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Abstract

We analyze games of incomplete information and o¤er equilibrium predictions which are valid for,

and in this sense robust to, all possible private information structures that the agents may have. We

completely characterize the set of Bayes correlated equilibria in a class of games with quadratic payo¤s

and normally distributed uncertainty in terms of restrictions on the �rst and second moments of the

equilibrium action-state distribution. We derive exact bounds on how prior knowledge about the private

information re�nes the set of equilibrium predictions.

We consider information sharing among �rms under demand uncertainty and �nd newly optimal in-

formation policies via the Bayes correlated equilibria. Finally, we reverse the perspective and investigate

the identi�cation problem under concerns for robustness to private information. The presence of private

information leads to set rather than point identi�cation of the structural parameters of the game.
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1 Introduction

In games of incomplete information, the private information of each agent typically induces a posterior

belief about the payo¤ states, and a posterior belief about the beliefs of the other agents. The posterior

belief about the payo¤ state represents knowledge about the payo¤ environment, whereas the posterior

belief about the beliefs of the other agents represents knowledge about the belief environment. In turn,

the private information of the agent, the type in the language of Bayesian games, in�uences the optimal

strategy of the agent, and ultimately the equilibrium distribution over actions and states. The objective

of this paper is to obtain equilibrium predictions for a given payo¤ environment which are independent of

- and in that sense robust to - the speci�cation of the belief environment.

We de�ne the payo¤environment as the complete description of the agents�preferences and the common

prior over the payo¤states. The fundamental uncertainty about the set of feasible payo¤s is thus completely

described by the common prior over the payo¤ states, which we also refer to as the fundamental states. We

de�ne the belief environment as the complete description of the common prior type space over and above

the information contained in the common prior distribution of the payo¤ states. The belief environment

then describes a potentially rich type space which is subject only to the constraint that the marginal

distribution over the fundamental states coincides with the common prior. A pair of payo¤ environment

and belief environment form a standard Bayesian game. Yet importantly, for a given payo¤ environment,

there are many belief environments, and each distinct belief environment may lead to a distinct equilibrium

distribution over outcomes, namely actions and fundamentals.

The objective of the paper is to describe the equilibrium implications of the �payo¤ environment�for

all possible �belief environments�relative to the given payo¤ environment. Consequently, we refer to the

(partial) characterization of the equilibrium outcomes that are independent of the belief environment as

robust predictions. We examine these issues in a tractable class of games with a continuum of players,

symmetric payo¤ functions, and linear best response functions. A possible route towards a comprehen-

sive description of the equilibrium implications stemming from the payo¤ environment alone, would be

an exhaustive analysis of the Bayes Nash equilibria of all possible belief environments associated with a

given payo¤ environment. Here we shall not pursue this direct approach. Instead we shall use a related

equilibrium notion, namely the notion of Bayes correlated equilibrium to obtain a comprehensive charac-

terization. We begin with an epistemic result that establishes the equivalence between the class of Bayes

Nash equilibrium distributions for all possible belief environments and the class of Bayes correlated equi-

librium distributions. This result is a natural extension of a seminal result by Aumann (1987). In games

with complete information about the payo¤ environment, he establishes the equivalence between the set of

Bayes Nash equilibria and the set of correlated equilibria. We present the epistemic result for the class of
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games with a continuum of agent and symmetric payo¤ functions, and show that the insights of Aumann

(1987) generalizes naturally to this class of games with incomplete information.

Subsequently we use the epistemic result to provide a complete characterization of the Bayes correlated

equilibria in the class of games with quadratic payo¤s. With quadratic games, the best response function

of each agent is a linear function and in consequence the conditional expectations of the agents are linked

through linear conditions which in turn permits an explicit construction of the equilibrium sets. The

class of quadratic games has featured prominently in many recent contributions to games of incomplete

information, for example the analysis of rational expectations in competitive markets by Guesnerie (1992),

the analysis of the beauty contest by Morris and Shin (2002) and the equilibrium use of information by

Angeletos and Pavan (2007). We o¤er a characterization of the equilibrium outcomes in terms of the

moments of the equilibrium distributions. In the class of quadratic games, we show that the expected

mean is constant across all equilibria and provide sharp inequalities on the variance-covariance of the joint

outcome state distributions. If the underlying uncertainty about the payo¤ state and the equilibrium

distribution itself are normally distributed then the characterization of the equilibrium is completely given

by the �rst and second moments. If the distribution of uncertainty or the equilibrium distribution itself

is not normally distributed, then the characterization of �rst and second moments remains valid, but of

course it is not a complete characterization in the sense that the determination of the higher moments is

incomplete.

The relationship between the Bayes Nash equilibrium and the Bayes correlated equilibrium is shown

to lead to new insights into the relationship between information structure and the nature of the Bayes

Nash equilibrium. The compact representation of the Bayes correlated equilibria allows us to assess the

private and social welfare across the entire set of possible information structures and associated Bayes

Nash equilibria. We illustrate this in the context of information sharing among �rms. A striking result by

Clarke (1983) was the �nding that �rms, when facing uncertainty about a common parameter of demand,

will never �nd it optimal to share information. The present analysis of the Bayes correlated equilibrium

allows us to modify this insight - implicitly by allowing for richer information structures than previously

considered - and we �nd that the Bayes correlated equilibrium that maximizes the private welfare of the

�rms is not necessarily obtained with either zero or full information disclosure.

The initial equivalence result between Bayes correlated and Bayes Nash equilibrium relied on very

weak assumptions about the belief environment of the agents. In particular, we allowed for the possibility

that the agents may have no additional information beyond the common prior about the payo¤ state.

Yet, in some circumstances the agents may be commonly known to have some given prior information, or

background information. Consequently, we then analyze how a lower bound on either the public or the
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private information of the agents, can be used to further re�ne the robust predictions and impose additional

moment restrictions on the equilibrium distribution.

The payo¤ environment is speci�ed by the (ex-post) observable outcomes, the actions and the payo¤

state. By contrast, the elements of the belief environment, the beliefs of the agents, the beliefs over the

beliefs of the agents, etc. are rarely directly observed or inferred from the revealed choices of the agents.

The absence of the observability (via revealed preference) of the belief environment then constitutes a

separate reason to be skeptical towards an analysis which relies on very speci�c and detailed assumptions

about the belief environment. Finally, we therefore reverse the perspective of our analysis and consider

the issue of identi�cation rather than prediction. Namely, we are asking whether the observable data,

actions and payo¤ states, can identify the structural parameters of the payo¤ functions, and thus of the

game, without overly narrow assumptions on the belief environment. The question of identi�cation is to

ask whether the observable data imposes restrictions on the unobservable structural parameters of the

game given the equilibrium hypothesis. Similarly to the problem of robust equilibrium prediction, the

question of robust identi�cation then is which restrictions are common to all possible belief environments

given a speci�c payo¤ environment. We �nd that we can robustly identify the sign of some interaction

parameters, but have to leave the sign and size of other parameters, in particular whether the agents are

playing a game of strategic substitutes or complements, unidenti�ed. The identi�cation results here, in

particular the contrast between Bayes Nash equilibrium and Bayes correlated equilibrium, are related to,

but distinct from the results presented in Aradillas-Lopez and Tamer (2008). In their analysis of an entry

game with incomplete information, they document the loss in identi�cation power that arises with a more

permissive solution concept, i.e. level k-rationalizability. As we compare Bayes Nash and Bayes correlated

equilibrium, we show that the lack of identi�cation is not necessarily due to the lack of a common prior,

as associated with rationalizability, but rather the richness of the possible private information structures

(but all with a common prior).

In recent years, the concern for a robust equilibrium analysis in games of incomplete information has

been articulated in many ways. In mechanism design, where the rules of the games can be chosen to have

favorable robustness properties, a number of positive results have been obtained. Dasgupta and Maskin

(2000), Bergemann and Välimäki (2002), Bergemann and Morris (2005), and Perry and Reny (2002) among

others, show that the e¢ cient social allocation can be implemented in an ex-post equilibrium and hence

in Bayes Nash equilibrium for all type spaces, with or without a common prior.1 But in �given� rather

than �designed� games, such strong robustness results seem out of reach for most classes of games. In

1Jehiel and Moldovanu (2001) and Jehiel, Moldovanu, Meyer-Ter-Vehn, and Zame (2006) demonstrate the limits of these

results by considering multi-dimensional payo¤ types.

4



particular, many Bayesian games simply do not have ex post or dominant strategy equilibria. In the absence

of such global robustness results, a natural �rst step is then to investigate the robustness of the Bayes Nash

equilibrium to a small perturbation of the information structure. For example, Kajii and Morris (1997)

consider a Nash equilibrium of a complete information game and say that the Nash equilibrium is robust

to incomplete information if every incomplete information game with payo¤s almost always given by the

complete information game has an equilibrium which generates behavior close to the Nash equilibrium. In

this paper, we take a di¤erent approach and use the dichotomy between the payo¤ environment and the

belief environment to analyze the equilibrium behavior in a given payo¤ environment while allowing for

any arbitrary, but common prior, type space, as long as it is consistent with the given common prior of the

payo¤ type space. Chwe (2006) discusses the role of statistical information in single-agent and multi-agent

decision problems. In a series of related settings, he argues that the correlation between the revealed

choice of an agent, referred to as incentive compatibility, and a random variable, not controlled by the

agent, allows an analyst to infer the nature of the payo¤ interaction between the agent�s choice and the

random variable. In the current contribution, we trace out the Bayes Nash equilibria associated with

all possible information structures. A related literature seeks to identify the best information structure

consistent with the given common prior over payo¤ types. For example, Bergemann and Pesendorfer (2007)

characterizes the revenue-maximizing information structure in an auction with many bidders. Similarly,

in a class of sender-receiver games, Kamenica and Gentzkow (2011) derive the sender-optimal information

structure.

The remainder of the paper is organized as follows. Section 2 de�nes the relevant solution concepts

and establishes the epistemic result which relates the set of Bayes Nash equilibria to the set of Bayes

correlated equilibria. Beginning with Section 3, we con�ne our attention to a class of quadratic games with

normally distributed uncertainty about the payo¤ state. Section 4 reviews the standard approach to games

with incomplete information and analyses the Bayes Nash equilibria under a bivariate belief environment

in which each agent receives a private and a public signal about the payo¤ state. Section 5 begins with

the analysis of the Bayes correlated equilibrium. We give a complete description of the equilibrium set

in terms of moment restrictions on the joint equilibrium distribution. In Section 6 we analyze how prior

information about the belief environment can further restrict the equilibrium predictions. In Section 7 we

consider the optimal sharing of information among �rms. By rephrasing the choice of information policy

as a choice over information structures, we derive newly optimal information policies through the lens of

Bayes correlated equilibria. In Section 8, we turn from prediction to the issue of identi�cation. Section 9

discusses some possible extensions and o¤ers concluding remarks. The Appendix collects the proofs from

the main body of the text.
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2 Set-Up

We �rst de�ne the solution concept of Bayes correlated equilibrium. We then relate the notion of Bayes

correlated equilibrium to robust equilibrium predictions in a class of continuum player games with symmet-

ric payo¤. In the companion paper, Bergemann and Morris (2011a), we develop this solution concept and

its relationship to robust predictions in canonical �nite player and �nite action games. In the companion

paper, we also show how the results there can be adapted and re�ned �rst to symmetric payo¤s and then

to the continuum of agents and continuum of actions analyzed here.

There is a continuum of players and an individual player is indexed by i 2 [0; 1]. Each player chooses
an action a 2 R. There will then be a realized population action distribution h 2 �(R). There is a payo¤
state � 2 �. All players have the same payo¤ function u : R��(R)��! R, where u (a; h; �) is a player�s

payo¤ if she chooses action a, the population action distribution is h and the state is �. There is a prior

distribution  2 �(�). A payo¤ environment is thus parameterized by (u;  ). We may also refer to (u;  )
as the "basic game" as  2 �(�) only speci�es the common prior distribution over the payo¤ state � 2 �
whereas it does not specify the private information the agents may have access to.

We will be interested in probability distributions � 2 �(� (R)��) with the interpretation that � is
the joint distribution of the population action distribution h and the state �. For any such �, we write b�
for the induced probability distribution on R � �(R) � � if (h; �) 2 �(R) � � are drawn according to

� and there is then a conditionally independent draw of a 2 R according to h. For each a 2 R, we writeb� (�ja) for the probability on �(R)�� conditional on a (we will write as if it is uniquely de�ned).
De�nition 1 (Bayes Correlated Equilibrium )

A probability distribution � 2 �(� (R)��) is a Bayes correlated equilibrium (BCE) of (u;  ) if

Eb�(�ja)u (a; h; �) � Eb�(�ja)u �a0; h; �� (1)

for each a 2 R and a0 2 R; and

marg�� =  : (2)

This de�nition extends the notion of a correlated equilibrium in Aumann (1987) to an environment

with uncertain payo¤s, represented by the state of the world �.

We will show that Bayes correlated equilibrium captures all behavior that could arise if players observed

additional private information (in a symmetric way) and played according to a symmetric Bayes Nash

equilibrium. To formalize this, we �rst introduce the relevant (symmetric) information structures for this

continuum agent economy. Each player will observe a signal (or realize a type) t 2 T . In each state of the
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world � 2 �, there will be a realized distribution of signals g 2 �(T ) drawn according to a distribution
k 2 �(� (T )). Let � : � ! �(� (T )) give the distribution over signal distributions. Thus the belief

environment, or alternatively an �information structure�, is parameterized by (T; �).

The payo¤ environment (u;  ) and the belief environment (T; �) together de�ne a game of incomplete

information ((u;  ) ; (T; �)). A symmetric strategy in the game is then de�ned by � : T ! �(R). The

interpretation is that � (t) is the realized distribution of actions among those players observing signal t

(i.e., we are "assuming the law of large numbers" on the continuum). A distribution of signals g 2 �(T )
and � 2 � induce a probability distribution g � � 2 �(R). The prior  2 �(�) and signal distribution
� : � ! �(T ) induce a probability distribution  � � 2 �(� (T )��). As before, write [ � � for the
probability distribution on T ��(T )�� if (g; �) 2 �(T )�� are drawn according to  � � and there is
then a conditionally independent draw of t 2 T according to the realized g 2 �(T ). For each t 2 T , we

write [ � � (�jt) for the probability on �(T )�� conditional on t (we will write as if it is uniquely de�ned).

De�nition 2 (Bayes Nash Equilibrium)

A strategy � 2 � is a Bayes Nash equilibrium (BNE) of ((u;  ) ; (T; �)) if

E[ ��(�jt)u (a; g � �; �) � E[ ��(�jt)u
�
a0; g � �; �

�
;

for all t 2 T , a in the support of � (� jt) and a0 2 R.

Let  � � � � be the probability distribution on �(� (R)��) induced if (g; �) 2 �(T )�� are drawn
according to  � � and h 2 �(R) is set equal to g � �.

De�nition 3 (Bayes Nash Equilibrium Distribution)

A probability distribution � 2 �(� (R)��) is a BNE action state distribution of ((u;  ) ; (T; �)) if there
exists a BNE � of ((u;  ) ; (T; �)) such that � =  � � � �.

We are now in a position to relate the Bayes correlated equilibria with the Bayes Nash equilibria.

Proposition 1

A probability distribution � 2 �(� (R)��) is a Bayes correlated equilibrium of (u;  ) if and only if it is

a BNE action state distribution ((u;  ) ; (T; �)) for some information structure (T; �).

Aumann (1987) establishes the relation between Nash equilibria and correlated equilibria in games with

complete information. In the companion paper, Bergemann and Morris (2011a), we establish the relevant

epistemic results for canonical game theoretic environments in more detail.
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In our companion paper, Bergemann and Morris (2011a), the notion of Bayes correlated equilibrium is

de�ned in a canonical game theory environment - with a �nite number of actions, agents and states - where

the players have additional information from an information structure (T; �), and thus a Bayes correlated

equilibrium is a joint distribution over action, states and types, i.e. a distribution � 2 �(A��� T ).
In the language of the more general notion o¤ered there, the Bayes correlated equilibrium de�ned here is

the Bayes correlated information with the �null information structure�, i.e. the case in which the agents

are not assumed a priori to have access to a speci�c information structure . Here, we choose this minimal

notion of a Bayes correlated equilibrium to obtain robust predictions for an observer who only knows the

payo¤ environment but has �null� information about the belief environment of the game. But, just as in

the companion paper, Bergemann and Morris (2011a), we can analyze the impact of private information

on the size of the Bayes correlated equilibrium set. In fact in Section 6, we analyze how prior knowledge

of the belief environment can re�ne the set of equilibrium predictions. We maintain our restriction to

normally distributed uncertainty, now normally distributed types, to obtain explicit descriptions of the

resulting restriction on the equilibrium set. By contrast, in Bergemann and Morris (2011a), we allow for

general information structures and derive a many player generalization of the ordering of Blackwell (1953)

as a necessary and su¢ cient condition to order the set of Bayes correlated equilibrium. However, within

this general environment, we do not obtain an explicit and compact description of the equilibrium set in

terms of the �rst and second moments of the equilibrium distributions, as we do in the present analysis.

The general notion of Bayes correlated information also facilitates the discussion of the relationships

between the notion of Bayes correlated equilibrium, and related, but distinct notions of correlated equilib-

rium in games of incomplete information, most notably in the work of Forges (1993), which is titled and

identi�es ��ve legitimate de�nitions of correlated equilibrium in games with incomplete information�. We

refer to the reader to the companion paper, Bergemann and Morris (2011a) for a detailed discussion and

comparison.

3 Linear Best Response and Normal Uncertainty

For the remainder of this paper, we shall consider a payo¤ environment with linear best responses and

normally distributed uncertainty. Thus we assume that player i sets his action equal to a linear function

of his expectations of the average action of others A and a payo¤ relevant state �. Thus we have

ai = rEi (A) + sEi (�) + u, (3)

where r; s; u 2 R are the parameters of the best response function and are assumed to be identical across
players. The average action of the all players but i is represented by A. In the case of a �nite number I of
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players, it is therefore the sum:

A , 1

I � 1
X
j 6=i

aj , (4)

and in the case of continuum of agents, j 2 [0; 1], it is an integral:

A ,
Z 1

0
ajdj. (5)

With the linear best response, the equilibrium behavior with a �nite, but large number of players converges

to the equilibrium behavior with a continuum of players. The model with a continuum of players has the

advantage that we do not need to keep track of the relative weight of the individual player i, namely 1=I,

and the weight of all the other players, namely (I � 1) =I. In consequence, the expression of the equilibrium
strategies are frequently more compact with a continuum of players. In the subsequent analysis, we will

focus on the game with a continuum of players, but report on the necessary adjustments with a �nite

player environment.

The parameter r represents the strategic interaction among the players, and we therefore refer to it

as the �interaction parameter�. If r < 0, then we have a game of strategic substitutes, if r > 0, then

we have a game of strategic complementarities. The case of r = 0 represents the case of single person

decision problem where each player i simply responds the state of the world �, but is not concerned about

his interaction with the other players.

The parameter s represents the informational response of player i, and it can be either negative or

positive. We shall assume that the state of the world � matters for the decision of agent i, and hence s 6= 0.
We shall assume that the interaction parameter r is bounded above, or

r 2 (�1; 1) ; (6)

which is a necessary and su¢ cient condition for the complete information game to have an interior Nash

equilibrium. In fact, with the restriction (6), the Nash equilibrium in the game with complete information

is unique and given by:

ai (�) =
u

1� r +
s

1� r�, for all i and �. (7)

Moreover, under complete information about the state of the world �, even the correlated equilibrium is

unique; Neyman (1997) gives an elegant argument.

The payo¤ state, or the state of the world, � is assumed to be distributed normally with

� � N
�
��; �

2
�

�
. (8)

The present environment of linear best response and normally distributed uncertainty encompasses a

wide class of interesting economic environments. The following three applications are prominent examples

and we shall return to them throughout the paper to illustrate some of the results.
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Example 1 (Beauty Contest) In Morris and Shin (2002), a continuum of agents, i 2 [0; 1], have to
choose an action under incomplete information about the state of the world �. Each agent i has a payo¤

function given by:

ui (ai; A; �) = � (1� r) (ai � �)2 � r (ai �A)2 .

The weight r re�ects concern for the average action A taken in the population. Morris and Shin (2002)

analyze the Bayes Nash equilibrium in which each agent i has access to a private (idiosyncratic) signal and

a public (common) signal of the world. In terms of our notation, the beauty contest model set s = 1 � r

and u = 0 with 0 � r < 1.

Example 2 (Competitive and Strategic Markets) Guesnerie (1992) presents an analysis of the

stability of the competitive equilibrium by considering a continuum of producers with a quadratic cost of

production and a linear inverse demand function. If there is uncertainty about the demand intercept, we

can write the demand curve as p (A) = s� + rA + u with r < 0 while the cost of �rm i is c (ai) = 1
2a
2
i .

Individual �rm pro�ts are now given by

aip (A)� c (ai) = (rA+ s� + u) ai �
1

2
a2i .

In an alternative interpretation, we can have a common cost shock, so the demand curve is p (A) = rA+u

with r < 0 while the cost of �rm i is c (ai) = �s�ai + 1
2a
2
i . Such an economy can be derived as the limit

of large, but �nite, Cournot markets, as shown by Vives (1988), (2011).

Example 3 (Quadratic Economies and the Social Value of Information) Angeletos and Pavan

(2009) consider a general class of quadratic economies (games) with a continuum of agents and private

information about a common state � 2 R. There the payo¤ of agent i is given by a symmetric quadratic
utility function ui (ai; A; �), which depends on the individual action ai, the average action A and the payo¤

state � 2 R:

ui (ai; A; �) ,
1

2

0BB@
ai

A

�

1CCA
00BB@

Uaa UaA Ua�

UaA UAA UA�

Ua� UA� U��

1CCA
0BB@

ai

A

�

1CCA ; (9)

where the matrix U = fUklg represents the payo¤ structure of the game. In the earlier working paper
version, Bergemann and Morris (2011b), we also represented the payo¤ structure of the game by the matrix

U . Angeletos and Pavan (2009) assume that the payo¤s are concave in the own action: Uaa < 0; and that

the interaction of the individual action and the average action (the �indirect e¤ect�) is bounded by the

own action (the �direct e¤ect�):

�UaA=Uaa < 1, Uaa + UaA < 0. (10)
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The best response in the quadratic economy (with complete information) is given by:

ai = �
UaAA+ Ua��

Uaa
:

The quadratic term of the own cost, Uaa simply normalizes the terms of the strategic and informational

externality, UaA and Ua�. In terms of the present notation we have

r = �UaA
Uaa

; s = �Ua�
Uaa

.

Their restriction (10) is equivalent to the present restriction (6). The entries in the payo¤ matrix U which

do not refer to the individual action a, i.e. the entries in the lower submatrix of U , namely24 UAA UA�

UA� U��

35
are not relevant for the determination of either the Bayes Nash or the Bayes correlated equilibrium. These

entries may be relevant for welfare analysis (as in Angeletos and Pavan (2009)), but for the welfare analysis

in this paper they are not and can be uniformly set to zero.

4 Bayes Nash Equilibrium

We �rst report as a benchmark a standard approach to analyzing this class of games of incomplete infor-

mation. Starting with the payo¤ environment described in the previous section, we add a description of the

belief environment, i.e., what players know about the state and others�beliefs. Speci�cally, we assume that

each player observes a two-dimensional signal. In the �rst dimension, the signal is privately observed and

idiosyncratic to the agent, whereas in the second dimension, the signal is publicly observed and common to

all the agents. In either dimension, the signal is normally distributed and centered around the true state

of the world �. In this class of normally distributed signals, a speci�c type space is determined by the

variance of the noise along each dimension of the signal. For given variances, and hence for a given type

space, we then analyze the Bayes Nash equilibrium/a of the basic game. We shall then proceed to analyze

the basic game with the notion of Bayes correlated equilibrium and establish which predictions are robust

across all of the private information environments, independent of the speci�c bivariate and normal type

space to be considered now.

Accordingly, we consider the following bivariate normal information structure. Each agent i is observing

a private and a public noisy signal of the true state of the world �. The private signal xi, observed only

by agent i, is de�ned by:

xi = � + "i; (11)
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and the public signal, common and commonly observed by all the agents is de�ned by:

y = � + ". (12)

The random variables "i and " are normally distributed with zero mean and variance given by �2x and �
2
y,

respectively; moreover "i and " are independently distributed, with respect to each other and the state �.

This model of bivariate normally distributed signals appears frequently in games of incomplete information,

see Morris and Shin (2002) and Angeletos and Pavan (2007) among many others. It is at times convenient

to express the variance of the random variables in terms of the precision:

�x , ��2x ; �y , ��2y ; � � , ��2� and � , ��2� + ��2x + ��2y ;

we refer to the vector (�x; �y) as the information structure of the game.

A special case of the noisy environment is the environment with zero noise. In this environment, the

complete information environment, each agent observes the state of the world � without noise. We begin

the equilibrium analysis with the complete information environment. The best response:

ai = rA+ s� + u,

re�ects the, possibly con�icting, objectives that agent i faces. Each agent has to solve a prediction-like

problem in which he wishes to match his action, with the state � and the average action A simultaneously.

The interaction parameters, s and r, determine the weight that each component, � and A, receives in

the deliberation of the agent. If there is zero strategic interaction, or r = 0, then each agent faces a pure

prediction problem. Now, we observed earlier, see (7), that the resulting Nash equilibrium strategy is given

by:

a� (�) , u

1� r +
s

1� r�. (13)

We refer to the terms in equilibrium strategy (13), u= (1� r) and s= (1� r), as the equilibrium intercept

and the equilibrium slope, respectively.

Next, we analyze the game with incomplete information, where each agent receives a bivariate noisy

signal (xi; y). In particular, we shall compare how responsive the strategy of each agent is to the underlying

state of the world relative to the responsiveness in the game with complete information. In the game with

incomplete information, agent i receives a pair of signals, xi and y, generated by the information structure

(11) and (12). The prediction problem now becomes more di¢ cult for the agent. First, he does not observe

the state �, but rather he receives some noisy signals, xi and y, of �. Second, since he does not observe

the other agents�signals either, he can only form an expectation about their actions, but again has to rely
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on the signals xi and y to form the conditional expectation. The best response function of agent i then

requires that action a is justi�ed by the conditional expectation, given xi and y:

ai = rE [A jxi; y ] + sE [� jxi; y ] + u.

In this linear quadratic environment with normal distributions, we conjecture that the equilibrium strategy

is given by a function linear in the signals xi and y: a (xi; y) = �0 + �xxi + �yy. The equilibrium is then

identi�ed by the linear coe¢ cients �0; �x; �y; which we expect to depend on the interaction terms (r; s; u)

and the information structure (�x; �y).

Proposition 2 (Linear Bayes Nash Equilibrium)

The unique Bayes Nash equilibrium is a linear equilibrium: a (x; y) = ��0+�
�
xx+�

�
yy, with the coe¢ cients

given by:

��0 =
u

1� r +
s

1� r
��� �
� � r�x

; ��x = s
�x

� � r�x
; ��y =

s

1� r
�y

� � r�x
: (14)

The derivation of the linear equilibrium strategy already appeared in many contexts, e.g., in Morris

and Shin (2002) for the beauty contest model, and for the present general environment, in Angeletos and

Pavan (2007). With the normalization of the average action given by (4) and (5), the above equilibrium

strategy is independent of the number of players, and in particular independent of the �nite or continuum

version of the environment.

The Bayes Nash equilibrium shares the uniqueness property with the Nash equilibrium, its complete

information counterpart. We observe that the linear coe¢ cients ��x and �
�
y display the following relation-

ship:
��y
��x

=
�y
�x

1

1� r . (15)

Thus, if there is no strategic interaction, or r = 0, then the signals xi and y receive weights proportional

to the precision of the signals. The fact that xi is a private signal and y is a public signal does not matter

in the absence of strategic interaction, all that matters is the ability of the signal to predict the state

of the world. By contrast, if there is strategic interaction, r 6= 0, then the relative weights also re�ect

the informativeness of the signal with respect to the average action. Thus if the game displays strategic

complements, r > 0, then the public signal y receives a larger weight. The commonality of the public signal

across agents means that their decision is responding to the public signal at the same rate, and hence in

equilibrium the public signal is more informative about the average action than the private signal. By

contrast, if the game displays strategic substitutability, r < 0, then each agent would like to move away

from the average, and hence places a smaller weight on the public signal y, even though it still contains

information about the underlying state of the world.
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Now, if we compare the equilibrium strategies under complete and incomplete information, (13) and

(14), we �nd that in the incomplete information environment, each agent still responds to the state of the

world �, but his response to � is noisy as both xi and y are noisy realizations of �, but centered around �:

xi = � + "i and y = � + ". Now, given that the best response, and hence the equilibrium strategy, of each

agent is linear in the expectation of �, the variation in the action is �explained�by the variation in the

true state, or more generally in the expectation of the true state.

Proposition 3 (Attenuation)

The mean action in equilibrium is:

E [a] = ��0 + �
�
x�� + �

�
y�� =

u+ s��
1� r ;

and the sum of the weights, ��x + �
�
y, is:����x + ��y�� = ���� s

1� r

���� �1� � �
� � r�x

�
�
���� s

1� r

���� .
Thus, the mean of the individual action, E [a], is independent of the information structure (�x; �y). In

addition, we �nd that the linear coe¢ cients of the equilibrium strategy under incomplete information are

(weakly) less responsive to the true state � than under complete information. In particular, the sum of

the weights is strictly increasing in the precision of the noisy signals xi and y. The equilibrium response

to the state of the world � is diluted by the noisy signals, that is the response is attenuated. The residual

is always picked up by the intercept of the equilibrium response.

Now, if we ask how the joint distribution of the Bayes Nash equilibrium varies with the information

structure, then Proposition 3 established that it is su¢ cient to consider the higher moments of the equi-

librium distribution. But given the normality of the equilibrium distribution, it follows that it is su¢ cient

to consider the second moments, that is the variance-covariance matrix. The variance-covariance matrix

of the equilibrium joint distribution over individual actions ai; aj , and state � is given by:

�ai;aj ;� =

2664
�2a �a�

2
a �a��a��

�a�
2
a �2a �a��a��

�a��a�� �a��a�� �2�

3775 : (16)

We denote the correlation coe¢ cient between action ai and aj shorthand by �a rather than �aa.

With a continuum of agents, we can describe the equilibrium distribution, after replacing the individual

action aj by the average action A, through the triple (ai; A; �). The covariance between the individual, but

symmetrically distributed, actions ai and aj , given by �a�
2
a has to be equal to the variance of the average
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action, or �2A = �a�
2
a.
2 Similarly, the covariance between the individual action and the average action

has to be equal to the covariance of any two, symmetric, individual action pro�les, or �aA�a�A = �a�
2
a.

Likewise, the covariance between the individual (but symmetric) action ai and the state � has to equal to

the covariance between the average action and the state �, or or �a��a�� = �A��A��.

With the characterization of the unique Bayes Nash equilibrium in Proposition 2, we can express the

variance-covariance matrix of the equilibrium joint distribution over (ai; A; �) in terms of the equilibrium

coe¢ cients (�x; �y) and the variances of the underlying random variables (�; "i; "):

�ai;A;� =

2664
�2x�

2
x + �

2
y�
2
y + �

2
� (�x + �y)

2 �2y�
2
y + �

2
� (�x + �y)

2 �2� (�x + �y)

�2y�
2
y + �

2
� (�x + �y)

2 �2y�
2
y + �

2
� (�x + �y)

2 �2� (�x + �y)

�2� (�x + �y) �2� (�x + �y) �2�

3775 . (17)

Conversely, given the structure of the variance-covariance matrix, we can express the equilibrium coe¢ cients

��x and �
�
y in terms of the variance and covariance terms that they generate:

��x =
�a
��
�a� � ��y; ��y = �

�a
�y

q
�a � �2a�. (18)

Thus, we attribute to the private signal x, through the weight ��x, the residual correlation between a

and �, where the residual is obtained by removing the correlation between a and � which is due to the

public signal. In turn, the weight attributed to the public signal is proportional to the di¤erence between

the correlation across actions and across action and signal. We recall that the actions of any two agents

are correlated as they respond to the same underlying fundamental state �. Thus, even if their private

signals are independent conditional on the true state of the world �, their actions are correlated due to

the correlation with the hidden random variable �. Now, if these conditionally independent signals were

the only sources of information, and the correlation between action and the hidden state � where �a�,

then all the correlation of the agents�action would have to come through the correlation with the hidden

state, and in consequence the correlation across actions arises indirectly, in a two way passage through the

hidden state, or �a = �a� � �a�. In consequence, any correlation �a beyond this indirect path, or �a � �2a� is
generated by means of a common signal, the public signal y.

Since the correlation coe¢ cient of the actions has to be nonnegative, the above representation suggest

that as long as the correlation coe¢ cient (�a; �a�) satisfy:

0 � �a � 1, and �a � �2a� � 0; (19)

2With a �nite number of agents and the de�nition of the average action given by: A = (1= (I � 1))
P

j 6=i aj , the variance

of A is given by �2A =
�

1
I�1 +

I�2
I�1�a

�
�2a and hence the variance-covariance matrix in the continuum version is only an

approximation, but not exact. We present the exact restrictions in Corollary 1 in the next section.
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we can �nd information structures (�x; �y) such the coe¢ cients resulting from (18) are indeed the equilib-

rium coe¢ cients of the associated Bayes Nash equilibrium strategy.

Proposition 4 (Information and Correlation)

For every (�a; �a�) such that 0 � �a � 1, and �a � �2a� � 0; there exists a unique information structure

(�x; �y) such that the associated Bayes Nash equilibrium displays the correlation coe¢ cients (�a; �a�):

�x =
(1� �a) �2a��

(1� �a) + (1� r)
�
�a � �2a�

��2
�2�
;

and

�y =

�
�a � �2a�

�
�2a� (1� r)

2�
(1� �a) + (1� r)

�
�a � �2a�

��2
�2�
:

In the two-dimensional space of the correlation coe¢ cients
�
�a; �

2
a�

�
, the set of possible Bayes Nash

equilibria is described by the area below the 45� degree line. We illustrate how a particular Bayes Nash equi-

librium with its correlation structure (�a; �a�) is generated by a particular information structure (�x; �y). In

Figure 1, each level curve describes the correlation structure of the Bayes Nash equilibrium for a particular

precision �x of the private signal. A higher precision �x generates a higher level curve. The upward sloping

movement represents an increase in informativeness of the public signal, i.e. an increase in the precision

�y. An increase in the precision of the public signal therefore leads to an increase in the correlation of

action across agents as well as in the correlation between individual action and state of the world. For low

levels of precision in the private and the public signal, an increase in the precision of the public signal �rst

leads to an increase in the correlation of actions, and then only later into an increased correlation with the

state of the world.

In Figure 2, we remain in the unit square of the correlation coe¢ cients
�
�a; �

2
a�

�
. But this time, each

level curve is identi�ed by the precision �y of the public signal. As the precision of the private signal

increases, the level curve bends upward and �rst backward, and eventually forward. At low levels of the

precision of the private signal, an increase in the precision of the private signal increases the dispersion across

agents and hence decreases the correlation across agents. But as it gives each individual more information

about the true state of the world, an increase in precision always leads to an increase in the correlation

with the true state of the world, this is the upward movement. As the precision improves, eventually the

noise becomes su¢ ciently small so that the underlying common value generated by � dominates the noise,

and then serves to both increase the correlation with the state and across actions. But in contrast to

the private information, where the equilibrium sets moves mostly northwards, i.e. where the improvement

occurs mostly in the direction of an increase in the correlation between the state and the individual agent,

the public information leads the equilibrium sets to move mostly eastwards, i.e. most of the change leads to
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Figure 1: Bayes Nash equilibrium of beauty contest, r = 1=4, with varying degree of precision �x of private

signal.

an increase in the correlation across actions. In fact for a given correlation between the individual actions,

represented by �a, an increase in the precision of the public signal leads to the elimination of Bayes Nash

equilibria with very low and with very high correlation between the state of the world and the individual

action.

5 Bayes Correlated Equilibrium

We now characterize the set of Bayes correlated equilibria. We restrict attention to symmetric and normally

distributed correlated equilibria and discuss the extent to which these are without loss of generality at the

end of this Section. We begin the analysis with a continuum of agents and subsequently describe how the

equilibrium restrictions are modi�ed in a �nite player environment.

We can characterize the Bayes correlated equilibria in two distinct, yet related, ways. With a continuum

of agents, we can characterize the equilibria in terms of the realized average action A and the deviation of

the individual action ai from the average action, ai�A. Under the continuum hypothesis, the distribution

around the realized average action A represents the exact distribution of actions by the agents, conditional

on the realized average action A. Alternatively we can characterize the equilibria in terms of an arbitrary

pair of individual actions, ai and aj , and the state of the world �. The �rst approach puts more emphasis on

the distributional properties of the correlated equilibrium, and is convenient when we go beyond symmetric

and normally distributed equilibria, whereas the second approach is closer to the description of the Bayes

Nash equilibrium in terms of the individual action.
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Figure 2: Bayes Nash equilibrium of beauty contest, r = 1=4, with varying degree of precision �x of public

signal.

5.1 Equilibrium Moment Restrictions

We consider the class of symmetric and normally distributed Bayes correlated equilibria. With the hy-

pothesis of a normally distributed Bayes correlated equilibrium, the aggregate distribution of the state of

the world � and the average action A is described by:0@ �

A

1A � N

0@0@ ��

�A

1A ;

0@ �2� �A��A��

�A��A�� �2A

1A1A :

In the continuum economy, we can describe the individual action a as centered around the average action

A with some dispersion �2�, so that a = A+�, for some � � N
�
0; �2�

�
. In consequence, the joint equilibrium

distribution of (�;A; a) is given by:0BB@
�

A

a

1CCA � N

0BB@
0BB@

��

�A

�a

1CCA ;

0BB@
�2� �A��A�� �A��A��

�A��A�� �2A �2A

�A��A�� �2A �2A + �
2
�

1CCA
1CCA : (20)

The analysis of the Bayes correlated equilibrium proceeds by deriving restrictions on the joint equilibrium

distribution (20). In other words, we seeks to identify the restrictions on the moments of the equilibrium

distribution. Given that we presently restrict attention to a multivariate normal distribution, it is su¢ cient

to derive restrictions in terms of the �rst and second moments of the equilibrium distribution (20). The

equilibrium restrictions arise from two sources: (i) the best response conditions of the individual agents:

ai = rE [A jai ] + sE [� jai ] + u, for all i and ai 2 R, (21)

and (ii) the consistency condition, see De�nition 1, where the later condition, namely that the marginal

distribution over � is equal to the common prior over �, is satis�ed by construction of the joint equilibrium
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distribution (20). The best response condition (21) of the Bayes correlated equilibrium allows the agent

to form his expectation over the average action A and the state of the world � by conditioning on the

information that is contained in his �recommended�equilibrium action ai.

As the best response condition (21) uses the expectation of the individual agent, it is convenient to

introduce the following change of variable for the equilibrium random variable. By hypothesis of the

symmetric equilibrium, we have:

�a = �A and �2a = �2A + �
2
�.

The covariance between the individual action and the average action is given by �aA�a�A = �2A;and is

identical, by construction, to the covariance between the individual actions:

�a�
2
a = �2A. (22)

We can therefore express the correlation coe¢ cient between individual actions, �a, as:

�a =
�2A

�2A + �
2
�

, (23)

and the correlation coe¢ cient between individual action and the state � as:

�a� = �A�
�A
�a
. (24)

In consequence, we can rewrite the joint equilibrium distribution of (�;A; a) in terms of the moments

of the state of the world � and the individual action a as:0BB@
�

A

a

1CCA � N

0BB@
0BB@

��

�a

�a

1CCA ;

0BB@
�2� �a��a�� �a��a��

�a��a�� �a�
2
a �a�

2
a

�a��a�� �a�
2
a �2a

1CCA
1CCA : (25)

With the joint equilibrium distribution described by (25), we now use the best response property (21),

to completely characterize the moments of the equilibrium distribution. Note that this corresponds to

imposing the obedience condition (1) in the general setting of Section 2.

As the best response property (21) has to hold for all ai in the support of the correlated equilibrium, it

follows that the above condition has to hold in expectation over all ai, or by the law of total expectation:

E [ai] = u+ sE [E [� jai ]] + rE [E [A jai ]] . (26)

But by symmetry, it follows that the expected action of each agent is equal to expected average action A,

and hence we can use (26) to solve for the mean of the individual action and the average action:

E [ai] = E [A] =
u+ sE [�]
1� r =

u+ s��
1� r . (27)
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It thus follows that the mean of the individual action and the mean of the average action is uniquely

determined by the mean value �� of the state of the world and parameters (r; s; u) across all correlated

equilibria.

The complete description of the set of correlated equilibria then rests on the description of the second

moments of the multivariate distribution. The characterization of the second moments of the equilibrium

distribution again uses the best response property of the individual action, see (21). But, now we use

the property of the conditional expectation, rather than the iterated expectation to derive restrictions on

the covariates. The recommended action ai has to constitute a best response in the entire support of the

equilibrium distribution. Hence the best response has to hold for all ai 2 R, and thus the conditional
expectation of the state E [� jai ] and of the average action, E [A jai ], have to change with ai at exactly the
rate required to maintain the best response property:

1 =

�
s
dE [� jai ]
dai

+ r
dE [A jai ]

dai

�
; for all ai 2 R.

Given the multivariate normal distribution (25), the conditional expectations E [� jai ] and E [A jai ] are
linear in ai and given by

E [�jai] =
�
1� �a���

�a

s

1� r

�
�� +

�a���
�a

�
ai �

u

1� r

�
; (28)

and

E [Ajai] =
u+ s��
1� r (1� �a) + �aai: (29)

The optimality of the best response property can then be expressed, using (28) and (29) as

1 = s
�a���
�a

+ r�a.

It follows that we can express either one of the three elements in the description of the second moments,

(�a; �a; �a�) in terms of the other two and the primitives of the game as described by (r; s). In fact, it is

convenient to solve for the standard deviation of the individual actions �a, or

�a =
��s�a�
1� �ar

. (30)

The remaining restrictions on the correlation coe¢ cients �a and �a� are coming in the form of inequalities

from the change of variables in (22)-(24), where

�2a� = �2A�
�2A
�2a

= �2A��a � �a. (31)

Finally, the standard deviation has to be positive, or �a � 0. Now, it follows from the assumption of

moderate interaction, r < 1, and the nonnegativity restriction of �a implied by (31) that 1� �ar > 0, and
thus to guarantee that �a � 0, it has to be that s�a� � 0. Thus the sign of the correlation coe¢ cient �a�
has to equal the sign of the interaction term s. We summarize these results.
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Figure 3: Set of Bayes correlated equilibrium in terms of correlation coe¢ cients �a and j�a�j

Proposition 5 (First and Second Moments of BCE)

A multivariate normal distribution of (ai; A; �) is a symmetric Bayes correlated equilibrium if and only if

1. the mean of the individual action is:

E [ai] =
u

1� r + ��
s

1� r ; (32)

2. the standard deviation of the individual action is:

�a =
s�a�
1� �ar

��; and (33)

3. the correlation coe¢ cients �a and �a� satisfy the inequalities:

�2a� � �a and s � �a� � 0. (34)

The characterization of the �rst and second moments suggests that the mean �� and the variance �
2
� of

the fundamental variable � are the driving force of the moments of the equilibrium actions. The linear form

of the best response function translates into a linear relationship in the �rst and second moment of the

state of the world and the equilibrium action. In the case of the standard deviation, the linear relationship

is a¤ected by the correlation coe¢ cients �a and �a� which assign weights to the interaction parameter r

and s, respectively. The set of all correlated equilibria is graphically represented in Figure 3.

The restriction on the correlation coe¢ cients, namely �2a� � �a, emerged directly from the above change

of variable, see (22)-(24). Alternatively, but equivalently, we could have disregarded the restrictions implied

by the change of variables, and simply insisted that the matrix of second moments of (25) is indeed a
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legitimate variance-covariance matrix, i.e. that is a nonnegative de�nite matrix. A necessary and su¢ cient

condition for the nonnegativity of the matrix is that the determinant of the variance-covariance matrix is

nonnegative, or,

�6��
4
a�s

4 (1� �a)
�a � �2a�
(1� �ar)4

� 0 ) �2a� � �a.

Later, we extend the analysis from the pure common value environment analyzed here, to an inter-

dependent value environment (in Section 5.5) and to prior private information (in Section 6). In these

extensions, it will be convenient to extract the equilibrium restrictions in form of the correlation inequal-

ities, directly from the restriction of the nonnegative de�nite matrix, rather than trace them through the

relevant change of variable. In any case, these two procedures establish the same equilibrium restrictions.

We observe that at �a� = 0, the only correlated equilibrium is given by �a = 1, in other words, there is

a discontinuity in the equilibrium set at �a� = 0. In the symmetric equilibrium, if �a� = 0, then this means

that the action of each agent is completely insensitive to the realization of the true state �. But this means,

that the agents do not respond to any information about the state of the world � beyond the expected

value of the state, E [�]. Thus, each agent acts as if he were in a complete information world where the

true state of the world is the expected value of the state. But, we know from the earlier discussion, that

in this environment, there is a unique correlated equilibrium where the agents all choose the same action

and hence �a = 1.

At this point, it is appropriate to describe how the analysis of the Bayes correlated equilibrium would

be modi�ed by the presence of a �nite number I of agents. We remarked in Section 3 that the best response

function of the agent i is constant in the number of players. As the best response is independent of the

number of players, it follows that the equilibrium equality restrictions, namely (32) and (33), are una¤ected

by the number, in particular the �niteness, of the players. The only modi�cation arises with the change

of variable, see (22)-(24), which relied on the continuum of agents. By contrast, the inequality restrictions

with a �nite number of players can be recovered directly from the fact that variance-covariance matrix

�a1;:::;aI ;� of the equilibrium random variables (a1; :::; aI ; �) has to be a nonnegative de�nite matrix.

Corollary 1 (First and Second Moments of BCE with Finitely Many Players)

A multivariate normal distribution of (a1; :::; aI ; �) is a symmetric Bayes correlated equilibrium if and only

if it satis�es (32), (33), and the correlation coe¢ cients �a and �a� satisfy the inequalities:

�a � �
1

I � 1 , �a � �2a� � �
1� �2a�
I � 1 ; s � �a� � 0. (35)

It is immediate to verify that the restrictions of the correlation structure in (35) converge towards the

one in (34) as I !1. We observe that the restrictions in (35) are more permissive with a smaller number
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of agents, and in particular allow for moderate negative correlation across individual actions with a �nite

number of agents. By contrast, with in�nitely many agents, it is a statistical impossibility that all actions

are mutually negatively correlated.

The condition on the variance of the individual action, given by (30), actually follows the same logic as

the condition on the mean of the individual action, given by (27). To wit, for the mean, we used the law of

total expectation to arrive at the equality restriction. Similarly, we could obtain the above restriction (30)

by using the law of total variance and covariance. More precisely, we could require, using the equality (21),

that the variance of the individual action matches the sum of the variances of the conditional expectations.

Then, by using the law of total variance and covariance, we could represent the variance of the conditional

expectation in terms of the variance of the original random variables, and obtain the exact same condition

(30). Here we chose to directly use the linear form of the conditional expectation given by the multivariate

normal distribution. We explain towards the end of the section that the later method, which restricts the

moments via conditioning, remains valid beyond the multivariate normal distributions.

5.2 Volatility and Dispersion

Proposition 5 documents that the relationship between the correlation coe¢ cients �a and �a� depends only

on the sign of the information externality s, but not on the strength of the parameters r and s. We can

therefore focus our attention on the variance of the individual action and how it varies with the strength

of the interaction as measured by the correlation coe¢ cients (�a; �a�).

Proposition 6 (Variance of Individual Action)

1. If the game displays strategic complements, r > 0; then: (i) �a is increasing in �a and j�a�j; (ii) the
maximal �a is obtained at �a = j�a�j = 1:

2. If the game displays strategic substitutes, r < 0, then: (i) �a is decreasing in �a and increasing in

j�a�j; (ii) the maximal �a is obtained at

�a = j�a�j2 = min
�
�1
r
; 1

�
. (36)

In particular, we �nd that as the correlation in the actions across individuals increases, the variance

in the action is ampli�ed in the case of strategic complements, but attenuated in the case of strategic

substitutes. An interesting implication of the attenuation of the individual variance is that the maximal

variance of the individual action may not be attained under minimal or maximal correlation of the individual

actions but rather at an intermediate level of interaction. In particular, if the interaction e¤ect r is large,
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namely jrj > 1, then the maximal variance �a is obtained with an interior solution. Of course, in the case
of strategic complements, the positive feed-back e¤ect implies that the maximal variance is obtained when

the actions are maximally correlated.

So far we have described the Bayes correlated equilibrium in terms of the triple (�;A; a). Yet, a distinct

but equivalent representation can be given in terms of (�;A; a�A) : the state �, the average action A,
the idiosyncratic di¤erence, a�A. In games with a continuum of agents, we can interpret the conditional

distribution of the agents� action a around the mean A as the exact distribution of the actions in the

population. The idiosyncratic di¤erence a�A describes the dispersion around the average action, and the
variance of the average action A can be interpreted as the volatility of the game. The dispersion, a � A,

measures how much the individual action can deviate from the average action, yet be justi�ed consistently

with the conditional expectation of each agent in equilibrium. The language for volatility and dispersion

in the context of this environment was earlier suggested by Angeletos and Pavan (2007). The dispersion is

described by the variance of a� A, which is given by (1� �a)�2a whereas the aggregate volatility is given
by �2A = �a�

2
a.

Proposition 7 (Volatility and Dispersion)

1. The volatility is increasing in j�a�j, and increasing in �a if and only if r � �1=�a;

2. The dispersion is increasing in j�a�j and reaches an interior maximum at:

�a = �2a� =
1

2� r .

The dispersion, a� A, measures how much the individual action can deviate from the average action.

The maximal level of dispersion occurs when the correlation with respect to the state � is largest. But

it reaches its maximum at an interior level of the correlation across the individual actions as we might

expect. We note that relative to the variance of the individual action, see Proposition 6, the volatility, is

increasing in the correlation coe¢ cient �a for a larger range of strategic interaction parameters, including

moderate strategic substitutes.

5.3 Matching Bayes Correlated and Nash Equilibria

The description of the Bayes correlated equilibria lead to a complete characterization of the equilibrium

behavior of the agents. Yet, the construction of the equilibrium set did not give us any direct information

as to how rich and complicated an information structure would have to be to support the behavior in

terms of a related Bayes Nash equilibrium. We know from the epistemic result of Proposition 1 that such

24



information structures exists, but we do not yet know which form they may take. We now describe the

relationship between Bayes correlated and Bayes Nash equilibria by constructing the information structure

implicitly associated with every Bayes correlated equilibrium. We are going to describe a class of bivariate

information structures, such that the union of the Bayes Nash equilibria generated by these information

structures spans the entire set of Bayes correlated equilibria.

We observe that the Bayes Nash and correlated equilibria share the same mean. We can therefore

match the respective equilibria if we can match the second moments of the equilibria. After inserting

the coe¢ cients of the linear strategies of the Bayes Nash equilibrium, we can match the moments of the

two equilibrium notions. In the process, we get two equations relating the Bayes correlated and Nash

equilibrium. The Bayes Nash equilibria are de�ned by the variance of the private and the public signal.

The correlated equilibria are de�ned by the correlation coe¢ cients of individual actions across agents, and

individual actions and state �.

Corollary 2 (Matching BCE and BNE)

For every interaction structure (r; s; u), there is a bijection between Bayes correlated and Bayes Nash

equilibrium.

Finally we observe that for a given �nite precision of the information structure, i.e. 0 < (�x; �y) <1,
the associated Bayes Nash equilibrium is an interior point relative to the set of correlated equilibria. As

the set of correlated equilibria is described by �a � �2a� � 0, and since we know that �a = (�aA)
2 we have

�aA > j�a�j. It follows that the Bayes Nash equilibrium is an interior equilibrium relative to the correlated

equilibria in terms of the correlation coe¢ cients, and certainly in terms of the variance of individual and

average action. To put it di¤erently, the equality �a = �2a� is obtained in the Bayes Nash equilibrium if

and only if the precision of the public signal satis�es �y = 0.

The above description of the bijection between Bayes correlated and Bayes Nash equilibrium was stated

for the class of normally distributed Bayes Nash equilibria. An interesting aspect of the constructive

approach was that a bivariate information structure was su¢ cient to generate the entire set of Bayes

correlated equilibria. We conjecture that the su¢ ciency of a bivariate information structures is likely to

remain valid even with general distribution of fundamental uncertainty. After all, the correlation coe¢ cients

arise from idiosyncratic dispersion and aggregate volatility. The private signal supports the idiosyncratic

dispersion and the public signal is su¢ cient to support the aggregate volatility.

5.4 Interdependent Value Environment

So far, we have restricted our analysis to the common value environment in which the state of the world is

the same for every agent. However, the analysis of the Bayes correlated equilibrium set easily extends to
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a model with interdependent, but not necessarily common values. We describe a suitable generalization of

the common value environment to an interdependent value environment: the payo¤ type of agent i is now

given by �i = �+ �i, where � is the common value component and �i is the private value component. The

distribution of the common component � is given, as before, by � � N
�
��; �

2
�

�
, and the distribution of the

private component �i is given by �i � N
�
0; �2�

�
. It follows that by increasing �2� at the expense of �

2
�, we

can move from a model of pure common values to a model of pure private values, and in between are in a

canonical model of interdependent values.

The analysis of the Bayes correlated equilibrium can proceed as in Section 5.1. The earlier representa-

tion of the Bayes correlated equilibrium in terms of the variance-covariance matrix of the individual action

a, the aggregate action A and the common value � simply has to be augmented by distinguishing between

the common value component � and the private value component �:

�a;A;�;� =

2666664
�2a �a�

2
a �a��a�� �a��a��

�a�
2
a �a�

2
a �a��a�� 0

�a��a�� �a��a�� �2� 0

�a��a�� 0 0 �2�

3777775 :
The new correlation coe¢ cient �a� represents the correlation between the individual action a and the

individual value, the private component �. The set of the Bayes correlated equilibria are a¤ected by the

introduction of the private component in a systematic manner. The equilibrium conditions, in terms of

the best response, are given by:

a = rE [A ja ] + sE [� + � ja ] + u. (37)

As the private component � has zero mean, it is centered around the common value �, the private component

does not change the mean action in equilibrium. However, the addition of the private value component does

a¤ect the variance and covariance of the Bayes correlated equilibria. In fact, the best response condition

(37), restricts the variance of the individual action to:

�a =
s (���a� + ���a�)

1� �ar
;

so that the standard deviation �a of the individual action is now composed of the weighted sum of the

common and private value sources of payo¤ uncertainty. Finally, the additional restrictions that arise from

the requirement that the matrix �a;A;�;� is indeed a variance-covariance matrix, i.e. that it is a positive

de�nite matrix, simply appear integrated in the original conditions:

�a � �2a� � 0; 1� �2a� � �a � 0. (38)

In other words, to the extent that the individual action is correlated with the private component, it imposes

a bound on how much the individual actions can be correlated, or �a � 1 � �2a� . Thus to the extent that
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the individual agent�s action is correlated with the private component, it also limits the extent to which

the individual action can be related with the public component, as by construction, the private and the

public component are independently distributed. In Section 6, we consider the role of prior information

on the structure of the equilibrium set, and a natural case of prior information is that each agent knows

his own payo¤ type �i = � + �i, but does not necessarily know the composition of his own payo¤ state in

terms of the private and public component.

5.5 Beyond Normal Distributions and Symmetry

Beyond Normal Distributions The above characterization of the mean and variance of the equilib-

rium distribution was obtained under the assumption that the distributions of the fundamental variable

� and resulting joint distribution was a multivariate normal distribution. Now, even if the distribution of

the state of the world � is a normally distributed, the joint equilibrium distribution does not necessarily

have to be a normal distribution itself. If the equilibrium distribution is not a multivariate normal distri-

bution anymore, then the �rst and second moments alone do not completely characterize the equilibrium

distribution anymore. In other words, the �rst and second moment only impose restrictions on the higher

moments, but do not completely identify the higher moments anymore. We observe however that the

restrictions regarding the �rst and second moment remain to hold. In particular, the result regarding the

mean of the action is independent of the distribution of the equilibrium or even the normality of the funda-

mental variable �. With respect to the restrictions on the second moments, the restrictions still hold, but

outside of the class of multivariate normal distribution, the inequalities may not necessarily be achieved as

equalities for some equilibrium distributions.

In this context, it is worthwhile to note that the equilibrium characterization of the �rst and second

moments could alternatively be obtained by using the law of total expectation, and its second moment

equivalents, the law of total variance and covariance. These �laws�, insofar as they relate marginal prob-

abilities to conditional probabilities, naturally appeared in the equilibrium characterization of the best

response function which introduce the conditional expectation over the state and the average action, and

hence the conditional probabilities. For higher-order moments, an elegant generalization of this relationship

exists, see Brillinger (1969), sometimes referred to as law of total cumulance, and as such would deliver

further restrictions on higher-order moments if we were to consider equilibrium distributions beyond the

normal distribution.

Beyond Symmetry The above characterization of the mean and variance of the equilibrium distribution

pertained to the symmetric equilibrium distribution. But actually, the characterization remains entirely
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valid for all equilibrium distributions if we focus on the average action rather than the individual action. In

addition, the result about the mean of the individual action remains true for all equilibrium distributions,

and not only the symmetric equilibrium distribution. This later result suggests that the asymmetric

equilibria only o¤er a richer set of possible second moments distributions across agents. Interestingly, in

the �nite agent environment, the asymmetry in the second moments does not lead to joint distributions over

aggregates outcomes and state which cannot be obtain already with symmetric equilibrium distributions.

6 Prior Information

The description of the Bayes correlated equilibria displayed a rich set of possible equilibrium outcomes.

In particular, the variance of the individual and the average action had a wide range across equilibria.

The analysis of the Bayes Nash equilibrium shed light on the source of the variation. If the noisy signals

of each agent contained little information about the state of the world, then the action of each agent did

not vary much in the realization of the signal. On the other hand, with precise information about the

true state of the world, the best response of each agent would vary substantially with the realized signal

and hence would display a larger variance in equilibrium. In the spirit of the robust analysis, we began

without any assumptions on the nature of the private information that the agents may have when they

make their decisions. But in many circumstances, there may be prior knowledge about the nature of the

private information of the agents. In particular, we may able to impose a lower bound on the private

information that the agents may have. We can then ask how the prediction of the equilibrium behavior

can be re�ned in the presence of prior restrictions on the private information of the agents.

Given the su¢ ciency of a bivariate information structure to support the entire equilibrium set, we

present the lower bounds on the private information here in terms of a private and a public information

source, each one given in terms of a normally distributed noisy signal. We maintain the notation of Section

4 and denote the private signal that each agent i observes by xi = � + "i, and the public signal that all

agents observe by y = � + ", as de�ned earlier in (11) and (12), respectively.

The exogenous data on the payo¤ and belief environment of the game is now given by the multivariate

normal distribution of the triple (�; xi; y). The information contained in the private signal xi and the public

signal y represent the lower bound on the private information of the agents. Correspondingly, we can de�ne

a Bayes correlated equilibrium with given private information as a joint distribution over the exogenous

data (�; x; y) and the endogenous data (a;A). We use the symmetry and the relationship between the

individual action and the average action to obtain a compact representation of the variance-covariance
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matrix ��;x;y;a;A:2666666664

�2� �2� �2� �a��a�� �a��a��

�2� �2� + �
2
x �2� �a�x�ax + �a���a� �a���a�

�2� �2� �2� + �
2
y �a�y�ay + �a���a� �a�y�ay + �a���a�

�a��a�� �a�x�ax + �a���a� �a�y�ay + �a���a� �2a �a�
2
a

�a��a�� �a���a� �a�y�ay + �a���a� �a�
2
a �a�

2
a

3777777775
: (39)

The newly appearing correlation coe¢ cients �ax and �ay represent the correlation between the individual

action and the random terms, "i and ", in the private and public signals, xi and y, respectively. We can

analyze the correlated equilibrium conditions as before. The best response function must satisfy:

a = rE [A ja; x; y ] + sE [� ja; x; y ] + u; 8a; x; y: (40)

In contrast to the analysis of the Bayes correlated equilibrium without prior information, the recommended

action now has to form a best response conditional on the recommendation a and the realization of the

private and public signals, xi and y, respectively. In particular, the conditional expectation induced jointly

by (a; x; y) has to vary at a speci�c rate with the realization of a; x; y so as to maintain the best response

property (40) for all realizations of a; x; y. The complete characterization of the set of Bayes correlated

equilibria with prior information requires the determination of a larger set of second moments, namely�
�a; �a; �ax; �ay; �a�

�
than in the earlier analysis. As we gather the equilibrium restrictions from (40), we

�nd that we also have a corresponding increase in the number of equality constraints on the equilibrium

conditions, from one to three. Indeed, we can determine
�
�ay; �ax; �a

�
uniquely:

�a =
��s�a�
1� �ar

; �ax =
��
�
(1� �ar)� �2a� (1� r)

�
�x�a�

; �ay =
��

�y�a�

�
1� �ar
1� r � �2a�

�
. (41)

Notably, the characterization of the standard deviation of the individual action has not changed relative

to the initial analysis. The novel restrictions on the correlation coe¢ cients �ax and �ay only involve r, but

the informational externality s does not appear.

Consequently, the relation between the correlation coe¢ cients �ax and �ay can be written, using the

conditions (41) as �ax�x = �ay�y (1� r), where the factor 1� r corrects for the fact that the public signal
receives a di¤erent weight than the private signal due to the interaction structure.

The additional inequality restrictions arise as the variance-covariance matrix of the multivariate normal

distribution has to form a positive semide�nite matrix, or:

�4a�
2
y�
2
x�
2
�

�
1� �a � �2ax

� �
�a � �2a� � �2ay

�
� 0.
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Thus the additional inequalities which completely describe the set of correlated equilibria are given by:

1� �a � �2ax � 0; (42)

�a � �2a� � �2ay � 0: (43)

We encountered the above inequalities before, see Proposition 5.3, but without the additional entries of

�ax and �ay. The �rst inequality re�ects the equilibrium restriction between �a and �ax. As �ax represents

the correlation between the individual action a and the idiosyncratic signal x, it imposes an upper bound

on the correlation coe¢ cient �a among individual actions. If each of the individual actions are highly

correlated with their private signal, then the correlation of the individual actions cannot be too high in

equilibrium. Conversely, the second inequality states that either the correlation between individual action

and public signal, or individual action and state of the world naturally force an increase in the correlation

across individual actions. The correlation coe¢ cients �a� and �ay therefore impose a lower bound on the

correlation coe¢ cient �a.

The equilibrium restrictions imposed by the private and public signal are separable. We can hence

combine (41) with (42), or with (43), respectively, to analyze how the private or the public signal restrict

the set of Bayes correlated equilibria. Given that the mean action is constant across the Bayes correlated

equilibria and that the variance �2a of the action is determined by the correlation coe¢ cients (�a; �a�), see

(41), we can describe the set of Bayes correlated equilibria exclusively in terms of correlation coe¢ cients

(�a; �a�).

We de�ne the set of all Bayes correlated equilibria which are consistent with prior private information

�x as the private equilibrium set Cx (�x; r):

Cx (�x; r) , f(�a; �a�) 2 [0; 1]� [�1; 1] j(�a; �a�; �ax) satisfy (19), (41), (42)g .

Similarly, we de�ne the set of all Bayes correlated equilibria which are consistent with prior public infor-

mation �y as the public equilibrium set Cy (�y; r):

Cy (�y; r) ,
�
(�a; �a�) 2 [0; 1]� [�1; 1]

����a; �a�; �ay� satisfy (19), (41), (43)	 .
The intersection of the private and the public equilibrium sets de�nes the Bayes correlated equilibria

consistent with the prior information (�x; �y):

C ((�x; �y) ; r) , Cx (�x; r) \ Cy (�y; r) � [0; 1]� [�1; 1] .

The shape of the Bayes correlated equilibrium set is illustrated in Figure 4. Each forward bending curve

describes the set of correlation coe¢ cients (�a; �a�) which solve (41) and (42) as an equality, given a lower
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Figure 4: Set of BCE with given public and private information

bound on the precision �x of the private information. Similarly, each backward bending curve traces out

the set of correlation coe¢ cients (�a; �a�) which solve (41) and (43) as an equality, given a lower bound on

the precision �y of the public information. A lens formed by the intersection of a forward and a backward

bending curve represents the Bayes correlated equilibria consistent with a lower bound on the precision of

the private and the public signal.

As suggested by the behavior of the equilibrium set, any additional correlation device cannot undo the

given private and public information, but rather provides additional correlation opportunities over and

above those contained in (�x; �y).

Proposition 8 (Prior Information)

For all r 2 (�1; 1) :

1. The equilibrium set C ((�x; �y) ; r) is decreasing in (�x; �y) ;

2. The lowest correlation coe¢ cient (�a�; �) 2 C ((�x; �y) ; r), is increasing in (�x; �y);

3. The lowest correlation coe¢ cient (�a; �) 2 C ((�x; �y) ; r), is increasing in (�x; �y).

Thus, as the precision of the prior information increases, the set of Bayes correlated equilibria shrinks.

As the precision of the signal increases, the equilibrium set, as represented by the correlation coe¢ cients

becomes smaller. In particular, the lowest possible correlation coe¢ cients of �a and �a� that may emerge

in any Bayes correlated equilibrium increase as the given precision of private information increases.

As the preceding discussion suggests, we can relate the set of Bayes correlated equilibria under the prior

information with a corresponding set of Bayes Nash equilibria. If the correlated equilibrium contains no
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additional information in the conditioning through the recommended action a over and above the private

and public signal, x and y, then the correlated equilibrium is simply equal to the Bayes Nash equilibrium

with the speci�c information structure (�x; �y). This suggests that we identify the unique Bayes Nash

equilibrium with information structure (�x; �y) and interaction term r in terms of the correlation coe¢ cients

(�a; �a�) as B ((�x; �y) ; r) � [0; 1]� [�1; 1].

Corollary 3 (BCE and BNE with Prior Information)

For all (�x; �y), we have:

C ((�x; �y) ; r) =
[

� 0x��x;� 0y��y

B
�
(�x; �y)

0 ; r
�
.

In Section 5.4, we extended the analysis of the Bayes correlated equilibrium from an environment with

pure common values to an environment with interdependent values. Similarly, we could extend the analysis

of the prior information, pursued here in some detail for the environment with pure common values to the

one with interdependent values.

7 Information Sharing and Information Structure

We are often interested in analyzing what is the best information structure in a strategic setting, either for

the players in the game or for an outside observer who cares about choices in the game. For example, recent

work by Rayo and Segal (2010) and Kamenica and Gentzkow (2011) have considered this problem in the

context of single person games, i.e., decision problems; Bergemann and Pesendorfer (2007) characterizes the

revenue-maximizing information structure in an auction with many bidders; and a large literature reviewed

below has examined the incentives of competing �rms to share cost and demand information. Directly

maximizing over all possible information structures, especially with many players, sounds intractable. Our

compact representation of the Bayes correlated equilibria allows us to assess the private and/or social

welfare across the entire set of possible information structures (and induced equilibrium distributions). In

this section, we show how results developed in earlier sections allows us to easily do this and deliver novel

economic insights. In particular, we identify settings where the information structure that turns out to be

optimal was excluded from the parametric domain of information structures analyzed in earlier work. In

the context of the application of information sharing among �rms, we show that it is optimal to have �rms

transmit all information that they have, but have that information observed with noise by other �rms.

The problem of information sharing among �rms was pioneered in work by Novshek and Sonnenschein

(1982), Clarke (1983) and Vives (1984), who examined to what extent competing �rms have an incentive

to share information in an uncertain environment. In this strand of literature, which is surveyed in Vives
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(1990) and embedded in a very general framework by Raith (1996), each �rm receives a private signal

about a source of uncertainty, say a demand or cost shock. The central question then is under which

conditions the �rms have an incentive to commit ex-ante to an agreement to share information in some

form. A striking result by Clarke (1983) was the �nding that in a Cournot oligopoly with uncertainty

about a common parameter of demand, the �rms will never �nd it optimally to share information. The

complete lack of information sharing, independent of the precision of the private signal and the number

of competing �rms, is surprising. After all, it would be socially optimal to reduce the uncertainty about

demand and a reasonable conjecture would be that the �rms could at least partially appropriate the social

gains of information. The result of Clarke (1983) appeared in the context of a linear inverse demand with

normally distributed uncertainty, and a constant marginal cost. In subsequent work, the strong result

of zero information sharing was shown to rely on constant marginal cost, and with a quadratic cost of

production, it was shown that either zero or complete information sharing can be optimal, where the

information sharing result appears when the cost of production is su¢ ciently convex for each �rm, and

hence information becomes more valuable, see Kirby (1988) and Raith (1996).

In the above cited work, the individual �rms receive a private, idiosyncratic and noisy signal xi about

the state of demand �. Each �rm can commit to transmit the information, noisy or noiseless, to an inter-

mediary, such as a trade association, which aggregates the information. The intermediary then discloses

the aggregate information to the �rms. Importantly, while the literature did consider the possibility of

noisy or noiseless transmission of the private information, it a priori restricted the disclosure policy to be

noiseless, which implicitly restrict the information policy to disclose the same, common signal to all the

�rms. An information policy is then a pair a information transmission and information disclosure poli-

cies. The present analysis of the Bayes correlated equilibrium allows us to substantially modify the earlier

insights. Interestingly, Proposition 9 establishes that it is with substantial loss in generality to restrict

attention to a common disclosure policy.

We described the payo¤s of the quantity setting �rms with uncertainty about demand in Example

2, where s > 0 represents the positive informational e¤ect of a higher state � of demand and r < 0

represents the fact the �rms are producing (homogeneous) substitutes. An increase in the absolute value

of the (negative) interaction parameter r then represents an increase in the slope the demand curve. We

�rst ask what information structure maximizes �rms�pro�ts, by �nding the �rm optimal Bayes correlated

equilibrium. We will then consider how to attain that information structure through information sharing.

Correlation of output with demand (�a�) increases pro�ts but correlation between �rms�output (�a)

decreases pro�t. Thus it is always optimal to set �a� as high as possible consistent with BCE, and thus

�a� =
p
�a. If the demand curve is su¢ ciently steep, it is optimal to have complete information but
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otherwise there is an interior solution.

Proposition 9 (Information Sharing and Pro�t)

1. If r � �1, then the �rm optimal BCE is achieved at �a = �a� = 1.

2. If r < �1, then the �rm optimal BCE occurs with less than perfect correlation across actions:

��a = �
1

r
< 1 and ��a� =

p
��a < 1. (44)

We can now translate the structure of the pro�t maximizing Bayes correlated equilibrium into the

corresponding Bayes Nash equilibrium and its associated information policy and information structure.

Suppose that each of the continuum of �rms receives only a private signal xi with variance �2�. We

characterized in Section 6 the set of Bayes correlated equilibria consistent with prior private information

of a certain precision. If there is one corresponding to the �rm optimal BCE, then we can identify an

information sharing technology that will attain the �rst best. If not, we can identify the �rm second best

BCE and how that can be achieved.

If all information is publicly shared, then we reach the complete information equilibrium with �a =

�a� = 1. The �rst part of Proposition implies that full public disclosure is the optimal information policy if

the slope of the demand curve is su¢ ciently low. But the second part of the Proposition indicates that the

optimal disclosure policy may require noisy and idiosyncratic disclosure of the transmitted information,

rather than noiseless disclosure as previously analyzed in the literature. In fact, if slope of the demand

curve is su¢ ciently large, then the pro�t maximizing Bayes correlated equilibrium arises under the cor-

relation coe¢ cient of the actions, �a = �2a� = �1
r < 1. As we learned from Proposition 6, these are the

correlation coe¢ cients which maximizes the variance of the individual action, i.e. the individual supply

decisions. Now if private signals were su¢ ciently accurate, �a would already be too high even without any

information transmission. But if private signals were not too accurate, then it will be possible to attain

the �rm optimal BCE. From Proposition 5, we know that �a = �2a� is at the boundary of the set of Bayes

correlated equilibrium and that the boundary can only be reached with idiosyncratic information, i.e. in-

formation which is conditionally on state � independent across agents. Thus the optimal disclosure policy

requires noisy and idiosyncratic disclosure of the transmitted information, rather than noiseless disclosure

as previously assumed in the literature.
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Proposition 10 (Noisy and Idiosyncratic Disclosure Policy )

1. If r � �1, then full disclosure is �rm optimal.

2. If r < �1 and

(a) if �1
r > �2�=

�
�2x + �

2
�

�
, then the �rm optimal disclosure policy is to have each �rm observe a

noisy signal of the average of their private signals (which equals the true state).

(b) if �1
r � �2�=

�
�2x + �

2
�

�
, then no disclosure is �rm optimal.

The sharing of the private information impacts the pro�t of the �rms through two channels. First,

shared information about level of demand improves the supply decision of the �rms, and unambiguously

increases the pro�ts. Second, shared information increases the correlation in the strategies of the actions.

In an environment with strategic substitutes, this second aspect is undesirable from the point of view

of each individual �rm. Now, the literature only considered noiseless disclosure. In the context of our

analysis, this represents a public signal; after all a noiseless disclosure means that all the �rms receive the

same information. Thus, the choice of the optimal disclosure regime can be interpreted as the choice of

the precision �y of the public signal, and hence a point along a level curve for a given �x, see Figure 4.

But now we realize that the disclosure in form of a public signal requires a particular trade-o¤ between

the correlation coe¢ cient �a across actions and the correlation �a� of action and state. In particular,

an increase in the correlation coe¢ cient �a� is achieved only at the cost of substantially increasing the

undesirable correlation across actions. This trade-o¤, necessitated by the public information disclosure,

meant that the optimal disclosure is either to not disclose any information or disclose all information. The

present analysis suggests a more subtle result which is to disclose some information, so that the private

information of all the �rms is improved, but to do so in way that does not increase the correlation across

actions more than necessary. This is achieved by an idiosyncratic, that is private and noisy disclosure

policy, which necessarily does not reveal all the private information of the agents, as they would otherwise

achieve complete correlation in their action.

The very last result of Proposition 10 rea¢ rms the earlier result of Clarke (1983), which presented

conditions under which zero information transmission was optimal. The necessary and su¢ cient condition

for zero information transmission:

��a = �
1

r
< �2�=

�
�2x + �

2
�

�
; (45)

is best understood in light of the role of the prior information. We established in Proposition 8 that the

lowest correlation coe¢ cient is increasing in the precision of the prior information �x and �y. Now, if the

precision of the public signal is zero or �y = 0, then the correlation coe¢ cient induced by the private signal
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with precision �x = ��2x is given by the right hand side of (45). In other words, if the pro�t maximizing

level of correlation �a, is below the level already induced by the prior information �x, then, but only then,

do the �rms prefer zero information transmission and disclosure. We should mention that in contrast to

the literature, we present and establish the above results, in line with rest of the present analysis, for

the environment with a continuum of �rms. However, the results carry over to the environment with a

�nite number of �rms as the only relevant determinant is the structure of the best response as discussed

in Section 3. The only modi�cation that arises in the analysis with �nite number of �rms is the extent of

the correlation �a� with respect to the state �. If there are only a �nite number of �rms, and hence only

a �nite number of signals about the true state of the world, then even complete sharing of the available

information will not allow the �rms to achieve �a� = 1, even though their actions will be completely

correlated or �a = 1. The �nite information then acts as a constraint on the amount of information shared,

but does not a¤ect the preference for or against information sharing.

8 Robust Identi�cation

So far, our analysis has been concerned with the predictive implications of Bayes correlated and Bayes

Nash equilibrium. In particular, we have been asking what are the restrictions imposed by the structural

model on the observed endogenous statistics about the actions of the agents. In this section we pursue

the converse question, namely the issue of identi�cation. We ask what restrictions can be imposed on

the parameters of interest, the structural parameters of the game (r; s; u), by the observed variables? We

are particularly interested in how the identi�cation of the structural parameters (r; s; u) is in�uenced by

the solution concept, and hence the speci�cation of the private information of the agents as known to the

analyst.

Now, identi�cation depends critically on what types of data are available. Here, we consider the

possibility of identi�cation with individual data and assume that the econometrician observes the realized

individual actions ai and the realized state �.3 In other words, the econometrician learns the �rst and

second moment of the joint equilibrium distribution over actions and state: (�a; �a; �a; ��; �a�). We begin

the identi�cation analysis under the hypothesis of Bayes Nash equilibrium and a given information structure

(�x; �y) of the agents.

3 In Bergemann and Morris (2011b), we also analyze the robust identi�cation with aggregate data. As a leading example we

consider the canonical problem of demand and supply identi�cation. The identi�cation in the linear demand and supply model

relies on the aggregate data, namely market quantity and market price. In contrast to the received work on identi�cation in

the demand and supply model we allow for incomplete information by the market participants about the cost and demand

factors.
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For a given information structure (�x; �y) and observed moments of the Bayes Nash equilibrium distri-

bution, (�a; �a; �a; ��; �a�), we can identify the weights on the private signal and the public signal, �
�
x and

��y, directly from the variance of the (aggregate) action and the covariance of the (aggregate) action with

the state, see (18). Now, we can use the property of the equilibrium strategy, namely that the ratio of the

weights is exactly equal the precision of the private and public signal, de�ated by their (strategic) weight,

see (15):
��x
��y
=
�x
�y
(1� r) :

Thus given the knowledge of the information structure, we can infer the sign of the strategic interaction

term r from the ratio of the linear weights, ��x and �
�
y. In particular, we can determine how much of

the variance in the action, individual or aggregate, is attributable to the private and the public signal

respectively. Given the known strength of the signals, the covariance of the action and the state then

allow us to identify the slope of the equilibrium response. We thus �nd that the parameters of equilibrium

response and the sign of the interaction parameters are identi�ed for every known information structure

of the game.

Proposition 11 (Point Identi�cation in BNE)

The Bayes Nash equilibrium outcomes with information structure (�x; �y),

1. identi�es the informational externality s;

2. identi�es the strategic interaction r if 0 < �x; �y <1; and

3. identi�es the equilibrium slope and equilibrium intercept, the ratios s= (1� r) and u= (1� r).

We contrast the point identi�cation for any speci�c information structure with the set identi�cation

in the Bayes correlated equilibrium. We do not make a speci�c hypothesis regarding the information

structure of the agents, and ask what we learn from the data in the absence of speci�c knowledge of the

information structure. Now, from the observation of the covariance �a��a�� and the observation of the

aggregate variance �a�
2
a, we can identify the values of �a� and �a. The equilibrium conditions which tie

the data to the structural parameters are given by the following conditions on mean and variance:

�a =
u+ ��s

1� r ; �a =
��s�a�
1� �ar

: (46)

We thus have two restrictions to identify the three unknown structural parameters (r; s; u). We can solve

for two of the unknowns in terms of the remaining unknowns. In particular, when we solve for (s; u) in
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terms of the remaining unknown r, we obtain expressions for the equilibrium intercept and the equilibrium

slope in terms of the moments and the remaining unknown structural parameters:

u

1� r = �a �
�a�� (1� �ar)
�� (1� r) �a�

;
s

1� r =
�a

�a���

1� �ar
1� r : (47)

Now, except for the case of �a = 1, in which the actions of the agents are perfectly correlated, we �nd that

the ratio on the left hand side is not uniquely determined. As the strategic interaction parameter r can

vary, or r 2 (�1; 1), it follows that we can only partially identify the above ratios, namely,

u

1� r 2

8<:
�
�1; �a �

���a�a
�a���

�
if ��

�a�
> 0;�

�a �
���a�a
�a���

;1
�

if ��
�a�

< 0;
(48)

and the above ratio is point-identi�ed if �� = 0. Similarly,

s

1� r 2

8<:
�
�a�a
�a���

;1
�

if �a� > 0;�
�1; �a�a�a���

�
if �a� < 0:

(49)

which describes the respective sets into which each ratio can be identi�ed.

Proposition 12 (Set Identi�cation in BCE)

The Bayes correlated equilibrium outcomes:

1. identify the sign of the informational externality s;

2. do not identify the sign of the strategic interaction r;

3. identify a set of equilibrium slopes, given by (49), if �a < 1.

Thus, in comparison to the Bayes Nash equilibrium, the Bayes correlated equilibrium, weakens the

possibility of identi�cation in two respects. First, we fail to identify the sign of the strategic interaction

r; second, we can identify only a set of possible interaction ratios. Given the sharp di¤erences in the

identi�cation under Bayes Nash and Bayes correlated equilibrium, we now try to provide some intuition as

to the source of the contrasting results. In the identi�cation under the hypothesis of the Bayes correlated

equilibrium, the econometrician observes and uses the same data as under the Bayes Nash equilibrium, but

does not know anymore how precise or noisy the information of the agents is. Thus, the econometrician

now face an attribution problem as the observed covariance between the action and the state could be large

either because the individual preferences are very responsive to the state, i.e. s is large, or because the

agents have very precise information about the state and hence respond strongly to the precise information,

even though they are only moderately sensitive to the state, i.e. s is low.
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This attribution problem, which is present when the agent�s information structure is not known, is

often referred to as �attenuation bias�in the context of individual decision making. The basic question is

how much we can learn from the observed data when the analyst cannot be certain about the information

that the agent has when he chooses his action. In the single agent context, the noisy signal x that

the agent receives about the state of world � leads to noise in the predictor variable. The noise in the

predictor variable introduces a bias, the �attenuation bias�. Yet in the single agent model, the sign

of the parameter of interest, the informational externality s remains correctly identi�ed, even though the

information externality is set-identi�ed rather than point-identi�ed. Importantly, as we extend the analysis

to strategic interaction, the �attenuation bias� critically a¤ects the ability to identify the nature of the

strategic interaction. In particular, the set-identi�ed information externality �covers�the size of strategic

externality to the extent that we may not even identify the sign of the strategic interaction, i.e. whether

the agents are playing a game of strategic substitutes or complements.

Given the lack of identi�cation in the absence of knowledge regarding the information structure, it

is natural to ask whether prior information can improve the identi�cation of the structural parameters,

just as prior information could improve the equilibrium prediction. In Section 6, we showed that the

knowledge of the information structure (�x; �y) systematically restricts the equilibrium predictions of the

coe¢ cients (�a; �a�). Now, as we consider the identi�cation of the structural parameters, we might use

the knowledge of the information structure (�x; �y) together with the data to restrict the set of structural

parameters consistent with the data and the prior information (�x; �y). In the working paper, Bergemann

and Morris (2011b), we formally analyze how the set of possible equilibrium coe¢ cients (�a; �a�) depends

on the prior information (�x; �y) and the interaction parameter r. This, then allows us ask which values of

the interaction parameter r are consistent with the observed data, in particular the equilibrium correlation

coe¢ cients (�a; �a�). We show that the set-identi�cation improves with an increase in the precision of the

prior information and converges to point-identi�cation as the precision of the prior information becomes

arbitrarily large.

We should emphasize that the current payo¤ environment describes a common value environment, i.e.

the state of the world is the same for all the agents. In contrast, much of the small, but growing literature on

identi�cation in games with incomplete information is concerned with a private value environment, in which

the private information of agent i only a¤ects the utility of agent i, as for example in Sweeting (2009), Bajari,

Hong, Krainer, and Nekipelov (2010) or Paula and Tang (2011). A second important distinction is that in

the above mentioned papers, the identi�cation is about some partial aspect of the utility functions and the

distribution of the (idiosyncratic) states of the world, whereas the present identi�cation seeks to identify

the entire utility function but assumes that the states of the world are observed by the econometrician.
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An interesting extension in the present setting would be to limit the identi�cation to a certain subset of

parameters, say the interaction term r, but then identify the distribution of the states of the world rather

than assuming the observability of the states. For example, Bajari, Hong, Krainer, and Nekipelov (2010)

estimate the peer e¤ect in the recommendation of stocks among stock market analysts in a private value

environment. There, the observables are the recommendations of the stock analysts and analyst speci�c

information about the relationship of the analyst to the recommended �rm. The present analysis suggest

that a similar exercises could be pursued in a common value environment, much like a beauty contest.

A natural extension here would be use of the actual performance of the recommended stocks to in fact

identify the information structure of the stock analysts.

Finally, in many of the recent contributions the assumption of conditional independence of the private

information, relative to the public observables, is maintained. For example, in Paula and Tang (2011), the

conditional independence assumption is used to characterize the joint action equilibrium distribution in

terms of the marginal probabilities of every action. Paula and Tang (2011) uses the idea that if private

signals are i.i.d. across individuals, then the players actions must be independent in a single equilibrium,

�but correlated when there are multiple equilibria�to provide a test for multiple equilibria. In contrast, in

our model, we have uniqueness of the Bayes Nash equilibrium, but the unobserved information structure

of the agents could lead to correlation, which would then be interpreted in the above test as evidence

of multiple equilibria, but could simply be due to the unobserved correlation rather than multiplicity of

equilibria.

9 Conclusion

It was the objective of this paper to derive robust equilibrium predictions for a large class of games. We

began with an epistemic result that related the class of Bayes Nash equilibria with the class of Bayes

correlated equilibria. The equivalence results allowed us to focus on the characterization of the Bayes

correlated equilibria which proceeded without reference to a speci�c information structure held by the

agents. Within a class of quadratic payo¤ environments, we gave a full characterization of the equilibria

in terms of moment restrictions on the equilibrium distributions. The robust analysis allowed us to make

equilibrium predictions independent of the information structure, the nature of the private information

that the agents might have access to.

We then reversed the point of view and considered the problem of identi�cation rather than the problem

of prediction. We asked what are the implication of a robust point of view for identi�cation, namely the

ability to infer the unobservable structural parameters of the game from the observable data. Here we

showed that in the presence of robustness concerns, the ability to identify the underlying parameters of the
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game is weakened in important ways, yet does not completely eliminate the possibility of identi�cation. The

current perspective, namely to analyze the set of correlated equilibria rather than the Bayes Nash equilibria

under a speci�c information structure, is potentially useful in the emerging econometric analysis of games

of incomplete information. There the identi�cation question is typically pursued for a given information

structure, say independently distributed payo¤ types, and it is of interest to know how sensitive the

identi�cation results are to the structure of the private information. In this context, the robust identi�cation

might be particularly important as we rarely observe data about the nature of the information structure

directly.

In the present analysis, we use the structure of the quadratic payo¤s, in particular the linear best

response property to derive the �rst and second moments of the correlated equilibrium set. A natural

next step would be to bring the present analysis to Bayesian games with discontinuous payo¤s. For

example, it would be of considerable interest to ask how the allocations and the revenues di¤er across

belief environments and auction formats. In ongoing work Bergeman, Brooks, and Morris (2011) consider

a private value environment in �rst price auction format. Abraham, Athey, Babaio¤, and Grubb (2011)

trace the implications of di¤erent information structures in a common value environment in a second price

auction format.

Finally, we could use the equilibrium predictions to o¤er robust versions of policy and welfare analysis.

In many incomplete information environments, a second best or otherwise welfare improving policy typically

relies on and is sensitive to the speci�cation of the belief environment. With the current analysis, we might

be able to recommend robust taxation or information disclosure policies which are welfare improving across

a wide range of belief environments. In particular, we might ask how the nature of the policy depends on

the prior information of the policy maker about the belief environment of the agents.
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10 Appendix

Proof of Proposition 1. Suppose that � is a BCE of (u;  ). Let T = R, let � : � ! �(T ) be set

equal to the conditional probability � : � ! �(R) and let � be the "truth-telling" strategy with type a

choosing action a with probability 1. Now

E[ ��(�ja)u
�
a0; g � �; �

�
= Eb�(�ja)u �a0; h; ��

by construction and the BCE equilibrium conditions imply the BNE equilibrium conditions.

Suppose that � is a BNE of ((u;  ) ; (T; �)) and so

E[ ��(�jt)u (a; g � �; �) � E[ ��(�jt)u
�
a0; g � �; �

�
(50)

for all t 2 T , a in the support of � (� jt) and a0 2 R. Now E[ ��(�jt)u (a
0; g � �; �) is a function of t. The

expectation of this expectation conditional on a being drawn under strategy � is

E\ ����(�ja)u
�
a0; g � �; �

�
and thus taking the expectation of both sides of (50) establishes that  � � � � is a BCE.

Proof of Proposition 4. The correlation coe¢ cients �a and �a� of the Bayes Nash equilibrium can

be expressed in terms of the equilibrium coe¢ cients �x and �y and variances �2�; �
2
x and �

2
y as:

�a� = �
�� (�x + �y)q

�2x�
2
x + �

2
y�
2
y + �

2
� (�x + �y)

2
; (51)

and

�a =
�2y�

2
y + �

2
� (�x + �y)

2

�2x�
2
x + �

2
y�
2
y + �

2
� (�x + �y)

2 . (52)

It now follows immediately from (51) - (52), and the formulae of ��x and �
�
y, see (14), that we can recover

the corresponding information structure (�x; �y) of the Bayes Nash equilibrium as

�x =

�
(1� �ar)� �2a� (1� r)

�
��p

1� �a j�a�j
;

and

�y =

�
(1� �ar)� �2a� (1� r)

�
��q

�a � �2a� j�a�j (1� r)
;

which completes the proof.

Proof of Proposition 6. The variance �2a is given by (30), and inserting �a = �2a� we obtain

��s�a�=
�
1� �2a�r

�
, which is maximized at j�a�j =

p
�1=r, or �a = �1=r.
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Proof of Proposition 7. (1.) The volatility �2A, which is given by:

�a�
2
a = �a

�
��s�a�
1� �ar

�2
;

is increasing in the correlation coe¢ cients �a and j�a�j. The partial derivatives with respect to �a and j�a�j
are, respectively:

�2��
2
a�s

2

(1� �ar)3
(1 + �ar) ,

where the later is positive if and only if

(1 + �ar) � 0, r � � 1
�a
,

and
2�a j�a�j�2�s2

(1� �ar)2
> 0.

(2.) The dispersion, using (33), is given by:

(1� �a)�2a = (1� �a)
�
���a�s

1� �ar

�2
,

and it follows that the dispersion is increasing in j�a�j. The dispersion is monotone decreasing in �a if it is
game of strategic substitutes, and not necessarily monotone if it is a game of strategic complements. The

partial derivative with respect to �a is given by

��
2
��
2
a�s

2 (1� r � (1� �a) r)
(1� �ar)3

.

However by Proposition 5, it follows that �2a� � �a, and we therefore obtain the maximal dispersion at

�2a� = �a. Consequently, we have

(1� �a)�2a = (1� �a) �a
�

��s

1� �ar

�2
,

and the dispersion reaches an interior maximum at �a = 1= (2� r) 2 (0; 1), irrespective of the nature of
the game.

Proof of Proposition 8. We form the conditional expectation using (39) and the equilibrium

conditions for the Bayes correlated equilibrium are then given by (40) and the solution to these equations

is given by (41).

(1.) The equilibrium set is described as the set which satis�es the inequalities (42) and (43), where the

correlation coe¢ cients �2ax and �
2
ay appear separately. By determination of (41), the square of the corre-

lation coe¢ cient is strictly decreasing in �x and �y, which directly implies that the respective inequalities

become less restrictive, and hence the equilibrium set increases as either �x or �y increases.
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(2.) The lowest value of the correlation coe¢ cient �a� is achieved when the inequalities (42) and (43)

are met as equalities. It follows that the minimum is reached at the exterior of the equilibrium set. The

equilibrium set is increasing in � by the previous argument in (1), and hence the resulting strict inequality.

(3.) The lowest value of the correlation coe¢ cient �a is achieved when the inequality (43) is met as an

equality. It follows that the minimum is reached at the exterior of the equilibrium set. The equilibrium

set is increasing in � by the previous argument in (1), and hence the resulting strict inequality.

Proof of Proposition 9. The ex post pro�t of the �rm is given by:

(s� + rA) a+ ua� 1
2
a2;

and the interim expected pro�t is the above expectation and consists of terms that depend on the means

�a and �� plus

�2a

�
s�a�

��
�a
+ r�a �

1

2

�
:

Using the restriction on the variance of the individual action:

�a =
��s�a�
1� r�a

;

we get
�2�s

2�2a�
2 (1� r�a)2

(53)

The remaining restriction of the Bayes correlated equilibrium, see Proposition 5, is that �2a� � �a, and

hence (53) can be rewritten as

�2�s
2 �a

2 (1� r�a)2
;

i.e., it is always optimal to set the correlation coe¢ cient �a� so that �
2
a� = �a. The relevant �rst order

condition w.r.t. to �a is given by:

�2�s
2 (1 + �ar)

(1� �ar)3
= 0.

It follows that if r > �1, then there is no interior solution and the pro�t maximizing BCE is given by
�a = �a� = 1. On the other hand, if r < �1, then the maximum is at an interior value of �a :

�a = �
1

r
< 1.

The validity of the second order conditions can be veri�ed easily.

Proof of Proposition 10. By Proposition 9, if r � �1, then the pro�t maximizing equilibrium
allocation requires �a� = �a = 1. Now, the Bayes Nash equilibrium associated with this correlation
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structure requires that the agents have complete information about �, but clearly with a large number

of �rms, here a continuum, this can be achieved by completely disclosing the private information of each

individual �rm (provided that �2x <1).
On the other hand, if r < �1, then the interior solution requires that �a < 1 and �2a� = �a. By

Proposition 2, we know that such a correlation structure can be achieved in the Bayes Nash equilibrium if

and only if the agents make decisions on the basis of a private signal only, i.e. the variance of the public

signal is required to be in�nite. This in turn can be achieved if each agent receives information about the

true state with an idiosyncratic noise, and hence with a private signal, which necessitates idiosyncratic and

noisy information disclosure. Finally, given the initial private information of the agents, represented by �2x,

we only need to complement the initial information if it does not already achieve or exceed �a = �1=r. From
(17), we �nd that the correlation coe¢ cient in the Bayes Nash equilibrium without additional information

beyond �2x is given by �a = �2�=
�
�2� + �

2
x

�
, which establishes the critical value for information sharing.

Proof of Proposition 11. (1.) Given the knowledge of �2�; �
2
x and �

2
y and the information about the

covariates, we can recover the value of the linear coe¢ cients �2x and �
2
y from variance-covariance matrix

(16), say:

�2x =
�2a � �2A
�2x

; �2y =
�2A
�
1� �2A�

�
�2y

: (54)

The value of covariate �A��A��, given by �
2
� (�x + �y) directly identi�es the sign of the externality s, given

the composition of the equilibrium coe¢ cients ��x and �
�
y of the Bayes Nash equilibrium, see (14).

(2.) We have from the description of the Bayes Nash equilibrium in Proposition 2 that in every Bayes-

Nash equilibrium, ��x and �
�
y satisfy the linear relationship:

��y = ��x
�2x
�2y

1

1� r :

Now, if 0 < �2x; �
2
y <1, then we can identify r.

(3.) Given the identi�cation of ��x and �
�
y, we can identify the ratios u= (1� r) and s= (1� r). We

recover the mean action �a and the coe¢ cients of the linear strategy, i.e. �
�
x and �

�
y, from the equilibrium

data. From the equilibrium conditions, see (14), we have the values of �a; �x and �y. This allows us to

solve for r; s; u as a function of �a; �x; �y:

u = �
�2x�

2
x�� � �x�a�2x � �x�y�2y�� + �x�y��2x�2y��

�y�2y
;

r =
�y�

2
y � �x�2x
�y�2y

; (55)

s =
�2x�

2
x � �x�y�2y + �x�y��2x�2y

�y�2y
:
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If we form the ratios u= (1� r) and s= (1� r) with the expressions on the rhs of (55), then we obtain
expressions which do only depend on the observable data, and are hence point identi�ed, and in particular

u

1� r = �
��a�2x + �x�2x�� � �y�2y�� + ��2x�y�2y��

�2x
; (56)

and
s

1� r =
�x�

2
x � �y�2y + ��y�2x�2y

�2x
; (57)

which completes the proof of identi�cation. We observe that, using (54), we could express the ratios (56)

and (57) entirely in terms of the �rst two moments of observed data.

Proof of Proposition 12. (1.) From the observation of the covariance �a��a�� we can infer the sign

and the size of �a�, see (46). Given the information on left hand side and the information of �a�, we can

infer the sign of s.

(2.) Even though the sign of s can be established, we cannot extract the unknown variables on the rhs

of (46) in the presence of the linear return term u, and hence it follows that we cannot sign r.

(3.) From the observation of the covariance �a��a�� and the observation of the aggregate variance

�a�
2
a, we can infer the value of �a� and �a. The equilibrium conditions then impose the conditions on mean

and variance, see (46). We thus have two equations to identify the three unknown structural parameters

(r; s; u). We can solve for (s; u) in terms of the remaining unknown r to obtain:

u =
��a�� + �a�a��r � �a��r�a� + �a���a�

���a�
; s =

�a (1� �ar)
���a�

:

In particular, we would like to know whether this allows us to identify the ratios:

u

1� r = ��a +
�a�� (1� �ar)
�� (1� r) �a�

;
s

1� r = �
�a

�a���

(1� �ar)
1� r ;

in terms of the observables. But, except for the case of �a = 1, we see that this is not the case. As

r 2 (�1; 1), it follows that we can only partially identify the above ratios, namely (48) and (49) which
describe the respective sets into which each ratio can be identi�ed.
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