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Robust Predictive Quantization: Analysis and
Design Via Convex Optimization

Alyson K. Fletcher, Member, IEEE, Sundeep Rangan, Vivek K Goyal, Senior Member, IEEE, and
Kannan Ramchandran, Fellow, IEEE

Abstract—Predictive quantization is a simple and effective
method for encoding slowly-varying signals that is widely used
in speech and audio coding. It has been known qualitatively that
leaving correlation in the encoded samples can lead to improved
estimation at the decoder when encoded samples are subject
to erasure. However, performance estimation in this case has
required Monte Carlo simulation. Provided here is a novel method
for efficiently computing the mean-squared error performance
of a predictive quantization system with erasures via a convex
optimization with linear matrix inequality constraints. The
method is based on jump linear system modeling and applies to
any autoregressive moving average (ARMA) signal source and
any erasure channel described by an aperiodic and irreducible
Markov chain. In addition to this quantification for a given en-
coder filter, a method is presented to design the encoder filter to
minimize the reconstruction error. Optimization of the encoder
filter is a nonconvex problem, but we are able to parameterize
with a single scalar a set of encoder filters that yield low MSE. The
design method reduces the prediction gain in the filter, leaving the
redundancy in the signal for robustness. This illuminates the basic
tradeoff between compression and robustness.

Index Terms—Differential pulse code modulation, erasure chan-
nels, joint source-channel coding, linear matrix inequalities.

I. INTRODUCTION

P
REDICTIVE quantization is one of the most widely-used

methods for encoding time-varying signals. It essentially

quantizes changes in the signal from one sample to the next,

rather than quantizing the samples themselves. If the signal is

slowly varying relative to the sample rate, predictive quantiza-

tion can result in a significant reduction in distortion for a fixed

number of bits per sample—a large coding gain [1]. Due to its

effectiveness and simplicity, predictive quantization is the basis

of most speech encoders [2]. It is also used in some audio coders

[3] and, in a sense, in motion-compensated video coding [4].
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A prohibitive weakness of predictive quantization is its

relative lack of robustness to losses (or erasures) of quantized

samples. Since predictive quantization essentially encodes only

changes in the signal, a loss of any one quantized sample results

in errors that propagate into future samples.

For an ergodic channel with known expected probability of

erasure, an information-theoretically optimal approach is to use

a block erasure-correcting code to mitigate the losses [5]. If

the probability of erasure is unknown or the erasures are adver-

sarial, a rateless code could be effective for such an application

[6]. However, both of these approaches induce added end-to-end

delay because coding is done over blocks. Predictive quantiza-

tion is attractive because it adds no delay.

The purpose of this paper is to consider predictive quantiza-

tion with losses, where the quantized samples must be trans-

mitted without channel coding and the decoder must recon-

struct the signal without additional delay. We develop a novel

approach to quantifying the performance of these systems that

uses jump linear state space systems and convex optimization

with linear matrix inequalities. We also present a new design

method that optimizes the encoder to minimize the distortion

given the loss statistics. Such performance computation and en-

coder optimization previously required system simulation.

A. Jump Linear Systems

Jump linear systems are linear state-space systems with time-

varying dynamics governed by a finite-state Markov chain. Such

systems have been studied as early as the 1960s, but gained sig-

nificant interest in the 1990s, when it was shown in [7] that they

can be analyzed via a convex optimization approach known as

linear matrix inequalities (LMIs). LMI-constrained optimiza-

tions and their application to jump linear systems are summa-

rized in several books such as [8] and [9].

To describe the lossy predictive quantization problem with

a jump linear system, this paper models the source signal to

be quantized and the encoder prediction filter with linear state-

space systems. The quantization noise is approximated as addi-

tive white and Gaussian. The channel between the encoder and

decoder is then modeled as a random erasure channel where

the losses of the quantized samples are described by a finite-

state Markov chain. The resulting system—signal generation,

encoding, and channel—can be represented with a single jump

linear state-space model.

B. Preview of Main Results

Using jump linear estimation results in [10]–[12], we show

that the minimum average reconstruction error achievable at the

1932-4553/$25.00 © 2007 IEEE
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decoder can be computed with a simple LMI-constrained opti-

mization. A jump linear reconstruction filter at the decoder that

achieves the minimal reconstruction error is also presented.

The proposed LMI method is quite general in that it applies

to autoregressive moving average (ARMA) signal models of

any order, encoder filters of any order, and any Markov erasure

channel. The Markov modeling is particularly important: With

channel coding and sufficient interleaving, the overall system

performance is governed only by the average loss rate. How-

ever, with uncoded transmission, it is necessary to model the

exact channel dynamics and time correlations between losses,

and Markov models can capture such dynamics easily.

Using the LMI method to evaluate the effect of losses, we

propose a method for optimizing the encoder filter to minimize

the distortion given the loss statistics. The method essentially at-

tempts to reduce the prediction gain in the filter, thereby leaving

redundancy in the quantized samples that can be exploited at the

decoder to overcome the effect of losses.

The approach illuminates a general tradeoff between com-

pression and robustness. Compression inherently removes re-

dundancy, reducing the required data rate, but also making the

signal more vulnerable to losses. The results in this paper can

be seen as a method for optimizing this tradeoff for linear pre-

dictive quantization by controlling the prediction gain in the en-

coder.

A final, and more minor, contribution of the paper is that

a number of standard results for lossless predictive quantizer

design are rederived in state-space form; these state-space for-

mulas seem to not be widely known. The state-space method can

incorporate the effect of closed-loop quantization noise more

easily than frequency-domain methods such as [13] and [14].

Also, the state-space results show an interesting connection to

lossy estimation with no quantization as studied in [15].

C. Previous Work

In making predictive quantization robust to losses of trans-

mitted data, the prevailing methods are focused entirely on the

decoder. When the source is a stationary Gaussian process, the

optimal estimator is clearly a Kalman filter. Authors such as

Chen and Chen [16] and Gündüzhan and Momtahan [17] have

extended this to speech coding and have obtained significant im-

provements over simpler interpolation techniques. While mo-

tion compensation in video coding is more complicated than

linear prediction, the extensive literature on error concealment

in video coding is also related. See [18], [19] for surveys and

[20] for recent techniques employing Kalman filtering. Another

line of related research uses residual source redundancy to aid

in channel decoding [21]–[25]. These works are all focused

on discrete-valued sources sent over discrete memoryless chan-

nels, and most of them assume retransmission of incorrectly de-

coded blocks. Here we consider the end-to-end communication

problem, with a continuous-valued source and potentially com-

plicated source and channel dynamics.

D. Comments on the Scope of the Results

The results presented here allow an ARMA signal model and

Markov erasure channel, each of arbitrary order. Our convex

optimization framework can be applied with greater generality.

In particular, the source signal can have any finite number of

modes, each described by an ARMA model, as long as the

modes form a Markov chain and the transitions in this Markov

chain are provided as side information. Also, the channel can

be generalized to have any linear, additive white noise descrip-

tion in each Markov chain state. We have omitted these more

general formulations for clarity. Amongst the more general

formulations in [11] is an optimization of filters for multiple

description coding of speech as proposed in [26].

The main limitation of this work is the need for some sim-

plifying assumptions regarding the distribution of quantization

noise (see Section III-B). These are merely approximations to

the true characteristics of quantization noise that simplify our

developments. We believe that finer characterization of quanti-

zation noise would have significant effect only if the estimators

were allowed to be nonlinear. To justify the model more rigor-

ously, we could employ vector quantizers and results from [27].

This would unnecessarily complicate our development.

E. Organization of the Paper

Section II defines jump linear systems and presents the key

theoretical result that relates minimum estimation error in a

jump linear system to an LMI-constrained convex optimization.

Section III then explains how predictive quantization can be

modeled in state space. As shown in Section IV, transmission

of quantized prediction errors over a Markov erasure channel

turns the overall system into a jump linear system for which the

result of Section II applies to determine the encoding perfor-

mance. The effect of optimizing the encoding is shown through

numerical examples in Section V.

II. LMI SOLUTIONS TO OPTIMAL JUMP LINEAR ESTIMATION

A jump linear system is a linear state-space system with time

variations driven by a Markov chain. A complete discussion

of such systems can be found in [9], [11]. Here, we present

an LMI-constrained optimization solution to the specific jump

linear estimation problem arising in predictive quantizer design.

Our result is closely related to the dual control problem pre-

sented in [10]. A complete discussion and proofs of the broader

estimation result this is based on can be found in [11].

A discrete-time jump linear system is a state-space system of

the form

(1)

where is unit-variance, zero-mean white noise, is

an internal state, is an output signal to be estimated,

and is an observed signal. The parameter is a dis-

crete-time Markov chain with a finite number of possible

states: . Thus, a jump linear system

is a standard linear state-space system, where each system

matrix can, at any time, take on one of possible values. The

term “jump” indicates that changes in the Markov state

result in discrete changes, or jumps, in the system dynamics.

We will denote the Markov chain transition probabilities by

and assume that the Markov
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chain is aperiodic and irreducible. Thus, there is a unique sta-

tionary distribution satisfying the equations

for .

We consider the estimation of the unknown signal from

the observed signal . We assume that the estimator knows

the Markov state ; the estimation problem for the case

when is unknown is a more difficult, nonlinear estimation

problem considered, e.g., in [28]–[30].

Under the assumption that is known, the estimator es-

sentially sees a linear system with known time variations. Con-

sequently, the optimal estimate for can be computed with

a standard Kalman filter [31]. (To establish notation, standard

Kalman filtering is reviewed in Appendix A.) However, without

actual simulation of the filter, there is no simple method to com-

pute the average performance of the estimator as a function

of the Markov statistics. Also, the estimator requires a Riccati

equation update with each time sample that may be computa-

tionally difficult.

We thus consider a suboptimal jump-linear estimator of the

form: when

(2)

The estimator (2) is itself a jump linear system whose input is the

observed signal and output is the estimate . The system

is defined by the two sets of matrices:

and . The estimator is similar in form

to the causal Kalman estimator [Appendix A, (39)], except that

the gain matrices are time varying via the Markov state .

Given an estimator of the form (2) for the system (1), we can

define the error variance

where the dependence on and is through the estimate

in (2). The goal is to find gain matrices and to minimize

(3)

The following result from [11], [12] shows that the optimization

can be solved with an LMI-constrained optimization. The paper

[12] also precisely defines MS stabilizing, a condition on the

gain matrices and to guarantee that the state estimates

are bounded.

Theorem 1: Consider the jump linear estimation problem

above.

a) Suppose that is onto for all , and suppose that

there exist matrices and , parti-

tioned as

(4)

satisfying

(5)

where is defined by

(6)

(7)

Then, for all . Also, if we define

(8)

the set of matrices is MS stabilizing and the

mean-squared error is bounded by

(9)

where and .

b) Conversely, for any set of MS stabilizing gain matrices

, there must exist matrices and satisfying

(5) and

(10)

Combining parts (a) and (b) of Theorem 1, we see that the

minimum estimation error is given by

(11)

where the first minimization is over MS stabilizing gain matrices

, and the second minimization is over matrices and

satisfying (4) and (5). For a fixed set of transition probabili-

ties, , the objective function (11) and constraint (5) are linear

in the variables and . Consequently, the optimization can

be solved with LMI constraints, thus providing a simple way to

optimize the jump linear estimator.

III. STATE-SPACE MODELING OF PREDICTIVE QUANTIZATION

A. System Model

Since predictive quantization is traditionally analyzed in the

frequency domain, we will need to first rederive some standard

results in state space. For simplicity, this section considers only

predictive quantization without losses. The lossy case, which is

our main interest, will be considered in Section IV.

Fig. 1 shows the model we will use for the predictive quan-

tizer encoder and decoder. The signal to be quantized is called

the “source” and denoted by . The predictive quantizer en-

coder consists of a linear filter , in feedback with a scalar

quantizer . The filter will be called the encoder filter
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Fig. 1. Predictive quantizer encoder and decoder with a general higher-order filter.

Fig. 2. Linear model for the predictive quantizer system. The quantizer is replaced by a linear gain and additive noise, and the source signal, z[k], is described as
filtered white noise.

and its output is denoted . The quantizer output sample se-

quence is denoted . The decoder is represented by the linear

filter , which operates on the quantizer samples to pro-

duce the final decoder output is denoted . The decoder

output is the final estimate of the original signal , so

ideally is close to .

B. Linear Quantizer Model

Due to the nonlinear nature of the scalar quantizer, an exact

analysis of the predictive quantizer system is difficult. The clas-

sical approach to deal with the nonlinearity is to approximate

the quantizer as a linear gain with additive white noise (AWN).

One such model is provided by the following lemma.

Lemma 1: Consider the predictive quantizer system in Fig. 1.

Suppose that the closed-loop system is well-posed and stable

and all the resulting signals are wide-sense stationary random

processes with zero mean. In addition, suppose that the scalar

quantizer function is designed such that

(12)

Also, let

(13)

It follows that the quantizer output can then be written (as shown

in Fig. 2)

(14)

where is a zero-mean, unit-variance signal, uncorrelated

with , and

(15)

Proof: See Appendix C-1.

The lemma shows that the quantizer can be described as a

linear gain , along with additive noise uncorrelated with

the quantizer input . Observe that since is normalized

to have unit variance, the variance of the additive noise is .

The assumption (12) is that, for each partition region, the

function will output the conditional mean. This condition is

satisfied by optimal quantizers, or more generally, whenever the

quantization decoder mapping is optimal, regardless of whether

the encoder mapping is optimal [1]. Moreover, the condition

will hold approximately for uniform quantizers at high rates.

The factor in (13) is a proportionality constant between the

quantizer input variance and quantizer error variance. The pa-

rameter can thus be seen as a measure of the quantizer’s relative

accuracy. In [1], the factor is called the coding gain of the

quantizer. Following this terminology, we will call either the

inverse coding gain or coding loss.

In general, will depend on the quantizer input distribution,

specific scalar quantizer design and number of bits per sample.

In particular, it is independent of the encoder and decoder fil-

ters, and can therefore be treated as a design constant. For ex-

ample, suppose the input to the quantizer is well-approximated
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as a Gaussian scalar random variable and the quantizer

is a uniform scalar quantizer. Then, a well-known analysis by

Bucklew and Gallagher [32] shows that , where

is the quantizer rate (i.e., number of bits per sample),

is a constant and the relative error in the approximation becomes

negligible for high rates . If the quantized samples are then en-

tropy coded, it is shown by Gish and Pierce [33] that the coding

loss is reduced to .

While Lemma 1 provides a simple additive noise model for

the quantizer, we require two further approximations for the

linear modeling.

a) At each time sample , the quantizer noise con-

structed in Lemma 1 is guaranteed to be uncorrelated with

the quantizer input . However, in the linear modeling

we need to further assume that is white and uncor-

related with all samples up to time .

b) In general, depends on the probability distribution of

the quantizer input . This distribution will typically be

complicated due to the nonlinear nature of the quantizer

that is in feedback with the encoder filter [34]. Since this

distribution (and its affect on ) is difficult to characterize

as a function of , we assume that depends only on

the number of bits per sample.

These assumptions are widely used and have been proven to be

very accurate, particularly at high rate [35].

C. State-Space Signal Model

Substituting the linear quantizer model in (14) into the pre-

dictive quantizer system in Fig. 1, one arrives at a linear system

depicted in Fig. 2. Also shown in Fig. 2 is a model for the source

in which is a random noise filtered by a linear

filter . This is a standard ARMA model for the source signal.

If we assume that is white with zero mean and unit vari-

ance, then will be a wide-sense stationary process with

power spectral density , where is the

transfer function of . By appropriately selecting the filter ,

the model can capture arbitrary second-order statistics of .

For example, if we wish to model a lowpass signal , then we

can select to be a lowpass filter with the appropriate band-

width.

For the analysis in this paper, it is convenient to represent

in state-space form:

(16)

where is a vector-valued signal representing the system

state, and we assume the noise input is white with zero

mean and unit variance. The factors , and are ma-

trices of appropriate dimensions. We will assume the filter

is stable with . Also, throughout this paper, we will ig-

nore initial conditions and let the time index run from

to . Under this assumption, and are wide-sense sta-

tionary.

State-space modeling for random processes can be found in

numerous texts such as [36]–[38]. The presentation in this paper

will use the notation adopted in robust control, such as in [39].

D. Kalman Filter Solution for Optimal Closed-Loop Encoder

Having described the various components of the system

model, we can now describe the optimal encoder and decoder

filters. In the frequency domain, the transfer functions of the

optimal filters can be easily derived as Wiener filters [40].

For the LMI analysis in this paper, however, we will need

to rederive the formulas in state space using a time-invariant

Kalman filter. To the best of our knowledge this state-space

solution is new.

Our main interest in the state-space formulas is that they will

generalize to the lossy case more easily. However, even in the

standard lossless case, the formulas may have some minor ben-

efits. Firstly, we will see that the state-space approach can rela-

tively easily incorporate the effect of the closed-loop quantiza-

tion noise; frequency-domain analyses of predictive quantiza-

tion such as in [13], [14] require iterative techniques. Also, the

state space solution shows an interesting connection between

the effects of quantization and losses on estimation as studied

in [15].

Designing the system for a given source amounts to se-

lecting the encoder and decoder filters, and . For the

linear system model, it is also necessary to determine the quan-

tization error variance that is consistent with the quantizer’s

coding loss, . The constraints for this design are specified in

the following definition.

Definition 1: Consider the linear predictive filter quantizer in

Fig. 2. Fix a stable linear, time-invariant source filter and

quantization coding loss . For this model, an encoder

filter will be called feasible if

a) is linear time-invariant and strictly causal;

b) the resulting closed-loop map is

stable; and

c) there exists a quantization noise level such that, when

the inputs and are zero-mean, unit-variance

white noise and , the closed-loop quantizer input

signal satisfies

(17)

The final constraint (c) requires some explanation. In gen-

eral, the quantization noise variance is not only a function of

the quantizer itself, but also the quantizer input variance that re-

sults from the choice of the encoder, . This is a consequence

of the fact that the quantization noise scales with the quantizer

input variance by the factor . In Definition 1, the quantization

noise level is thus defined as the level that is consistent with

the closed-loop encoder system and the linear quantizer model

in Lemma 1. We will call the quantization noise level, in part

(c), the closed-loop quantization noise variance for the encoder

.

Note that in (17), the expectation does not depend on the time

index . This assumption is valid, since, by the assumptions in

parts (a) and (b) of Definition 1, the system is stable and time-

invariant. Since the input noise is wide-sense stationary, all

the signals will be wide-sense stationary as well.
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Fig. 3. General predictive quantizer encoder and decoder with a lossy channel. The quantizer is modeled as a linear gain with AWGN noise.

Now, given a feasible encoder and decoder , we

define the mean-squared error (MSE) of the reconstruction as

(18)

where is the decoder output, and the encoder-decoder

system is assumed to operate with the consistent closed-loop

quantization noise variance. We will say that a feasible design

is optimal if it minimizes the MSE.

The following theorem provides a simple state-space charac-

terization of the optimal encoder and decoder filters.

Theorem 2: Consider the linear predictive filter quantizer in

Fig. 2, and fix a stable, linear, time-invariant source filter

as in (16) and quantization coding loss . Then one

optimal encoder filter, , can be described by the state space

equations

(19)

where the gain matrix is given by

(20)

and and are derived from the positive semidefinite solution

to the modified algebraic Riccati equation

(21)

The optimal decoder filter for is given by the state space

equations

(22)

Finally, the closed-loop quantization noise variance and the

MSE in (18) are given by

(23)

Proof: See Appendix C-2.

The theorem provides simple state space formulas for the op-

timal encoder and decoder filters. The state space matrices con-

tain the and matrices of the source signal state space system

(16), along with a gain matrix derived from the solution to a

matrix (21).

There are two interesting points to note in this result. First, the

state space equations for the encoder and decoder filters in (19)

and (22), respectively, differ only by a term in the output

equation. Therefore, their transfer functions are related by the

simple identity . Moreover, the state

update equations in the encoder and decoder equations are iden-

tical. Consequently, if the systems have the same initial condi-

tions (i.e., ), then for all sub-

sequent samples . Thus, the encoder and decoder will have

the state estimates. We will see that in the presence of channel

losses, this property no longer holds: With losses of the quan-

tizer output, the decoder will not, in general, know the encoder

state.

A second point to note is that the modified algebraic Riccati

equation in (21) is identical to the main equation in [15] which

considers state estimation in the presence of losses of the ob-

served signals. The estimation problem with lossy observations

is also considered in [11]. As discussed more precisely in Ap-

pendix B, it is shown in [11] and [15] that the MSE in (23) is

precisely the coding loss, , times the one-step ahead prediction

error in estimating a signal when the past samples experience

independent losses with a probability of . We thus see an in-

teresting relationship between quantization noise and loss: the

effect of quantization with coding loss is equivalent to esti-

mating a signal with independent losses with a loss probability

of . More on the modified algebraic Riccati equation is given

in Appendix B.

IV. PREDICTIVE QUANTIZATION WITH LOSSES

A. Markov Erasure Channel Model

We now turn to our main interest: predictive quantization with

losses. The scenario we consider is shown in Fig. 3. The system

is identical to Fig. 2 except that the encoder output samples, ,

are transmitted over a lossy channel.

As discussed in Section I, since the quantized samples are

uncoded, the effect of losses depends not just on the overall
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erasure probability, but the exact dynamics of the loss process.

We will assume that there is an underlying Markov chain

, and the erasures occur when the Markov chain

enters a subset of states, . We define

and as in Section II and again assume the Markov chain

is aperiodic and irreducible. We will denote the channel output

by and take the output to be zero when the sample is lost.

Thus,

(24)

The Markov model is extremely general and captures a large

range of erasure processes including independent erasures,

Gilbert–Elliot erasures and fixed-length burst erasures.

B. Encoder Design

The goal of robust predictive quantization is: given a signal

model (16) and statistics on the Markov erasure channel state ,

to design the encoder and decoder to minimize the

average reconstruction error. We first consider the design of the

encoder filter .

Following the structure of the optimal encoder (19) for the

lossless case, we will assume that the encoder filter for the lossy

channel takes the same form:

(25)

This encoder filter (25) is identical to optimal filter (19) for the

lossless system, except that we can use any gain matrix . In

this way, we treat as a design parameter that can be optimized

depending on the loss and source statistics.

It should be stated that, in fixing the encoder to be of the form

(25), we have eliminated certain degrees of freedom in the en-

coder design. The LMI framework would allow the matrices

and in (25) to differ from the corresponding quantities in (16).

But, as we will see, the optimization philosophy in Section IV-E

will lead us to (25). We therefore impose this form at the onset

to simplify the following discussion.

Our first result for the lossy case characterizes the set of fea-

sible encoder gain matrices.

Theorem 3: Consider the predictive quantizer encoder in Fig.

3 where is described by (16) and the encoder filter is

described by (25) for some encoder gain matrix . Assume that

is stable and suppose there exists a satisfying the

Lyapunov equation

(26)

with

(27)

Then the encoder (25) is feasible in the sense of Definition 1,

and the corresponding closed-loop quantization noise level is

given by

(28)

Proof: See Appendix C-3.

Theorem 3 provides a simple way of testing the feasibility of

a candidate gain matrix and determining the corresponding

quantization noise level. Specifically, the gain matrix is fea-

sible if the solution to the Lyapunov equation (26) satisfies

and the condition in (27). If the gain matrix is fea-

sible, the closed-loop quantization noise level is given by (28).

It can be shown that the optimal encoder gain for the loss-

less system (from Theorem 2) is precisely the gain matrix that

minimizes the resulting quantization noise variance . How-

ever, in the presence of losses, we will see that the optimal gain

does not necessarily minimize the quantization noise: The quan-

tizer input variance can be seen as a measure of how much en-

ergy the prediction filter subtracts out from the previous quan-

tizer output samples. With losses, the optimal filter may not sub-

tract out all the energy, thereby leaving some redundancy in the

quantizer output samples and thus improving the robustness to

losses.

C. Jump Linear Decoder

Having characterized the set of feasible encoders, we can now

consider the decoder. Given an encoder, the decoder must essen-

tially estimate the source signal from the quantizer output

samples that are not lost. We can set this estimation problem

up as a jump linear filtering problem and then apply the results

in Section II.

To employ the jump linear framework, we need to construct a

single jump linear state-space system that describes the signals

and . To this end, we combine the encoder , the

source generating filter , and the linear quantizer. The com-

bined system has two states: in the source signal model

and in the prediction filter, and we can define the joint

state vector . We also let denote the

joint noise vector , which contains both

the source signal input and quantization noise. We can now view

the signals and as outputs of a single system whose

input is and state is .

There are two cases for the state and output equations for the

system: when the sample is received by the decoder, and

when the sample is lost. We will first consider the case when

the sample is not lost. In this case, . Using this

fact along with (16), (25) and (14), we obtain the larger state

space system

(29)

where

, and . The system (29)

expresses the source signal and the channel output as
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outputs of a single larger state space system. The system has

two inputs: the noise vector and the signal . When the

sample is not lost over the channel, the input is known

to the decoder. Hence we have added the subscript NL on the

matrices, and to indicate the “no loss” matrices.

When the sample is lost:

(30)

where and .

Thus, from the perspective of the decoder, the combined

signal-encoder system alternates between two possible models:

(29) when the sample is not lost in the channel, and (30)

when the sample is lost. Now, in the model we have assumed in

Section IV-A, the loss event occurs when the Markov state

enters a subset of the discrete states denoted . We can thus

write the signal-encoder system as a jump linear system driven

by the channel Markov state : When

(31)

where the system matrices are given by

and is the known input

The matrices and do not vary with .

Following Section II, we can consider a jump linear estimator

of the following form: When

(32)

where and are gain matrices that are to be determined

by the optimization.

Before considering the optimization, it is useful to compare

the jump linear estimator (32) with the decoder for the lossless

case in (22). The most significant difference is that the decoder

in (32) must estimate the states, , for the source signal

system, as well as the encoder states, . In the lossless

case, the decoder receives all the quantized samples . Con-

sequently, by running the encoder filter (19), it can reconstruct

the encoder state . Therefore, the decoder need only esti-

mate the signal state . However, with losses, the encoder

state is unknown to the decoder and the decoder must estimate

both and . In particular, if in the lossless problem

one must estimate a state of dimension , the lossy estimator

must estimate a state of dimension .

A second difference is the gain matrices and . In the

decoder (22) for the lossless channel, the gain matrices are con-

stant. Moreover, where is the optimal encoder gain

matrix, and . In the jump linear decoder (32), the gain

matrices and vary with the Markov state and do not

necessarily have any simple relation with the encoder matrix.

D. LMI Analysis

Having modeled the system and decoder as jump linear sys-

tems, we can now find the optimal decoder gain matrices

and in (32) using the LMI analysis in Section II. Specifically,

Theorem 1 provides an LMI-constrained optimization for com-

puting the gain matrices and that minimize the MSE,

(33)

where the expectation is over the random signal , the quan-

tization noise and Markov state sequence . For the de-

coder problem, the MSE in (33) is precisely the mean-squared

reconstruction error between the original signal and the de-

coder output . Again, recall that since we have assumed the

system is stable and all signals are wide-sense stationary, the

MSE in (33) does not depend on the time .

The LMI method thus provides a simple way of computing

the minimum reconstruction error for a given source signal

model, predictive encoder and channel loss statistics. By

varying the channel loss model parameters, one can thus quan-

tify the effect of channel losses on a predictive quantization

system with a given encoder.

The overall analysis algorithm can be described as follows:

Algorithm 1 (LMI Analysis): Consider the predictive quan-

tizer system in Fig. 3. Suppose the source signal is gen-

erated by a stable LTI system of the form (16), the prediction

filter can be described by (25) for a given gain matrix , and the

quantizer can be described by (14). Let be the quanti-

zation coding loss, so that . Suppose the channel era-

sures can be described by an aperiodic and irreducible -state

Markov chain . Then, the optimal decoder of the form (32)

can be computed as follows.

1) Use Theorem 3 to determine if the encoder gain matrix

is feasible. Specifically, verify that there is a solution

to the Lyapunov equation (26), and confirm that the

solution satisfies (27). If is not feasible, stop since the

MSE is infinite.

2) Compute the closed-loop quantization noise, in (28).

3) Compute the jump linear system matrices

and as in Section IV-C.

4) Use Theorem 1 to compute the optimal gain matrices

and for the decoder (32) and the corresponding recon-

struction MSE: .

E. Encoder Gain Optimization

Algorithm 1 in the previous section describes how to com-

pute the minimum MSE achievable at the decoder for a given

predictive encoder. However, to maximize the robustness of the

overall quantizer system, one would like to select the predictive

encoder that minimizes this MSE.

To be more specific, let be the minimum achievable

MSE for a given encoder gain matrix . This minimum error,

, can be computed from Algorithm 1 given a model

for the signal and a Markov loss model for the channel. Ideally,
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one would like to search over all gain matrices to minimize

. That is, we wish to compute the optimal encoder gain

matrix:

(34)

Unfortunately, this minimization is difficult. The function

is, in general, a complex nonlinear function of the

coefficients of . The global minimum cannot be found without

an exhaustive search. If the filter (16) for the signal has

order , then will have coefficients to optimize over. There-

fore, even at small filter orders, a direct search over possible

gain matrices will be prohibitively difficult.

To overcome this difficulty, we propose the following simple,

but suboptimal, search. For each , we compute a can-

didate gain matrix given by

(35)

where and are derived from the solutions to the

modified algebraic Riccati equations,

(36)

We can then minimize the MSE, searching over the single pa-

rameter :

(37)

Similarly to (34), the minimization in (37) is not necessarily

convex, and an exact solution would require an exhaustive

search. However, since is a scalar parameter and dependence

on is continuous, a good approximate solution to (37) can be

found by testing a small number of values of .

This suboptimal search over the candidate gain matrices

can be motivated as follows: From Theorem 2, we see that when

is precisely the optimal encoder gain matrix for the

lossless system. For other values of is the optimal gain

matrix for a lossless channel, but with a higher effective coding

loss given by . As decreases from 1 to

0, this effective coding loss, , increases from to 1. The in-

crease in the coding loss represents an increase in the effec-

tive quantization noise. The logic in the suboptimal search (37)

is that the modifications for the encoder for higher quantization

noise should be qualitatively similar to the modifications nec-

essary for channel losses. As the quantization noise increases,

the prediction filter is less able to rely on past quantized sam-

ples and will naturally decrease the weighting of those samples

in the prediction output. This removal of past samples from the

prediction output will leave redundancy in the quantized sam-

ples and should improve the robustness to channel losses.

V. NUMERICAL EXAMPLES

To illustrate the robust predictive quantization design method,

we consider the quantization of the output of a second-order

Chebyshev lowpass filter with cutoff frequency driven

by a zero-mean white Gaussian input. For the quantizer ,

Fig. 4. Numerical examples of robust predictive quantization of a lowpass
signal with two channel types. For each channel type, the reconstruction SNR
as a function of channel loss probability is plotted for three quantizers: (i)
scalar quantization with no interpolation of lost samples at the decoder; (ii)
the optimal predictive encoder and decoder assuming no channel losses; and
(iii) the proposed robust predictive quantizer where the encoder and decoder
are optimized for each loss probability. (a) i.i.d. losses and (b) Gilbert–Elliot
channel.

we use an optimally-loaded uniform quantizer with 2 bits per

sample.

Fig. 4(a) shows the reconstruction signal-to-noise ratio (SNR)

for various systems. In each case, the reconstruction SNR is

plotted as a function of the channel loss probability assuming

the channel losses are i.i.d. The reconstruction SNR in dB is

defined as

where is the lowpass signal to be quantized and is the

final estimate at the decoder.

The bottom curve in Fig. 4(a) is the reconstruction SNR with

direct scalar quantization at the encoder and no interpolation for

lost samples at the decoder. That is, the decoder simply substi-

tutes a value of zero for any lost samples. When there are no

losses, scalar quantization achieves a reconstruction SNR of 9.3

dB, which is the coding gain for an optimal 2-bit uniform quan-

tizer. Since there is no interpolation at the decoder, with losses,

the reconstruction error decays linearly with the loss probability.
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The second curve in Fig. 4(a) is obtained with the optimal

encoder designed for no losses as described in Section III-D.

With no losses, this encoder achieves a reconstruction SNR of

approximately 21.7 dB which represents a prediction gain of

approximately dB relative to scalar quanti-

zation. However, in the presence of losses the improvement due

to prediction rapidly decreases. For example, at a loss proba-

bility of 20%, the predictive quantizer performs less than 2 dB

better than scalar quantization with no prediction. In this sense,

the predictive quantizer which is not designed for losses is not

robust.

The bold curve depicts the computed performance of robust

predictive quantization when the encoder is optimized for the

loss probability. Specifically, for each loss probability, the min-

imization (37) is performed to find the optimal encoder gain ma-

trix, and the MSE at the decoder is based on the optimal jump

linear decoder described in Section IV-C. For the line-search

minimization in (37), we adaptively selected 20 values of for

each loss probability. By comparing to a more dense sampling

of for a few loss probabilities, we concluded that this method

was adequate to get within 0.05 dB of the optimal performance.

Finally, the ’s connected by a thin line show simulated per-

formance using the optimized prediction filters described above,

2-bit uniform scalar quantization, and the linear time-varying

Kalman filter estimator. The simulated performance tracks the

LMI-based computations closely. The small gap is primarily

due to the fact that the LMI bound assumes a suboptimal jump

linear estimator, while the simulated performance is based on

the optimal time-varying Kalman filter.

With no losses, the robust predictive quantizer is identical

to the optimal encoder with no losses. As the loss probability

increases, the degradation of the robust predictive quantizer is

much smaller than the degradation of the encoder optimized for

no loss. For example, at a 20% loss probability, the robust pre-

dictive quantizer has a reconstruction SNR more than 4.5 dB

greater than the system without encoder optimization.

The same design method can be used for more compli-

cated channels. Fig. 4(b) repeats the previous example with

a Gilbert–Elliot loss model—a simple channel with corre-

lated losses. The good-to-bad state transition parameter is

varied from 0 to 1, and the bad-to-good parameter is set to

. The resulting loss probability is .

As can be seen in Fig. 4(b), the robust predictive quantizer again

shows an improved performance over the encoder optimized for

no losses. As with Fig. 4(a), the results computed via convex

optimizations are supported by Monte Carlo simulation.

Note well that we are comparing techniques that do not in-

duce any delay. When arbitrarily large delay is allowed, con-

siderably better performance is possible. For example, consider

i.i.d. losses with probability 0.5. Since the example uses 2 bits

per sample, one can achieve a reliable rate of 1 bit per sample

using ideal forward error correction (FEC). It can be verified

using the methods in Section III-D that such a system would

achieve a reconstruction SNR of 12.4 dB for the source under

consideration. In comparison, the optimized robust predictive

quantizer achieves a much lower SNR of only 7.0 dB.

Along with the issue of delay, another problem with conven-

tional block FEC is the necessity to match the code rate with

Fig. 5. Quantizer performance as a function the loss probability with three dif-
ferent prediction filters: (a) robust prediction filter designed for the actual loss
probability; (b) filter optimized for no loss; and (c) filter optimized for 10% loss.
Simulation conditions are identical to those in Fig. 4(b).

the probability of loss: if too few codewords are received, de-

coding is impossible and performance is poor; and additional

codewords beyond the minimum needed to decode do not help.

The proposed predictive quantizer design method is robust over

a range of channel conditions. To illustrate this, Fig. 5 shows

the performance of a predictive coder with the filter that is opti-

mized for a fixed loss rate of 10%, but evaluated over a range of

actual losses rates from 0% to 100%. At each actual loss proba-

bility, the performance of the predictive quantizer optimized for

the 10% loss is compared against the encoder optimized for the

true loss. It can be seen that the predictive quantizer optimized

for the 10% loss performs very closely to the optimal over a

range of loss probabilities. Specifically, the filter designed for

10% loss has a reconstruction error within 0.4 dB of the optimal

filter for all loss rates above 5%. Meanwhile, the performance

with a filter designed for no loss degrades quickly in the pres-

ence of loss. The conclusion is that a filter designed for a small

loss rate can perform well over a range of loss conditions.

VI. CONCLUDING COMMENTS

While the effect of losses in predictive quantization is well

known at a qualitative level, there have been few practical

methods to quantify the effects of such losses. This paper

has presented a novel method based on jump linear system

modeling and LMI-constrained convex optimization that can

be used to precisely compute the overall degradation in re-

construction from the signal model and loss statistics. The

method applies to arbitrary-order prediction filters and general

Markov erasure channels. Other effects such as the delay in the

reconstruction can also easily be incorporated.

Also presented is a method for modifying the prediction

filter to improve the robustness of the encoder. The approach,

based on leaving redundancy in the signal, illustrates a general

tradeoff between compression and robustness. The proposed

method searches over a small but intuitively-reasonable class

of encoders. While our simulations indicate that these encoders

can significantly improve the robustness to losses, they are not
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necessarily optimal. We also have not explored varying the

sampling rate, e.g., to provide opportunity for channel coding.

APPENDIX A

STEADY-STATE KALMAN FILTER EQUATIONS

The Kalman filter is widely used in linear estimation prob-

lems and covered in several standard texts such as [31] and [38].

However, the analysis in this paper requires a slightly non-stan-

dard form, used in modern robust control texts such as [39]. It

is useful to briefly review the equations that will be used.

To describe the Kalman filter, consider a linear state space

system of the form

(38)

We assume the input is a white Gaussian process with zero

mean and unit variance. The Kalman filtering problem is to es-

timate the first output signal and state from the second

output . The signal represents an unknown signal that

we wish to estimate, and is the observed signal.

Define the state and output estimates:

Thus, is the MMSE estimate of the state given the

observed output up to sample . While the Kalman filter can

be used to compute the estimates for any and , we will be

interested here in three specific estimates:

• : The causal estimate of given the observations

of up to time .

• : The strictly causal estimate of given the

observations of up to time .

• : The strictly causal estimate of the state .

To avoid the effect of initial conditions, we will assume all

signals are wide-sense stationary. Under the additional technical

assumptions that is detectable and , it can be

shown that the optimal estimate for the above three quantities is

given by recursive Kalman filter equations:

(39)

where and are known as the Kalman gain matrices and

will be described momentarily. We see that the Kalman filter is

itself a linear time-invariant state-space filter whose input is

and outputs are the estimates of and .

The filter (39) are sometimes called the time-invariant or

steady-state equations, since the gain matrices and do

not vary with time. In general, to account for either initial

conditions or time-varying systems, the gain matrices and

would need to be time-varying. However, since we will only

be interested in time-invariant systems and asymptotic perfor-

mance, the time-invariant form considered here is sufficient.

The gain matrices and in (39) can be determined from

the solution to the well-known algebraic Riccati equation given

by

(40)

where and .

Under the assumption that is detectable and ,

it can be shown that (40) has a unique positive semi-definite

solution . The gain matrices are then given by

(41)

where

(42)

The algebraic Riccati equation solution has the interpreta-

tion of the state-estimation error variance:

Also, the mean-squared output errors are given by

(43)

(44)

where .

APPENDIX B

MODIFIED ALGEBRAIC RICCATI EQUATION

The analysis in Section III-D results in a modified form of the

standard algebraic Riccati equation,

(45)

for a loss parameter . When , the equation

reduces to the standard algebraic Riccati equation (40); when

, it reduces to the discrete Lyapunov equation

.

A similar equation arises in [15] and [11], which consider

state estimation of a system (38) with i.i.d. erasures of the ob-

servation signal . A result in [11] specifically shows the fol-

lowing: Suppose that is the output of a linear state-space

system

(46)

where is unit-variance white noise. Let represent

the one-step ahead prediction of from past samples

, where



FLETCHER et al.: ROBUST PREDICTIVE QUANTIZATION 629

That is, is the estimate of from past samples,

where the samples are lost with probability . If the losses are

i.i.d. and is the optimal jump linear estimator (dis-

cussed in Section II), it is shown in [11] that the resulting re-

construction error is given by

where is the solution to the modified algebraic Riccati equa-

tion (45). Comparing this result with Theorem 2, we see that

there is one-to-one correspondence between the effects of i.i.d.

losses and quantization.

As discussed in [11], the modified algebraic Riccati equation

can be solved via an LMI-constrained optimization. However, in

the special case of a scalar output, the following simple iterative

procedure is also possible.

Suppose has a scalar output, i.e., is a row vector. For

, define the matrix function . Then, it is

easy to verify that is a solution to (45) if and only if there

exists a satisfying the following coupled equations:

(47)

(48)

(49)

For a fixed , (47)–(48) is a standard algebraic Riccati equation

and can be easily solved for . Also, it can be verified that the

solution monotonically increases with . This leads to the

following iterative bisection search procedure.

• Step 1: Find minimum and maximum values, and

, for the possible solution .

• Step 2: Set to the midpoint of the interval,

.

• Step 3: Solve the algebraic Riccati equation (47)–(48) for

using the midpoint value of .

• Step 4: If then set

and return to Step 2; otherwise, set

and return to Step 2.

This iterative procedure will converge exponentially to a

pair satisfying the coupled (47)–(49).

APPENDIX C

PROOFS

1) Proof of Lemma 1

To simplify the notation in this proof, we will omit the time

index on all signals. From (12), , so

(50)

Combining (50) and (13), we obtain

Therefore,

(51)

Now, let , so that . Since

and are zero mean, so is . Also, using (50) and (51),

, so

and are uncorrelated. Finally,

Therefore, if we define and as in (15) and let ,

we have that is a zero-mean process, uncorrelated with ,

with unit variance and satisfying .

2) Proof of Theorem 2

We know from [1] that the optimal encoder and decoder filters

must be the MMSE estimators,

That is, must be the MMSE estimate of given the

quantized samples up to time . The optimal de-

coder output is the MMSE estimate using the samples up to time

. Since the system is linear and time-invariant, both esti-

mators are given by standard time-invariant Kalman filters.

The Kalman filter equations are summarized in Appendix A.

To employ the equations, we need to first combine the quantizer

and signal model into a single state-space system. To this end,

we combine (16) with (14) to obtain

(52)

where . If we define the vector noise

and let

, and , then (52) can be rewritten as

(53)

We have now described the observed output and signal to be

estimated as outputs of a single linear state-space system.

We can then apply standard Kalman filter equations from Ap-

pendix A to obtain the estimator
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where is the Kalman gain matrix. Note that we have used the

fact that is a known input, since it can be computed from

. If we define the state ,

and use the fact that , the encoder equations

can be rewritten as

(54)

Now, since

(55)

Using this identity along with the fact that in (54), we

obtain the encoder equations in (19).

Next, we derive the expression for the Kalman gain matrix

. To this end, first observe that, using (44), the quantizer input

variance is given by

where is the error variance matrix. Using (17), the quantizer

error variance is given by

Now using the fact that and , the matrix

in (40) is given by

(56)

Thus,

where and . This

proves (21). Substituting (56) into the expression for in (41):

which proves (20).

Now, substituting the expressions for and into

the expression for in (42), we obtain

(57)

Substituting (55), (56) and (57) in (39),

As discussed above, the optimal decoder output is given by

. Therefore, if we define the decoder state as

, we obtain the decoder equations

(58)

Finally, substituting (56) and (57) into the expression for the

MSE in (43),

3) Proof of Theorem 3

We need to show that, if satisfies the conditions in Theorem

3, the resulting encoder in (25) satisfies the three conditions in

Definition 1. For any gain matrix , the encoder (25) is linear,

time invariant and strictly causal, and therefore satisfies condi-

tion (a) of Definition 1.

To prove condition (b), define the error signals,

and . Combining (16), (25)

and (14), we obtain

(59)

The system (59) is a standard LTI system. If we define the

closed-loop matrices and

and let , then is unit-variance white

noise, and (59) can be rewritten as

(60)

Now, suppose there exists a satisfying (26). The condi-

tion is equivalent to

(61)

Now, since is stable, is stable. Also, since ,

for any matrix and is detectable. By a standard

result for Lyapunov equations (see, for example, [37]), the exis-

tence of a matrix satisfying (61) implies that is stable

and

(62)

This in turn implies that, for any , the mapping

is stable. Also, since is stable, the map is stable.

Therefore, since , the mapping

is well-posed and stable and the gain matrix satisfies condition

(b).
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For condition (c), we must show that if is defined as in (28),

the resulting closed-loop system satisfies ,

where . Combining (62)

and (28),

Hence, and, thus, is the quantization noise

level for .
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