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Abstract. The purpose of this article for four-dimensional (4D) computed tomography (CT) is three-

fold. (1) A new spatiotemporal model is presented from matrix perspective with the row dimension in 

space and the column dimension in time, namely, Robust PCA based 4DCT model (Robust Principle 

Component Analysis based 4D CT). That is, instead of viewing 4D object as a temporal collection of 

three-dimensional (3D) images and looking for local coherence in time or space independently, we 

percept it as a mixture of low-rank matrix and sparse matrix and explore the maximum temporal 

coherence of spatial structure among phases. Here the low-rank matrix corresponds to the “stationary” 

background or reference state in space over time, while the sparse matrix stands for the “moving” or 

“changing” components, (under some proper sparsifying transform,) e.g., tumors or organs in motion. 

Furthermore, this Robust PCA based 4DCT model can be applicable in other imaging problems for 

motion reduction or/and change detection. (2) A dynamic data acquisition procedure, i.e., a temporally 

spiral scheme, is proposed that can potentially maintain the similar reconstruction accuracy while 

using fewer projections of the data. The key point of this dynamic scheme is to reduce the total 

number of measurements and hence the radiation dose by acquiring complementary data in different 

phases without redundant measurements of the common background structure. (3) An accurate, 

efficient, yet simple-to-implement algorithm based on split Bregman method is developed for solving 

the model problem with the sparse representation in tight frames. 

 

1. Introduction 

Respiratory motion can degrade the image quality of computed tomography (CT), and consequently 

cause substantial errors in the dose delivery for thoracic and upper abdominal tumors in radiation 

therapy [1, 2]. With the time-resolved data acquisition, Four-dimensional (4D) CT possesses an 

unprecedented capability for accurate patient imaging and treatment planning in spite of organ/tumor 

motion [3-7]. 

Two methodologies for 4D CT algorithms exist. In the first one, different temporal phases (each 

phase corresponding to a 3D image) are essentially considered as independent phases in image 

reconstruction. For example, with an external respiratory signal for synchronization, the acquired 

projection data are binned into different phases according to amplitude or phase-angle sorting [8], after 

which the standard 3D reconstruction is carried out for each phase. There is no correlation between 

phases in reconstruction to this point. To alleviate the view-aliasing artifacts due to the reduced 

number of projections, the image registration based on a deformable model of respiratory motion can 

be used either in image space [9], or in data space with an artifact-free reference image [10]. The 

similar ideas also appear in other 4D imaging techniques [11], such as 4D positron emission 

tomography (PET) [12]. 

In contrast, in the second methodology, the “time” dimension is explicitly incorporated into the 

reconstruction algorithm. That is all the phases are treated as a single entity. An apparent reason for 



this temporal fusion is that the images at different phases are intrinsically interconnected to each other 

due to some underlying physical or biological mechanism. As a result, this spatiotemporal synthesis 

feature is highly desirable in any truly 4D algorithm. For example, a spatiotemporal regularization via 

non-local means is utilized to enforce the temporal similarity between two consecutive phases in 4D 

CT [13]. A unified spatiotemporal strategy is also considered in 4D inverse planning for intensity 

modulated radiation therapy [14]. 

In this paper, we will present a different spatiotemporal model for 4D CT from matrix perspective, 

namely, Robust PCA based 4DCT model (Robust Principle Component Analysis based 4D CT), i.e., 

RPCA-4DCT model in abbreviation. That is, instead of viewing 4D object as a temporal collection of 

3D images and looking for local coherence in time or space independently, we percept it as a mixture 

of low-rank matrix and sparse matrix, with the row dimension in space and the column dimension in 

time, and explore the maximum temporal coherence of spatial structure among phases. Here the low-

rank matrix corresponds to the “stationary” background or reference state over time, while the sparse 

matrix stands for the “moving” or “changing” components, (under some proper sparsifying transform,) 

e.g., tumors or organs in motion. Here the image sparsity is enforced in wavelet tight frame domain 

rather than itself [15]. 

In addition, we will also introduce a dynamic data acquisition scheme to maximize the utility of 

the RPCA-4DCT model, and develop an efficient solution algorithm. Specifically, a temporally spiral 

scanning procedure can potentially maintain the similar reconstruction accuracy while using fewer 

projections of the data that are complementary at different phases to avoid redundant measurements of 

the common background structure; while being accurate, split Bregman method offers an extremely 

efficient, yet simple-to-implement strategy for solving a class of general l1-type problems, including 

the proposed RPCA-4DCT model [16, 17]. 

The RPCA-4DCT model is motivated by the recent work for data analysis in statistics, i.e., Robust 

Principle Component Analysis (RPCA) [18]. That is, with the data matrix consisting of a low-rank 

part and a sparse part, both can be (almost) exactly recovered by minimizing the sum of nuclear norm 

of the low-rank component and l1 norm of the sparse component subject to certain assumptions 

(incoherence conditions). The similar models have been considered in several applications, such as 

video denoising [19], video surveillance [18], face recognition [18] and others [20-25]. A key 

difference of the RPCA-4DCT model from RPCA and most existing applications is that the available 

data here are tomographic measurements linked to the object through some ill-posed system matrix 

rather than directly from the object itself. Although the required incoherence conditions for 

guaranteeing the success of RPCA to exactly recover both low-rank and sparse matrices cannot be 

rigorously justified in such an illposed inverse problem, we will show in this paper that the RPCA-

4DCT model indeed offers not only the improved overall image quality for 4D CT, but also a quite 

satisfactory decomposition into background and motion/change. Moreover, the RPCA-4DCT model 

can be augmented when in conjunction with tight frame transform, a dynamic data acquisition scheme 

pertinent to 4D CT, and split Bregman method. Finally, we remark that the proposed RPCA-4DCT 

model is a general model that can be potentially applicable in other imaging problems aiming at 

motion reduction or/and change detection besides 4D CT. 

 

2. Models and Algorithms  
 

2.1. Model 

The 4D object to be imaged can be viewed as a temporal sequence of 3D images, i.e., 

},{ tj njxX ≤= ,     (2.1) 

where X is the 4D object with temporal index j, and xj corresponds to one of nt phases, that is usually a 

piecewise-constantly discretized 3D image in space. Note that the respiratory cycle is generally 

assumed in order to acquire enough data for reconstructing each phase in the cycle [3]. However, this 

temporal periodicity is not necessary in the model formulation, thus is not assumed in (2.1). The 



assumption we impose on the model in this study is fairly natural and practical, i.e., the temporal 

variation of X in space is “sparse” (with some proper sparsifying transform) with respect to a 

“stationary” background. Shortly, this assumption will be quantified as a matrix decomposition model, 

i.e., RPCA-4DCT model, with each component characterized in the proper norm. 

The available data at each phase are 

},:{ tjjjj njNxAyY ≤+== .                       (2.2) 

Here yj is assumed to be the x-ray transform of xj with certain measurement noise Nj, and Aj 

corresponds to the system matrix that can be assembled according to line integrals in the image space 

between source-detector pairs [26]. Originally the system matrix should be independent of the index j 

since it is usually determined solely by the scanning geometry. In the following we will introduce a 

dynamic scanning strategy with the consequent dynamic system matrix to explore the possibility of 4D 

low-dose CT with fewer projections of data. On the other hand, the model and the algorithm discussed 

later also apply to other formulations of the system matrix, such as Fourier-based one [26]. 

 

2.1.1. Existing models. In 4D CT, one tries to reconstruct the 4D object X from its projection data Y. 

An apparent way is to reconstruct xj solely from yj for each phase, and then post-process xj’s altogether 

for artifact reduction (if necessary), i.e., 
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The first equation of (2.3) represents the solution of xj through the minimization of a least-square 

data fidelity term and a regularization term R on the image xj. Here the regularization is necessary for 

reducing the image artifact that may be due to the noise or the insufficient number of projections. This 

is a well-known iterative reconstruction strategy that is commonly used in algebraic reconstruction 

techniques (ART) when the system matrix is underdetermined, i.e., the number of data is less than the 

number of unknowns [26]. For comparison of models, L2 regularization and total variation (TV) 

regularization [27] will be employed, i.e., the following with i as spatial index,  

∑=
i

ijj xx 22||||  and ∑ ∂+∂+∂=∇
i

ijzijyijxj xxxx 222|| .    (2.4) 

In the second equation of (2.3), F represents the post-processing, for example, to alleviate the 

view-aliasing artifacts or smooth the image variation between phases. A commonly used method is 

based on the deformable model [9]. Alternatively, when an artifact-free reference image is available, 

the image deformable model can also be used to “smooth” the data first, and then followed by the 

phase-wise reconstruction [10]. 

An immediate benefit of the model (2.3) is that the problem is computationally minimal in the 

sense that it is almost equivalent to solve a few 3D CT problems with some extra cost for pre-/post- 

processing. However, this model is fundamentally defective. That is the interplay between 3D images 

among different phases is considered as a pure image registration problem rather than a truly 4D 

reconstruction. As a result, the embedded features that are available only through a 4D model can 

never be revealed otherwise, e.g., through (2.3). 

Therefore, one should incorporate, 3D images at different phases as a single entity, into the 

reconstruction model. The next question is: what should the model look like? 

A natural thought is to consider the following, 
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where the reconstruction of xj’s at different phases is performed simultaneously with an additional 

regularization term in time, i.e., Rt(X). That is the data fidelity term is enforced at all phases, while the 

solution is regularized both spatially and temporally. Note that despite of the simultaneous 

consideration of all phases, the regularization is however independently carried out locally in space 



and time. In the result section, we will adopt TV regularization in both space and time for comparison 

of models [28]. That is, with the alternative representation of X in pixels rather than phases, e.g., xi 

consisting of all phases at the ith pixel, 

},{ si nixX ≤= ,     (2.6) 

the temporal TV regularization is defined as 

∑ ∂=∇
j

ijtit xx |||| .       (2.7) 

Then, the model (2.5) becomes the following with TV regularization in both space and time, 
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Eq. (2.8) is indeed a way to model 4D CT as a 4D reconstruction problem. However, this model is 

still not very satisfactory in the sense that the spatiotemporal regularization is enforced “locally”, 

while in reality the 4D entity is a “global” mixture in time and space.  

 

2.1.2. Robust PCA based 4DCT model. The major contribution of this work is to introduce a new 

spatiotemporal 4D model from matrix perspective, i.e., Robust PCA based 4DCT model or RPCA-

4DCT model in short. That is X parameterized conventionally in space via (2.1) or in time via (2.6) 

can be represented in matrix with row dimension for spatial variable and column dimension for 

temporal variable 

[ ]
tnj xxxX LL1= .                                                         (2.9) 

As mentioned earlier, the respiratory motion can be regarded as a sequence of 3D images with 

different temporal “sparse” deviations from a common “background”. Motivated by this observation, 

we consider the following natural low-rank and sparse decomposition of X, 

21 XXX += .      (2.10) 

In (2.10), X1 is the low-rank matrix component for modeling the stationary background of X. Please 

note that X1 is assumed to resemble each other rather than to be constant in time, which can be 

naturally characterized as a low-rank matrix in mathematics. On the other hand, X2 is the sparse matrix 

component for modeling the sparse deviation from the background X1. Here the sparsity can be the 

image itself or the image under some proper sparsifying transform that will be discussed shortly. 

Accordingly, when the temporal change of images is sparse in the original representation, we are 

going to consider the following matrix minimization problem for RPCA-4DCT model 

121*1*
2

21
),(

21 ||||||||||)(||minarg),(
21

XXYXXAXX
XX

λλ ++−+= ,    (2.11) 

where A represents a linear operator composed of system matrices {Aj}, the nuclear norm for 

penalizing the rank of the matrix X1 (altogether for all phases) is defined as the sum of its single values 

{σk} with the regularizing parameter λ* , and the l1 norm for promoting the sparsity of  X2 

(independently for each phase) is simply the absolute sum of its entries with the regularizing 

parameterλ1, i.e.,  
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Comparing with (2.8), the RPCA-4DCT model via (2.11) offers a unified treatment in time and 

space, while each 4D component is characterized via the proper norm, such as (2.12). The gain of the 

overall reconstruction quality via the RPCA-4DCT model will be apparent in the result section. In 

addition, the extraction of X2 from the background X1 is a unique feature of the RPCA-4DCT model 

with captured dynamic details that would sometimes be crucial but hardly recognizable even for 

human eyes. 

On the other hand, there may be a concern that the computational cost would increase dramatically 

due to the simultaneous reconstruction of X at all phases. In Section 2.3, we will address this question 



with an efficient algorithm, which shows that the collective optimization via (2.8) or (2.11) costs 

roughly the same as independent optimizations via (2.3).  

 

2.1.3. Connection with prior works.  

RPCA-4DCT model is motivated by RPCA for data analysis in statistics [18].  In [18], a model to 

recover principle component X1 (modeled by a low-rank matrix) from data X with outliers X2 (modeled 

by a sparse matrix), is converted to the following minimization problem when certain incoherence 

conditions are satisfied 
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where r is shown to be the following for the matrix with n1 rows and n2 columns, so that no tuning 

parameter is necessary,  

),max(

1

21 nn
r = .     (2.14) 

 

2.1.4. RPCA-4DCT model revisited. Physical images usually have sparse structure under some 

carefully constructed dictionary, if not in the original representation. In this study, we find that the 

tight frame system derived from [15, 29] in general serves the purpose in terms of low-rank and sparse 

decomposition. As a result, the RPCA-4DCT model via (2.11) is revised as 
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where W represents the framelet analysis operator with W
T
W=I. In this study, a multilevel tight 

framelet decomposition without downsampling under the Neumann (symmetric) boundary condition is 

used with piecewise linear framelets [30, 31]. 

A key difference of our RPCA-4DCT model (2.15) from RPCA (2.13) and most existing  

applications is that the available data set Y here is the tomographic data of X generated by some system 

matrix rather than directly from X itself. As a result, the required incoherence conditions for 

guaranteeing the success of RPCA cannot be rigorously justified in such an illposed inverse problem. 

Another difference is that, the sparsity of X2 is enforced in the transform domain in RPCA-4DCT 

model, while it is in the original image domain in RPCA. Besides, the component X2 here is for 

modeling the motion or the change which is sometimes crucial for CT, and the data/image noise is 

controlled by the data fidelity term; in contrast, in some applications of RPCA, the component X2 is 

considered to be the noise that is of less interest. 

The sparsity of images under tight framelets has been successfully used to solve many image 

restoration tasks including image denoising, image deblurring, image inpainting, etc (e.g. [17, 30, 31]). 

Most importantly, tight framelets are redundant systems, which lead to robust image representations. 

Therefore, partial loss and noise of the data in CT can be tolerated without adverse effects. Moreover, 

the filters in piecewise linear B-spline framelets are the 1
st
 and 2

nd
 discrete difference operators 

respectively, and the multiscale structure of the framelets enables their multilevel correspondences. 

These difference operators are well organized in a way such that they have the unitary property 

W
T
W=I. Altogether, the piecewise linear B-spline framelet can provide more difference operators than 

traditional partial differential equation based methods such as TV regularization, and hence it can 

handle images with abundant structures. 

Another benefit using tight framelet systems is the availability of more efficient numerical 

methods to solve the resulting minimization (2.15). We will use the split Bregman method to solve 

(2.15), and there is a system of linear equations to be solved in each iteration of the split Bregman 

method. Since A is usually under-determined and W
T
W=I, it can be verified that the coefficient matrix 

of the resulting linear system has clustering eigenvalues. Therefore, the system of linear equation can 



be solved efficiently by the conjugate gradient (CG) method, and CG gives the exact solution after 

only a few steps. 

On the other hand, with a priori knowledge of the noise in (2.2), the RPCA-4DCT model (2.15) 

can be further augmented by characterizing the first term (the data fidelity term) with the appropriate 

norm. For example, if the data come with impulse noise, l1 norm is particularly suitable for 

characterizing such outliers [32-35]. In this study, for simplicity, we assume Gaussian data noise and 

penalize the data fidelity term with L2 norm. 

Finally, we remark that when the considered 4D object changes drastically in time, it can be 

reformulated into a few overlapping 4D objects according to the properly chosen temporal windows. 

Consequently, the overall reconstruction is with respect to the weighted sum of 4D components [36]. 

 

2.2. Dynamic Scanning 

One of the major practical concerns of CT is its ionizing radiation dose. For instance, it has been 

estimated that although CT studies constitute only 4% of all radiological procedures, they account for 

40% of the radiation dose delivered [37]; furthermore, “CT could account for as much as 60% of 

manmade radiation exposures to Americans” [38]. Tremendous effort has been devoted in dose 

reduction [1, 2, 39-41]. For example, as a theoretically justified methodology, “interior tomography”, 

an internal region of interest (ROI) can be exactly reconstructed only from local projection data 

directly associated with this ROI, which would conventionally require the whole body x-ray 

illumination [41-43]. 

Here we propose a dynamic scanning procedure pertinent to 4D CT that can potentially offer 

further dose reduction through the reduced number of projections. This dynamic scanning is 

temporally “spiral” as illustrated in Figure 1. 

 

 
Figure 1. An illustration example on scanning procedures for 4D CT. (a) “Full Views” corresponds to 

full data acquisition with 32 projections for each phase; (b) “Partial Views” corresponds to partial data 

acquisition with 8 projections, which is temporally stationary in each phase; (c) “Dynamic Views” 

again with 8 projections is however dynamically variant among phases so that any view can be swept 

in some phase within a full dynamic cycle while avoiding redundant measurements of the common 

background structure at different phases. In this example one data acquisition cycle is synchronized 

with 4D images with 4 phases. Please note that no temporal periodicity of the images is assumed. 

 

While Figure 1(a) is with full views of data (“Full Views”), Figure 1(b) is a temporally stationary 

data acquisition scheme with the reduced number of views that is stationary over time (“Partial 

Views”). In contrast, Figure 1(c) is a dynamic scanning procedure (“Dynamic Views”). In “Dynamic 

Views”, the positioning of acquired views differs between consecutive phases, however changes 

periodically so that each view is covered at least once during a dynamic period of scanning. In this 



way, the redundant measurements of the common background structure at different phases can be 

avoided. Please note that we do not assume the temporal periodicity of images. 

The potential advantage of the proposed “Dynamic Views” (Figure 1(c)), is that it can achieve the 

comparable image quality with less number of views than “Full Views” (Figure 1(a)), or provide better 

image quality with the same number of views than “Partial Views” (Figure 1(b)). A heuristic 

explanation is that the acquired views in one period can be fused into a dataset of full views so that the 

tangible data for each phase are from full views rather than partial views. What are missing in the data 

acquired from “Dynamic Views” comparing with “Full Views” mostly correspond to the redundant 

measurements of the stationary background. 

Moreover, “Dynamic Views” is practically feasible as long as the object to be imaged can be 

regarded as a single temporal phase within the time period of each data acquisition. Next we will use 

the reported parameters in [3] to illustrate its applicability in 4D CT for respiratory motion. That is, 

assuming (1) the 4D object of interest is one respiratory cycle with 6s in time, (2) the scanner rotation 

time for full views is 1.5s, (3) a fraction of the entire views is to be used for each phase, i.e., 1/8th, 

then it is safe to consider the 4D model with up to 32 phases. 

In contrast, in the standard scanning procedure, the over-sampled views of data are first acquired 

without pre-arrangement of the scanning according to phases, and then are binned into different phases 

according to amplitude or phase-angle sorting using an external respiratory signal [8]. Please note that 

the 4D objects to be imaged have to assume certain temporal periodicity in order to carry out the 
synchronized binning. Comparing with this standard scanning procedure, the proposed dynamic 

scanning scheme has the following apparent advantages: (1) no external respiratory signal is necessary, 

(2) the 4D objects do not have to be periodic, (3) most importantly, the carefully designed periodic 

data acquisition scheme provides the almost equivalent image quality as the full-view acquisition. On 

the other hand, it is synergetic with other potential scanning procedures for dose reduction, such as 

multi-source interior tomography [44]. 

 

2.3. Algorithm 

In this section, we consider the solution of RPCA-4DCT model via the following optimization 
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where r is defined by (2.14), and λ* is the only regularizing parameter to be determined. 

Here we adopt an accurate, efficient, but simple-to-implement algorithm for solving the non-

differentiable l1-type problems, such as (2.16), namely split Bregman method, that is essentially 

equivalent to augmented Lagrangian method, however was independently developed from a different 

perspective to improve the ROF model [16, 45]. In particular, the tight frame regularized split 

Bregman method will be implemented here [17]. That is (2.16) can be exactly solved through the 

following simple iterative scheme with X1
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The convergence of this iterative scheme when the variables are vectors has been established in [17]. 

Although the split Bregman method here by (2.17) is for matrix variables, the convergence can be 

obtained by mimicking the proofs in [17]. 



The first step of (2.17) corresponds to one iteration step in a typical differentiable L2 minimization, 

and the solution is simply from its optimal condition. In implementation, A and W are regarded as 

linear operators rather than matrices. For efficiency, CG is utilized, in which only the evaluations of 

linear operators on Xj are necessary, such as A j X
1
j and WX

2
j, without the explicit formulation and 

inversion of the whole system. As we have mentioned before, it can be verified that the considered 

matrix system has clustering eigenvalues. Therefore, CG gives the exact solution after only a few 

iterations. Please note that if only single iteration is used in CG, (2.17) can be viewed as a typical case 

of operator splitting methods [46-48]. However, it is found here that the conventional CG with a few 

iterations is more realistic in terms of reconstruction accuracy and convergence speed, which was also 

mentioned in [13]. 

The second step of (2.17) can be exactly solved by so-called singular value thresholding (SVT) 

[49]. That is 
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where the thresholding is with respect to single values σ of the input matrix, i.e., 
TT VUXVUXD ⋅⋅=⋅−⋅= )(diagwith ,))0,(max(diag:)( στστ .  (2.19) 

For this step, the major computational cost is from single value decomposition (SVD), which can be 

expensive even in the overall scheme (2.17). To alleviate the potential heavy computational burden, a 

more efficient and sophisticated solution without SVD was proposed in [50]. However, it is sufficient 

to consider this step by SVT in this study since the number of columns of the matrix considered here 

(corresponding to the number of phases in 4D object) is small enough so that SVT (2.19) is 

computationally negligible overall. 

Similarly, the solution to the third step of (2.17) is given by so called shrinkage formula, i.e., 
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with 
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Note that the shrinkage formula (2.21) is a scalar operation for each entry of X, while SVT (2.19) is a 

global operation on X. 

Regarding the parameters in (2.17), the followings are recommended  
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21 nn
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where n1 (n2) are the number of rows (columns) of the matrix X. Here the choice of r is supported by 

the rigorous analysis for RPCA [18] although the theory assumptions cannot be justified rigorously 

here due to the system matrix A. Furthermore, it is found that λ*∈[0.1, 1] generally provides the 

satisfactory performance in terms of both accuracy and speed. 

In the proposed algorithm via (2.17), the dominant component is to solve L2 problems in the first 

step. Due to its iterative nature, empirically it is not necessary to solve each CG step with very high 

accuracy in order for the whole loop to achieve fast convergence besides the fact that the system has a 

good condition number as mentioned before. We find that CG with 10 to 20 inner iterations is 

adequate for (2.17) to have the acceptable reconstruction accuracy within 50 outer iterations. 

The similar split Bregman strategy as (2.17) can be used for solving other models in Section 2.1. 

Moreover, another immediate advantage of split Bregman method is that the computation cost for 

RPCA-4DCT model (2.15), is similar to the corresponding L1-type 4D models, such as (2.8) with TV 

regularization in both time and space, or a temporally-independent sequence of 3D models, such as 

(2.3) with TV regularization in space.  

 

3. Results 

The purpose here is twofold: (1) to compare different models, (2) to justify the proposed dynamic 

scanning.  



To simplify the discussion, let “L2” (“TV”) be the 3D model that solve 4D CT by each individual 

phase, i.e., (2.3) with L2 (TV) regularization; “TV+TVt” be the 4D model that solve 4D CT as a single 

entity, i.e., (2.8) with TV regularization in both space and time; the RPCA-4DCT model be the 

proposed matrix model that solve 4D CT as a single entity, i.e., (2.15) with low-rank component and 

sparse component (in tight frames).  Please note that we do not compare here with the standard filtered 

backprojection (without regularizing solutions), which generally gives worse accuracy than “L2” when 

reconstructing with insufficient number of views. 

In this proof-of-concept study, for simplicity, the spatial dimension is 2D rather than 3D, i.e., 128 

by 128 spatial grid. Here 32 temporal phases are adopted for the justified reasons in Section 2.2. With 

the parallel scanning geometry, the length of the detectors with 256 detector pixels is equal to the side 

length of the spatial square domain, and “Full Views” consist of 256 projections. The reconstructions 

with three different data acquisition scheme (Figure 1) will be compared: “Full Views” corresponds to 

the use of all data; “Partial Views” corresponds to the use of 32 projections that is temporally 

stationary in phases; “Dynamic Views” corresponds to the use of 32 projections that is dynamically 

adjusted among phases so that any view is covered in some phase within a full dynamic period while 

avoiding redundant measurements of the common background. Here one data acquisition cycle is 

synchronized with 8 phases and the data are acquired with 4 cycles. 

Except “L2”, which is differentiable and therefore can be solved with iterations involving only one 

step that is similar to the first step of (2.17), all aforementioned other models can be solved through 

split Bregman iterations similar to (2.17). As a result, since the major computational cost in all models 

is on the L2 step similar to the first step in (2.17), the total computation time approximately only 

depends on the number of iterations. It is found that roughly 20-50 iterations together with the 

parameters specified by (2.22) are sufficient. In particular, all models except “L2” are similar in 

computational cost, while “L2” fails to achieve the satisfactory accuracy (comparing with other models) 

regardless of the number of iterations. 

Two spatiotemporal phantoms are used for evaluation. Phantom 1 is utilized for evaluating the 

reconstruction with motion, while the purpose of Phantom 2 is for change detection. 

Phantom 1 is to mimic a half respiratory cycle, which is based on the modified Shepp-Logan 

phantom that consists of piecewise constant regions (Figure 2). The temporal variations consist of (1) 

the intensity increase of the top circle (with a relatively large diameter), (2) the vertical movement of 

two central circles (with a relatively small diameter) apart of each other, and (3) the horizontal 

movement of two ellipses (with a relatively low contrast) apart of each other. 

Phantom 2 is to model the case with small temporal variations, which can be even hardly 

recognizable by human eyes (Figure 3). It is based on a brain image and the temporal variations 

consist of the horizontal movement of two ellipses (with a relatively very low contrast) apart of each 

other. 

 

3.1. Model comparison 

In this section, a small fraction of full views is used, i.e., one eighth of the full data (32 projections). 

Specifically we adopt “Dynamic Views” as the data acquisition scheme (Figure 1(c)).  

For Phantom 1, the result from the RPCA-4DCT model is shown in Figure 4, which clearly shows 

that the RPCA-4DCT model is able to not only recover images, but also provide automatic image 

decomposition into the background (that is mathematically low-rank) and the variation (that is sparse 

under tight frame transform). In contrast, the results from other models are shown in Figure 5. Since 

Phantom 1 is in favor of TV regularization due to its components in piecewise constants, “TV” and 

“TV+TVt” offer the equivalent image quality although the RPCA-4DCT model is slightly better in 

terms of reconstruction errors (Table 1). 

On the other hand, the result from the RPCA-4DCT model for Phantom 2 is shown in Figure 6, 

which indicates again that the matrix model is not only superior in the overall image quality, but also 

able to capture these small features that would be impossible otherwise. For comparison, the results 

from other models are shown in Figure 7. With temporal TV regularization, “TV+TVt” provides better 



overall image quality than “TV” both visually (Figure 7) and quantitatively (Table 1), which however 

is worse than the RPCA-4DCT model. The blurred or smoothed details are apparent for either “TV” or 

“TV+TVt”. Besides, neither clearly shows the temporal variations, which in contrast are available 

through the RPCA-4DCT model without extra computational cost. 

Please note that although the decomposition via the RPCA-4DCT model is non-unique, the 

variations are clearly captured as in Figure 4 and 6. Furthermore, such a clear decomposition with 

captured details via the RPCA-4DCT model is usually not available through the post-processing of 

images from other models, such as the simple subtraction of images with respect to the first phase. 

 

3.2. Scanning comparison 

The reconstructions are performed on Phantom 2 with the RPCA-4DCT model to compare three 

different data acquisition schemes (Figure 1), i.e., “Full Views” with 256 projections for each phase, 

“Partial Views” with 32 projections for each phase that are temporally invariant in terms of 

positioning of projections, and “Dynamic Views” with 32 projections for each phase that are 

dynamically variant so that each view is available for some phase in a full scanning cycle. Here one 

data acquisition cycle is synchronized with 8 phases and the data are acquired with 4 cycles. 

The reconstruction results for “Dynamic Views”, “Partial Views” and “Full Views” are presented 

in Figure 6, 8 and 9 respectively, and the quantitative reconstruction accuracy is summarized in Table 

2. The results clearly show that “Dynamic Views” has a great potential for dose reduction since it 

offers a satisfactory accuracy with only a small fraction of the full data. 
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Table 1. Reconstruction accuracy from various models (with “Dynamic Views”). The quantities are 

the quotient differences between the ground truth X
0
 and the reconstructed images X, i.e., ||X- X

0
||/|| X

0
|| 

with ||⋅|| as L2 norm. 

 
Phantom L2 TV TV+TVt LR+TF 

1 0.203 0.008 0.006 0.005 

2 0.197 0.076 0.040 0.022 

 

 

Table 2. Reconstruction accuracy from various data scanning schemes with the RPCA-4DCT model. 

The quantities are the quotient differences between the ground truth X
0
 and the reconstructed images X, 

i.e., ||X- X
0
||/|| X

0
|| with ||⋅|| as L2 norm. 

 
Phantom Partial Views Dynamic Views Full Views 

2 0.187 0.022 0.005 

 

 

 

 

 

 



  
Figure 2. Phantom 2 for 4D CT. (a), (b) and (c) are the image X, the background of the image X1 and 

the motion/change of the image X2 respectively at Phase 1, i.e., X=X1+X2. Similarly, (d), (e) and (f) 

correspond to X, X1 and X2 at Phase 16, and (g), (h) and (i) correspond to X, X1 and X2 at Phase 32. 

 

  
Figure 3. Phantom 2 for 4D CT. (a), (b) and (c) are the image X, the background of the image X1 and 

the motion/change of the image X2 respectively at Phase 1, i.e., X=X1+X2. Similarly, (d), (e) and (f) 

correspond to X, X1 and X2 at Phase 16, and (g), (h) and (i) correspond to X, X1 and X2 at Phase 32. 



 
Figure 4. Reconstructed images with RPCA-4DCT model for Phantom 1. (a), (b) and (c) are the total 

image X, the low-rank component X1 and the sparse component (in tight frames) X2 respectively at 

Phase 1, i.e., X=X1+X2. Similarly, (d), (e) and (f) correspond to X, X1 and X2 at Phase 16, and (g), (h) 

and (i) correspond to X, X1 and X2 at Phase 32. 

 
Figure 5. Reconstructed images with other various models for Phantom 1. (a), (b) and (c) are from 

“L2”, “TV” and “TV+TVt” respectively at Phase 1. Similarly, (d), (e) and (f) correspond to the above 

models at Phase 16, and (g), (h) and (i) correspond to the above models at Phase 32. 



 
Figure 6. Reconstructed images with RPCA-4DCT model for Phantom 2. (a), (b) and (c) are the total 

image X, the low-rank component X1 and the sparse component (in tight frames) X2 respectively at 

Phase 1, i.e., X=X1+X2. Similarly, (d), (e) and (f) correspond to X, X1 and X2 at Phase 16, and (g), (h) 

and (i) correspond to X, X1 and X2 at Phase 32. 

 
Figure 7. Reconstructed images with other various models for Phantom 2. (a), (b) and (c) are from 

“L2”, “TV” and “TV+TVt” respectively at Phase 1. Similarly, (d), (e) and (f) correspond to the above 

models at Phase 16, and (g), (h) and (i) correspond to the above models at Phase 32. 



 
Figure 8. Reconstructed images with the RPCA-4DCT model for Phantom 2 with “Partial Views”. 

 

 

 

 
Figure 9. Reconstructed images with the RPCA-4DCT model for Phantom 2 with “Full Views”. 
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