
���a�s

1� �ar

�2
,

and it follows that the dispersion is increasing in j�a�j. The dispersion is monotone decreasing in �a if it is
game of strategic substitutes, and not necessarily monotone if it is a game of strategic complements. The

partial derivative with respect to �a is given by

��
2
��
2
a�s

2 (1� r � (1� �a) r)
(1� �ar)3

.

However by Proposition 1, it follows that �2a� � �a, and we therefore obtain the maximal dispersion at

�2a� = �a. Consequently, we have

(1� �a)�2a = (1� �a) �a
�

��s

1� �ar

�2
,

and the dispersion reaches an interior maximum at �a = 1= (2� r) 2 (0; 1), irrespective of the nature of
the game.

Proof of Proposition 9. We form the conditional expectation using (49) and the equilibrium

conditions for the Bayes correlated equilibrium are then given by (50) and the solution to these equations

is given by (51).

(1.) The equilibrium set is described as the set which satis�es the inequalities (52) and (53), where the

correlation coe¢ cients �2ax and �
2
ay appear separately. By determination of (51), the square of the corre-

lation coe¢ cient is strictly decreasing in �x and �y, which directly implies that the respective inequalities

become less restrictive, and hence the equilibrium set increases as either �x or �y increases.

(2.) The lowest value of the correlation coe¢ cient �a� is achieved when the inequalities (52) and (53)

are met as equalities. It follows that the minimum is reached at the exterior of the equilibrium set. The

equilibrium set is increasing in � by the previous argument in (1), and hence the resulting strict inequality.

(3.) The lowest value of the correlation coe¢ cient �a is achieved when the inequality (53) is met as an

equality. It follows that the minimum is reached at the exterior of the equilibrium set. The equilibrium

set is increasing in � by the previous argument in (1), and hence the resulting strict inequality.

Proof of Proposition 7. The ex post pro�t of the �rm is given by:

(s� + rA) a+ ua� 1
2
a2;
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and the interim expected pro�t is the above expectation and consists of terms that depend on the means

�a and �� plus

�2a

�
s�a�

��
�a
+ r�a �

1

2

�
:

Using the restriction on the variance of the individual action:

�a =
��s�a�
1� r�a

;

we get
�2�s

2�2a�
2 (1� r�a)2

(65)

The remaining restriction of the Bayes correlated equilibrium, see Proposition 1, is that �2a� � �a, and

hence (65) can be rewritten as

�2�s
2 �a

2 (1� r�a)2
;

i.e., it is always optimal to set the correlation coe¢ cient �a� so that �
2
a� = �a. The relevant �rst order

condition w.r.t. to �a is given by:

�2�s
2 (1 + �ar)

(1� �ar)3
= 0.

It follows that if r > �1, then there is no interior solution and the pro�t maximizing BCE is given by
�a = �a� = 1. On the other hand, if r < �1, then the maximum is at an interior value of �a :

�a = �
1

r
< 1.

The validity of the second order conditions can be veri�ed easily.

Proof of Proposition 8. By Proposition 7, if r � �1, then the pro�t maximizing equilibrium
allocation requires �a� = �a = 1. Now, the Bayes Nash equilibrium associated with this correlation

structure requires that the agents have complete information about �, but clearly with a large number

of �rms, here a continuum, this can be achieved by completely disclosing the private information of each

individual �rm (provided that �2x <1).
On the other hand, if r < �1, then the interior solution requires that �a < 1 and �2a� = �a. By

Proposition 4, we know that such a correlation structure can be achieved in the Bayes Nash equilibrium if

and only if the agents make decisions on the basis of a private signal only, i.e. the variance of the public

signal is required to be in�nite. This in turn can be achieved if each agent receives information about the

true state with an idiosyncratic noise, and hence with a private signal, which necessitates idiosyncratic and

noisy information disclosure. Finally, given the initial private information of the agents, represented by �2x,

we only need to complement the initial information if it does not already achieve or exceed �a = �1=r. From
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(44), we �nd that the correlation coe¢ cient in the Bayes Nash equilibrium without additional information

beyond �2x is given by �a = �2�=
�
�2� + �

2
x

�
, which establishes the critical value for information sharing.

Proof of Proposition 10. The comparative static results follow directly from the description of the

correlation coe¢ cients �ax and �ay given by (51). These correlation coe¢ cients are a function of r only.

We insert their solutions into the inequalities (52) and (53) and solve for the relation between �a and �a�

as we restrict the the inequalities (52) and (53) to be equalities.

Proof of Proposition 11. (1.) Given the knowledge of �2�; �
2
x and �

2
y and the information about the

covariates, we can recover the value of the linear coe¢ cients �2x and �
2
y from variance-covariance matrix

(43), say:

�2x =
�2a � �2A
�2x

; �2y =
�2A
�
1� �2A�

�
�2y

: (66)

The value of covariate �A��A��, given by �
2
� (�x + �y) directly identi�es the sign of the externality s, given

the composition of the equilibrium coe¢ cients ��x and �
�
y of the Bayes Nash equilibrium, see (40).

(2.) We have from the description of the Bayes Nash equilibrium in Proposition 4 that in every Bayes-

Nash equilibrium, ��x and �
�
y satisfy the linear relationship:

��y = ��x
�2x
�2y

1

1� r :

Now, if 0 < �2x; �
2
y <1, then we can identify r.

(3.) Given the identi�cation of ��x and �
�
y, we can identify the ratios k= (1� r) and s= (1� r). We

recover the mean action �a and the coe¢ cients of the linear strategy, i.e. �
�
x and �

�
y, from the equilibrium

data. From the equilibrium conditions, see (40), we have the values of �a; �x and �y. This allows us to

solve for r; s; k as a function of �a; �x; �y:

k = �
�2x�

2
x�� � �x�a�2x � �x�y�2y�� + �x�y��2x�2y��

�y�2y
;

r =
�y�

2
y � �x�2x
�y�2y

; (67)

s =
�2x�

2
x � �x�y�2y + �x�y��2x�2y

�y�2y
:

If we form the ratios k= (1� r) and s= (1� r) with the expressions on the rhs of (67), then we obtain
expressions which do only depend on the observable data, and are hence point identi�ed, and in particular

k

1� r = �
��a�2x + �x�2x�� � �y�2y�� + ��2x�y�2y��

�2x
; (68)
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and
s

1� r =
�x�

2
x � �y�2y + ��y�2x�2y

�2x
; (69)

which completes the proof of identi�cation. We observe that, using (66), we could express the ratios (68)

and (69) entirely in terms of the �rst two moments of observed data.

Proof of Proposition 12. (1.) From the observation of the covariance �a��a�� we can infer the sign

and the size of �a�, see (57). Given the information on left hand side and the information of �a�, we can

infer the sign of s.

(2.) Even though the sign of s can be established, we cannot extract the unknown variables on the

right hand side of (57) in the presence of the linear return term k, and hence it follows that we cannot sign

r.

(3.) From the observation of the covariance �a��a�� and the observation of the aggregate variance

�a�
2
a, we can infer the value of �a� and �a. The equilibrium conditions then impose the conditions on mean

and variance, see (57). We thus have two equations to identify the three unknown structural parameters

(r; s; k). We can solve for (s; k) in terms of the remaining unknown r to obtain:

k =
��a�� + �a�a��r � �a��r�a� + �a���a�

���a�
; s =

�a (1� �ar)
���a�

:

In particular, we would like to know whether this allows us to identify the ratios:

k

1� r = ��a +
�a�� (1� �ar)
�� (1� r) �a�

;
s

1� r = �
�a

�a���

(1� �ar)
1� r ;

in terms of the observables. But, except for the case of �a = 1, we see that this is not the case. As

r 2 (�1; 1), it follows that we can only partially identify the above ratios, namely (59) and (60) which
describe the respective sets into which each ratio can be identi�ed.

Proof of Proposition 13. We know from Proposition 12 that the interaction ratio is a function of

the observed data and the unobserved interaction parameters:

� s

1� r =
�a

�a���

1� �ar
1� r .

The prior restrictions on the private and public information restricts the possible values of r, and hence

the values that the above interaction ratio can attain.

We begin the argument with the public equilibrium set which will provide an upper bound on the ratio

(1� �ar) = (1� r) which appears in the correlation coe¢ cient �ay as described in (51). The value of the
ratio is maximized when the inequality constraint (53) of the public equilibrium set holds as an equality,

and thus
1� �ar
1� r = �2a� +

�y
��
j�a�j

q
�a � �2a�, (70)
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and hence

s (� ;m) =
�a

�a���

�
�2a� +

1
p
�y��

j�a�j
q
�a � �2a�

�
:

It follows that if the precision �y increases, then the largest value of the above ratio decreases and as �y

increases to in�nity, the value of the ratio tends to �2a�, which implies that

lim
�y"1

s (� ;m) =
�a j�a�j
��

:

Now, consider the private equilibrium set. We ask what feasible pair in the private equilibrium set

minimizes the ratio (62). The minimal ratio is achieved by an r which solves the inequality (52) as an

equality. We �nd that the minimal value of the ratio (62) is given by:

1� �ar
1� r =

�
�a � �2a�

�
�� + �a

�
j�a�j

q
1��a
�x

�
�
1� �2a�

�
��

�
�
�a � �2a�

�
�� +

�
j�a�j

q
1��a
�x

�
�
1� �2a�

�
��

� ; (71)

and hence

s (� ;m) =
�a

j�a�j��

�
�a � �2a�

�
�� + �a

�
�a�

q
1��a
�x

�
�
1� �2a�

�
��

�
�
�a � �2a�

�
�� +

�
�a�

q
1��a
�x

�
�
1� �2a�

�
��

� .

It is immediate to verify that s (� ;m) � s (� ;m) for all � and m. It follows from the determination of

s (� ;m) that as a function of �x, s (� ;m) is increasing in �x. Moreover as �x increases, the value of the

ratio tends to �2a� and hence

lim
�x"1

s (� ;m) =
�a j�a�j
��

;

which concludes the proof.

Proof of Proposition 14. For any given �a, with 0 � �a < 1, the ratio

1� �ar
1� r

is larger than 1 if and only r > 0. Thus we can identify the sign of r if we can establish that the ratio on

the rhs of (71), which determined the lower bound on the equilibrium slope, is larger than 1. Now, clearly

if �a < 1, and if for some �x :

�x��
p
1� �a �

�
1� �2�

�
�� < 0,

we have �
�a � �2�

�
�� + �a

�
�x��

p
1� �a �

�
1� �2�

�
��
��

�a � �2�
�
�� +

�
�x��

p
1� �a �

�
1� �2�

�
��
� > 1,
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then the above ratio will remain above 1 for all �x < �x.

Similarly, if for given data the expression on the rhs of (70) is smaller than 1 for some �y :

�2a� +
�y
��
�a�

q
�a � �2a� < 1,

then it will remain smaller than 1 for all 0 � �y < �y.
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